SUPPORTING INFORMATION

Parallel SPR and QCM-D quantitative analysis of CD9, CD63, and CD81 tetraspanins: a simple and sensitive way to determine the concentration of extracellular vesicles isolated from human lung cancer cells

Agata Kowalczyk^{1,*}, Aleksandra Gajda-Walczak¹, Monika Ruzycka-Ayoush², Alicja Targonska³, Grazyna Mosieniak³, Maciej Glogowski⁴, Anna Szumera-Cieckiewicz⁵, Monika Prochorec-Sobieszek⁵, Magdalena Bamburowicz-Klimkowska², Anna M. Nowicka^{1,*}, and Ireneusz P. Grudzinski²

¹Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Warsaw, Pasteura Str. 1, PL-02-093, Warsaw, Poland
²Department of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, Banacha Str. 1, PL-02-097, Warsaw, Poland
³Laboratory of Molecular Bases of Ageing, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura Str. 3, PL-02-093, Warsaw, Poland
⁴Department of Lung Cancer and Chest Tumors, Maria Sklodowska-Curie National Research Institute of Oncology, Roentgena Str. 5, PL-02-781, Warsaw, Poland
⁵Department of Cancer Pathomorphology, Maria Sklodowska-Curie National Research Institute of Oncology, Roentgena Str. 5, PL-02-781, Warsaw, Poland

*Corresponding authors: akowalczyk@chem.uw.edu.pl (A.K.), anowicka@chem.uw.edu.pl (A.M.N.)

A: anti-CD9

B: anti-CD63

C: anti-CD81

Figure S1. Dependencies of $\ln(R_0/R) = f(t)$ during interaction of extracellular vesicles with anti-CD9 (A), anti-CD63 (B) and anti-CD81 (C).

Receptor layer	Method	Dynamic range [particles∙mL ⁻¹]	LOD [particles∙mL ⁻¹]	Ref.
Au/capture DNA/MCH/exosomes/CD 63 aptamer-T ₃₀ -Au NPs/A ₃₀ -Au NPs	dual AuNP amplified SPR aptasensor	$0 - 1 \cdot 10^9$	5·10 ³	1
Au/CD63 aptamer/DNA-MB	aptamer-based electrochemical (SWV) biosensor	$1 \cdot 10^6 - 1 \cdot 10^9$	$1 \cdot 10^{6}$	2
Au/anti-EpCAM aptamers/exosomes/ Ag NPs- anti-EpCAM an Cu NPs-anti-PSMA	electrochemical (LSV) sensor with metal nanoparticles		$5 \cdot 10^{4}$	3
Au/DNA nanotetranedron/aptamer LZH8	electrochemical (SWV) sensor with expanded nucleotide	$1 \cdot 10^4 - 1 \cdot 10^{13}$	2.1.104	4
Au/MUA/rabbit α-human CD9/exosomes/ mouse α-human CD9/ α-mouse IgG/HRP TMB	electrochemical (ChA)sandwich immunosensor	$1 \cdot 10^5 - 1 \cdot 10^{11}$	2.1·10 ⁵	5
Au/HS-PEG-biotin:HS-OEG-COOH/SAv/ biotin-anti-CD63	acoustic affinity immunosensor	$1 \cdot 10^8 - 5 \cdot 10^{10}$	2.9·10 ⁸	6
Au/protein A/anti-CD9 Au/protein A/anti-CD63 Au/protein A/anti-CD81	SPR immunosensor	$6.1 \cdot 10^4 - 6.1 \cdot 10^7$	$\begin{array}{c} 7.8 \cdot 10^3 \\ 0.95 \cdot 10^4 \\ 2.5 \cdot 10^4 \end{array}$	this work
Au/CSH/anti-CD9 Au/CSH/anti-CD63 Au/CSH/anti-CD81	QCM-D immunosensor	$6.1 \cdot 10^4 - 6.1 \cdot 10^7$	$\begin{array}{c} 0.60\!\cdot\!10^4 \\ 1.8\!\cdot\!10^4 \\ 0.70\!\cdot\!10^4 \end{array}$	this work

Table S1.	Analytical	protocols	for extracel	lular vesicles	determination.
-----------	------------	-----------	--------------	----------------	----------------

Ag NPs: silver nanoparticles; aptamer LZH8: aptamer for HepG2 hepatocellular exosomes; Au NPs: gold nanoparticles; ChA: chronoamperommetry; CSH: cysteamine; Cu NPs: copper nanoparticles; EpCAM: epithelial cell adhesion molecule; HRP: horseradish peroxidase; LSV: linear scan voltammetry; MB: methylene blue, MCH: 6-mercapto-1-hexanol; MUA: 11-mercaptoundecanoic acid; OEG: oligo(ethylene glycol); PEG: polyethylene glycol; PSMA: prostate-specific membrane antigen; SAv: streptavidin; SPR: surface plasmon resonance; SWV: square wave voltammetry; TMB: 3,3',5,5'-tetramethyl benzidine.

References

(1) Wang, Q.; Zou, L.; Yang, X.; Liu, X.; Nie, W.; Zheng, Y.; Cheng, Q.; Wang, K. Direct Quantification of Cancerous Exosomes via Surface Plasmon Resonance with Dual Gold Nanoparticle-Assisted Signal Amplification. *Biosens. Bioelectron.* **2019**, *135*, 129-136. <u>https://doi.org/10.1016/j.bios.2019.04.013</u>

(2) Zhou, Q.; Rahimian, A.; Son, K.; Shin, D. -S.; Patel, T.; Revzin, A. Development of an Aptasensor for Electrochemical Detection of Exosomes. *Methods* **2016**, *97*, 88-93. <u>https://doi.org/10.1016/j.ymeth.2015.10.012</u>

(3) Zhou, Y. G.; Mohamadi, R. M.; Poudineh, M.; Kermanshah, L.; Ahmed, S.; Safaei, T. S.; Stojcic, J.; Nam, R. K.; Sargent, E. H.; Kelley, S. O. Interrogating Circulating Microsomes and Exosomes Using Metal Nanoparticles. *Small* 2016, *12*, 727-732.

https://doi.org/10.1002/smll.201502365

Wang, S.; Zhang, L.; Wan, S.; Cansiz, S.; Cui, C.; Liu, Y.; Wu, Y.; Dong, Y.; Tan, W.
H. Aptasensor with Expanded Nucleotide Using DNA Nanotetrahedra for Electrochemical Detection of Cancerous Exosomes. *ACS Nano* 2017, *11*, 3943-3949.

https://doi.org/10.1021/acsnano.7b00373

(5) Doldán, X.; Fagúndez, P.; Cayota, A.; Laíz, J.; Tosar, J. P. Electrochemical Sandwich Immunosensor for Determination of Exosomes Based on Surface Marker-Mediated Signal Amplification. *Anal. Chem.* **2016**, *88*, 10466-10473.

https://doi.org/10.1021/acs.analchem.6b02421

(6) Suthar, J.; Parsons, E. S.; Hoogenboom, B. W.; Williams, G. R.; Guldin, S. Acoustic Immunosensing of Exosomes Using a Quartz Crystal Microbalance with Dissipation Monitoring. *Anal. Chem.* 2020, *92*, 4082-4093.

https://dx.doi.org/10.1021/acs.analchem.9b05736