Supplementary Online Content Mitchell AP, Rotter JS, Patel E, et al. Association between reimbursement incentives and physician practice in oncology: a systematic review. *JAMA Oncol*. Published online January 3, 2019. doi:10.1001/jamaoncol.2018.6196 eAppendix. Search Terms eMethods. Risk of Bias Assessment eTable 1. Studies Excluded at Full Text Review eTable 2. Study Results eTable 3. Study Results for Studies With Critical Risk of Bias **eFigure 1.** PRISMA Diagram eFigure 2. Risk of Bias Assessment for Studies With Critical Risk of Bias eReferences. This supplementary material has been provided by the authors to give readers additional information about their work. # eAppendix. Search Terms #### Pubmed/MEDLINE: (fees and charges[mesh] OR "Reimbursement, Incentive" [Mesh] OR "Physician Incentive Plans" [Mesh] OR reimburs* [tiab] OR capitation fee [mesh] OR incentive* [tiab] OR "pay for performance" OR "incentive reimbursement" OR "incentive reimbursements" OR "fee-for-service" OR "fee for service" OR fee for service plans [mesh] OR unnecessary procedures [mesh] OR physician self-referral [mesh] OR capitation [tiab] OR reimbursement mechanisms [mesh] OR insurance claim review [mesh]) AND (provider* OR physician* OR physicians [mesh] OR physicians [mesh] OR physicians or ole [mesh] OR oncolog* [tiab]) NOT (comment [pt] OR letter [pt]) AND (oncology [mesh] OR cancer [mesh] OR chemotherapy [mesh] OR antine oplas* [tiab] OR neoplas* [tiab] OR oncol* [tiab] OR antine oplas* [tiab] OR chemotherap* [tiab]) #### Web of Science: ("fees and charges" OR "Reimbursement, Incentive" OR "reimbursement incentive" OR "Physician Incentive Plans" OR "physician reimbursement" OR reimburs* OR "capitation fee" OR incentive *OR "pay for performance" OR "incentive reimbursement" OR "incentive reimbursements" OR "fee-for-service" OR "fee for service plans" OR "unnecessary procedures" OR "self-referral" OR capitation OR "reimbursement mechanisms" OR "insurance claim review" OR billing OR "fee schedule" OR "buy and bill" OR "financial incentive" OR "payment reform") AND (provider* OR physician* OR physicians OR "practice patterns, physicians" OR "physician's role") AND (cancer* OR neoplas* OR oncol* OR antineoplas* OR chemotherap*) #### Proquest Health Management: ("fees and charges" OR "Reimbursement, Incentive" OR "reimbursement incentive" OR "Physician Incentive Plans" OR "physician reimbursement" OR reimburs* OR "capitation fee" OR incentive OR "pay for performance" OR "incentive reimbursement" OR "fee-for-service" OR "fee for service plans" OR "unnecessary procedures" OR "self-referral" OR capitation OR "reimbursement mechanisms" OR "insurance claim review" OR billing OR "fee schedule" OR "buy and bill" OR "financial incentive" OR "payment reform" OR "physician compensation") AND ti(cancer* OR neoplas* OR oncol* OR antineoplas* OR chemotherap*) # **Econlit and Business Source Premier:** ("medical fees" OR "medicare reimbursement" OR "fees and charges" OR "Reimbursement, Incentive" OR "reimbursement incentive" OR "Physician Incentive Plans" OR "physician reimbursement" OR reimburs* OR "capitation fee" OR incentive* OR "pay for performance" OR "incentive reimbursement" OR "fee-for-service" OR "fee for service plans" OR "unnecessary procedures" OR "self-referral" OR capitation OR "reimbursement mechanisms" OR "insurance claim review" OR billing OR "fee schedule" OR "buy and bill" OR "financial incentive" OR "payment reform" OR "physician compensation" OR "reimbursement policy") AND ti(cancer* OR neoplas* OR oncol* OR antineoplas* OR chemotherap*) # eMethods. Risk of Bias Assessment We applied the Risk of Bias in Non-randomized Studies (ROBINS-I) tool to assess risk of bias¹. This tool assesses risk of bias across several different domains. For each domain, a judgement is made as to whether there may have been risk of bias due to that domain, using the following definitions: Low risk of bias: the study is comparable to a well-performed randomized trial Moderate risk of bias: the study provides sound evidence for a non-randomized study but cannot be considered comparable to a well-performed randomized trial High risk of bias: the study has some important problems Critical risk of bias: the study is too problematic to provide any useful evidence and should not be included in any synthesis Unclear risk of bias: No information on which to base a judgement about risk of bias The authors of the ROBINS-I tool note that all non-randomized trials are anticipated to have at least a moderate risk of bias in the domain of risk of bias due to confounding. The following is a brief, abridged summary of the factors ROBINS-I users are asked to consider in rendering a judgement for each domain: Bias due to confounding: whether study authors appropriately controlled for all confounding factors, and whether confounding factors were measured validly and reliably. Bias due to selection of participants into study: whether participants were selected based on characteristics observed after the intervention period began. Bias due to classification of interventions: whether intervention groups were clearly defined, and whether knowledge of an individual's outcome may have affected the intervention group classification. Bias due to deviations from intended interventions: whether deviations from the intended interventions occurred, whether such deviations occurred in an unbalanced fashion, whether deviations were likely to have affected the outcome, and whether participants adhered to the assigned intervention. Bias due to missing data: whether missingness occurred, whether missingness resulted in participant exclusion, and whether missingness was similar between intervention groups. Bias in measurement of outcomes: whether the outcome measure may have been influenced by knowledge of intervention group assignment, and whether methods of outcome assessment or errors in outcome assessment were likely to be balanced between intervention groups Bias in selection of the reported result: whether the study's reported result may have been selectively chosen from among several different analyses, or from among one subgroup within a larger cohort. **eTable 1**. Studies Excluded at Full Text Review. For each study, "reason for exclusion" identifies which of the specific exclusion criterion was cited. "Further explanation" provides additional context about the study that resulted in exclusion for that reason. | Lead author and year of publication | Reason for Exclusion | Further explanation | |--------------------------------------|---|---| | Ata, 2013 ² | Study did not contain an empirical analysis | Theoretical/simulation model | | Bennett, 1999 ³ | Outcome not measured directly | Study outcome was measured through a survey of providers | | Bennett, 2000 ⁴ | Wrong study design | Book chapter | | Colla, 2012 ⁵ | Duplicate | This study was included in the final analysis, but was duplicated in our search | | Ellis, 2013 ⁶ | Not peer reviewed | Dissertation | | Halpern, 2017 ⁷ | Study did not focus on cancer patients | | | Hemani, 2010 ⁸ | Study did not contain a measure of contrast between groups of interest | Trends in utilization for both the experimental and control groups are described, but there is no statistical measure of comparison | | Herman, 2003 ⁹ | Outcome was not a form of patient care delivery | Outcome was the cost and spending on various radiation oncology procedures | | Makarov, 2016 ¹⁰ | Reimbursement not identified as the main difference between exposure/control groups | Exposure and control groups were treated in different health care systems | | McKoy, 2008 ¹¹ | Wrong study design | Book chapter | | Millman, 1989 ¹² | Wrong study design | Opinion/editorial | | Newcomer, 2014 ¹³ | Outcome was not a form of patient care delivery | The outcome was health care spending, not delivery of any specific service | | O'Shaughnessy,
2013 ¹⁴ | Study did not contain a measure of contrast between groups of interest | Study describes changing use of androgen deprivation therapy over time, but does not test a specific hypothesis | | Ramsey, 2015 ¹⁵ | Study did not contain a measure of contrast between groups of interest | Study describes the delivery of several low-
value forms of cancer care, but does not
assess delivery with respect to any specific
reimbursement changes | | Retchin, 1997 ¹⁶ | Reimbursement not identified as the main difference between exposure/control groups | Exposure and control groups were treated in different health care systems | | Shahinian, 2017 ¹⁷ | Study did not contain a measure of contrast between groups of interest | Trends in utilization for both the experimental and control groups are described, but there is no statistical measure of comparison | | Shen, 2014 ¹⁸ | Study did not contain a measure of contrast between groups of interest | Study describes changing use of radiation therapy over time, but does not test a specific hypothesis | |------------------------------|--|---| | Soumerai, 1990 ¹⁹ | Study did not focus on cancer patients | | | Jacobson, 2006 ²⁰ | Duplicate | This study was included in the final analysis, but was duplicated in our search | | Weight, 2008 ²¹ | Study did not contain a measure of contrast between groups of interest | Study describes changing use of androgen deprivation therapy over time, but does not test a specific hypothesis | **eTable 2:** Study Results. Studies were grouped in to three subject areas: 1) studies evaluating the effect of reimbursement differences created by
inter-provider or inter-treatment variability in reimbursement, 2) studies of reimbursement incentives resulting from physician ownership and/or self-referral practices, and 3) studies evaluating the effect of changes in reimbursement for oncology treatment services over time. "Direction of association between financial incentives and care delivery" describes whether the measured association was in the direction hypothesized by the study authors under the assumption of physician responsiveness to financial incentives ("In hypothesized direction"), in the direction counter to the hypothesis ("Contrary to hypothesized direction"), or in neither direction ("no association"). | Lead
author and
year of
publication | Study design,
time period, and
patient
population | Financial incentive studied, and analytic question | Exposure and control groups | Primary outcome[s] | Result and measure of confidence | Direction of association between financial incentives and care delivery | |--|--|--|---|--|--|---| | Studies of in | ter-provider or inter | -treatment variability in re | imbursement | | | | | Hadley,
2003 ²² | Retrospective cross-sectional analysis, 1994 Patients receiving surgical treatment for breast cancer (N = 1,787) | Variation in Medicare fees for breast conserving surgery (BCS) and mastectomy (MST) Do physicians with higher Medicare fees for BCS use BCS more | Patients treated by physicians with higher Medicare fees for BCS fees (or lower MST fees), compared to those treated by physicians with lower BCS fees (or higher MST fees) | Change in the likelihood of patient receiving BCS+RT instead of MST, associated with a 10% increase in physician BCS fees | OR = 1.34 (p = 0.02) | In
hypothesized
direction | | | | often? | | Change in the likelihood of patient receiving BCS instead of MST, associated with a 10% increase in physician BCS fees Change in the | OR = 1.23 (p = 0.23) OR = 1.86 (p < 0.01) | In hypothesized direction | | | | | | likelihood of patient receiving BCS+RT instead of | Ο (- 1.00 (μ < 0.01) | hypothesized
direction | | | | | | MST, associated with a 10% decrease in physician MST fees Change in the likelihood of patient receiving BCS instead of MST, associated with a 10% decrease in physician MST fees | OR = 1.46 (p = 0.23) | In
hypothesized
direction | |-----------------------------------|--|---|--|--|---|---| | Jacobson,
2006 ^{20,a} | Retrospective cohort, 1995-1998 Patients with metastatic breast, colon, other gastrointestinal, or lung cancer (N = 2,246) | Differences in Medicare reimbursement for chemotherapy based on local carrier payment rates. Are physicians who are reimbursed more generously for chemotherapy more likely to use chemotherapy, or do they use more | Patients treated by physicians with higher Medicare fees for chemotherapy, compared to those treated by physicians with lower fees | Receipt of chemotherapy for breast cancer associated with 1SD greater physician reimbursement Change in cost of breast cancer chemotherapy associated with \$1 greater physician | PD = 1.1% (95%CI -0.9%, 3.1%) +\$23.10 (p = 0.038) | In hypothesized direction In hypothesized direction | | | | expensive
chemotherapy? | | reimbursement Receipt of chemotherapy for colorectal cancer associated with 1SD greater physician reimbursement Change in cost of colorectal cancer chemotherapy associated with \$1 greater physician reimbursement | PD = -15.0% (95%Cl - 42.2%, 12.2%) +\$35.50 (p = 0.079) | Contrary to hypothesized direction In hypothesized direction | | | | | | Receipt of
chemotherapy for
GI cancer
associated with
1SD greater
physician
reimbursement | PD = -2.5% (95%CI -6.3%, 1.3%) | Contrary to
hypothesized
direction | |-----------------------------|---|---|---|---|----------------------------------|--| | | | | | Change in cost of GI cancer chemotherapy associated with \$1 greater physician reimbursement | -\$6.33 (p = 0.038) | Contrary to
hypothesized
direction | | | | | | Receipt of chemotherapy for lung cancer associated with 1SD greater physician reimbursement | PD = -0.1% (95% CI - 2.0%, 1.9%) | Contrary to
hypothesized
direction | | | | | | Change in cost of lung cancer chemotherapy associated with \$1 greater physician reimbursement | +\$13.00 (p = 0.039) | In
hypothesized
direction | | Epstein, 2012 ²³ | Retrospective
cohort, 1992-
2002
Patients receiving
chemotherapy
for breast
cancer (N =
3,856) | Physician use of chemotherapy drugs with respect to profit margin. Are physicians more likely to use chemotherapy drugs with higher profit margins over those with lower profit margins? | N/A: physician use of
chemotherapy drugs was
analyzed across entire
cohort | Change in likelihood of physician selection of a chemotherapy drug associated with a 1% increase in the profit margin of the average daily dose | +1.1% to +17.7% ^b | In
hypothesized
direction | | Ellis, 2016 ²⁴ | Retrospective
cohort, 2000-
2003
Patients with
prostate cancer
(N = 15,128) | Differences in Medicare reimbursement for ADT based on local carrier payment rates. Are physicians who are reimbursed more | Patients treated by physicians with higher Medicare fees for ADT, compared to those treated by physicians with lower fees | Change in the likelihood of patient receiving ADT associated with a \$1 increase in physician | OR = 1.00 (95%CI 1.00,
1.00 | No
association | |---------------------------------|--|--|---|--|------------------------------------|--| | Jung,
2018 ^{25,a} | Retrospective
cohort, 2010-
2013
Cancer treatment | generously for ADT more likely to use ADT? Access to 340B discount pricing, vs. no 340B discount pricing. Are patients treated by | Medicare patients treated in HRRs that gained a 340B hospital during the study period, compared to those | reimbursement for ADT Change in the likelihood of receiving chemotherapy | PD = 0.49% (95% CI - 0.29%, 1.27%) | In
hypothesized
direction | | | in hospitals
participating in
the 340B drug
discount
program (N =
9,062) | health systems participating in the 340B discount program more likely to receive chemotherapy, or more likely to receive chemotherapy in the hospital outpatient | treated in HRRs without
340B hospitals | Change in the likelihood of receiving chemotherapy in the hospital outpatient setting (vs. the office setting) | PD = 7.76% (95% CI 2.66, 12.56) | In
hypothesized
direction | | | | setting vs. the office setting? | | Change in the number of chemotherapy drug claims | PD = 0.04% (95% CI -0.67, 0.75) | In
hypothesized
direction | | Studies of ph | ıysician ownership iı | nterests and self-referral pr | actices | | | | | Mitchell,
1992 ²⁶ | Cross-sectional
market share,
1989
Patients receiving | Physician self-referral
for radiation therapy
Do physicians use
radiation therapy more | Patients treated in free-
standing radiation centers
in the state of Florida
(likely to be self-referring), | Number of
treatments per
1,000 Medicare
beneficiaries | RR = 1.58 | In
hypothesized
direction ^c | | | radiation
therapy (N =
N/A) | often when self-
referring for services? | compared to those treated in the rest of the United States (not likely to be self-referring) | Allowed charges
per
1,000
Medicare
beneficiaries | RR = 1.46 | In
hypothesized
direction ^c | | Smith,
2011 ²⁷ | Retrospective
cohort, 2001-
2005 | Office-based radiation centers vs. hospital-based | Patients treated with RT in freestanding radiation centers, compared to those | Likelihood of receiving IMRT | OR = 1.36 (95%CI 1.20, 1.53) | In
hypothesized
direction | | | Patients receiving radiation therapy for breast cancer (N = 26,163) | Are office-based radiation centers, which are more often self-referring, more likely to use IMRT? | treated in hospital-based outpatient canters | | | | |---------------------------------|--|--|--|--|---|---------------------------------| | Bekelman,
2013 ²⁸ | Retrospective
cohort, 2004-
2007
Patients with | Prostate cancer treatment before and after conversion of a urology practice to an | Patients treated in a urology practice after vs. before transition to an IPCC, compared to those | Likelihood of receiving IMRT | PD = 11.7% (95%CI 3.9%,
19.2%) vs. state control,
10.5% (95%CI 0.9, 20.7%)
vs HRR control | In
hypothesized
direction | | | prostate cancer (N = 3,980) integrated prostate cancer center (IPCC), exempt from Stark Law. Are IPCCs more or less likely to treat patients treated in non-IPCC practices elsewhere within the same HRR, and to those treated in non-IPCC practices elsewhere within | Likelihood of receiving ADT | PD = -5.3% (95%CI -
12.1%, 1.3%) vs state
control, -7.5% (95%CI -
16.7%, 0.5%) vs HRR
control | In
hypothesized
direction | | | | | | with IMRT, ADT,
prostatectomy, non-
IMRT RT, or expectant
management? | the same state. | Likelihood of receiving prostatectomy | PD = -12.9% (95%CI -
23.5%, -1.9%) vs state
control, -12.0% (95%CI -
19.4%, -5.2%) vs HRR
control | In
hypothesized
direction | | | | | | Likelihood of receiving non-IMRT RT | NR | NR | | | | | | Likelihood of receiving expectant management | NR | NR | | Mitchell,
2013 ²⁹ | Retrospective
cohort, 2005-
2010
Patients with
prostate cancer
(N = 38,765) | Prostate cancer treatment before vs. after private-practice urology groups became self-referring, compared to urology groups that did not become self-referring. Are self-referring urology practices more or less likely to treat patients with IMRT? | Patients treated in private-
practice urology practices
after vs. before self-referral
period, compared to similar
practices that did not
become self-referring | Likelihood of receiving IMRT | PD = 16.9% (p < 0.0001)
OR = 2.79 (95%CI 2.53,
3.08) | In
hypothesized
direction | | Williams, 2017 ³⁰ | Retrospective cohort, 2004-2009 Patients with prostate cancer (N = 17,982) | Prostate cancer treatment in older men in self-referring vs. non- self-referring urology practices. Are self-referring urology practices more or less likely to treat older men with any active therapy, or with RT? | Patients diagnosed in self-
referring urology practices,
compared to those
diagnosed in non-self-
referring urology practices. | Likelihood of receiving active therapy (prostatectomy, RT, cryotherapy, or ADT) Likelihood of receiving external beam RT | OR = 1.61 (95%CI 1.30,
2.00) OR = 1.59 (95%CI 1.37,
1.84) | In hypothesized direction In hypothesized direction | |-----------------------------------|--|--|---|---|---|--| | Elliott,
2010 ³¹ | Retrospective
cohort, 1992-
2005
Patients with
prostate cancer
(N = 72,818) | Decrease in reimbursement for ADT, following the Medicare Modernization Act Did physicians decrease use of ADT in response to lower reimbursement? | Men newly diagnosed with prostate cancer after a decrease in reimbursement for ADT, compared to those diagnosed before the decrease. Specific groups compared included men with metastatic disease (for which ADT is indicated) and low-risk localized disease (for which ADT is not indicated) | Likelihood of receiving ADT, for men with metastatic disease Likelihood of receiving ADT, for men with low-risk localized disease | OR = 0.9 (95%CI 0.68,
1.18)
OR = 0.61 (95%CI 0.53,
0.71) | N/A (control) In hypothesized direction | | Jacobson,
2010 ^{32,a} | Retrospective
cohort, 2003-
2005
Patients with lung
cancer (N =
222,478) | Decrease in reimbursement for some chemotherapy drugs, following the Medicare Modernization Act Did physicians decrease use of chemotherapy drugs in response to lower reimbursement? | Patients diagnosed with lung cancer after a decrease in reimbursement for some chemotherapy drugs, compared to those diagnosed before the decrease | Likelihood of receiving any chemotherapy Likelihood of receiving carboplatin Likelihood of receiving paclitaxel Likelihood of receiving docetaxel | PD = 1.9% (95%CI 1.51%, 2.29%) PD = -4.1% (95%CI -4.1%, -2.1%) PD = -4.3% (95%CI -6.3%, -2.3%) PD = 0.5% (95%CI -0.9%, 1.9%) | In hypothesized direction In hypothesized direction In hypothesized direction NA (control) | | | | | | Likelihood of receiving etoposide Likelihood of receiving gemcitabine | PD = -1.2% (95%CI -2.0%,
-0.4%)
PD = -2.2% (95%CI -3.0%,
-1.4%) | In
hypothesized
direction
NA (control) | |--------------------------------|--|---|--|--|--|---| | Jacobson, 2011 ³³ | Retrospective
cohort, 2002-
2006
Patients with lung
cancer (N =
878,923) | Decrease in reimbursement for some chemotherapy drugs, following the Medicare Modernization Act Did physicians in different states respond similarly to reimbursement changes, or was there variation? | Patients diagnosed with lung cancer after a decrease in reimbursement for some chemotherapy drugs, compared to those diagnosed before the decrease | Change in
likelihood of
receiving
chemotherapy
within 30 days of
diagnosis, within
each US state | F-value for null hypothesis that all states' changes are jointly equal to 0 is 38, 279 | In
hypothesized
direction | | Colla,
2012 ^{5,a} | Retrospective
cohort, 2003-
2007
Cancer patients
within the last
months of life
(N = 57,656) | Decrease in reimbursement for some chemotherapy drugs, following the Medicare Modernization Act Did physicians decrease use of chemotherapy within the last month of life in response to lower reimbursement? | Patients who died from cancer after a decrease in reimbursement for some chemotherapy drugs, compared to those who died before the decrease | Likelihood of receiving chemotherapy within the last month of life | PD = -2.6% (95% CI 4.2%,
1.0%) | In
hypothesized
direction | | Conti,
2012 ^{34,a} | Interrupted time
series, 2006-
2009
Use of irinotecan
to treat colon | Expiration of protection of irinotecan and entry of generic version Did physicians decrease use of irinotecan after | Patients treated with irinotecan after patent expiration vs. before, compared to number of administrations of | Change in number of administrations of irinotecan, compared to oxaliplatin | PD = -17.0% (95%CI -
17.1%, 16.9%) | In
hypothesized
direction | | | cancer (N = NR) | patient expiration? | oxaliplatin | Change in the proportion of patients treated with irinotecan, | PD = -16.5 (95%CI -16.5, -
16.5) | In
hypothesized
direction | | | | | | compared to oxaliplatin | | | |----------------------------------|--
---|---|---|---|--| | Quek,
2014 ³⁵ | Retrospective
cohort, 2001-
2007
Patients with
prostate cancer
(N = 12,255) | Decrease in reimbursement for ADT following the Medicare Modernization Act, and the response to reimbursement decrease among academic (salaried) and non-academic (fee-for- service) urologists Did non-academic urologists decrease use of ADT in non-indicated settings to a larger degree than academic urologists following a reimbursement decrease? | Patients treated by non-academic urologists after vs. before a decrease in reimbursement for ADT, compared to academic urologists | Likelihood of receiving non-indicated ADT | t-statistic for the null hypothesis that the decline in use of non-indicated ADT was the same between non-academic and academic urologists, is -0.07 (p=0.95) | In
hypothesized
direction | | Shahinian,
2015 ³⁶ | Retrospective
cohort, 2000-
2002 and 2004-
2007
Patients with
prostate cancer
(N = 27,169) | Decrease in reimbursement for ADT following the Medicare Modernization Act, and the response to reimbursement decrease among academic (salaried) and non-academic (fee-for- service) urologists Did non-academic urologists decrease use of ADT in non-indicated settings to a larger | Patients treated by non-academic urologists after vs. before a decrease in reimbursement for ADT, compared to academic urologists | Likelihood of receiving non-indicated ADT, non-academic vs. academic urologists, before reimbursement decrease Likelihood of receiving non-indicated ADT, non-academic vs. academic urologists, after | OR = 1.32 (95%CI 1.17,
1.56
OR = 1.34 (95%CI 1.15,
1.56 | In hypothesized direction In hypothesized direction | | | | degree than academic urologists following a | | reimbursement
decrease | | | | | | reimbursement | | p-value for the null | p = 0.68 | Contrary to | |--------------------|------------------|-------------------------|---------------------------|----------------------|-------------------------|--------------| | | | decrease? | | hypothesis that | | hypothesized | | | | | | there was no | | direction | | | | | | difference in the | | | | | | | | decline in ADT use | | | | | | | | between non- | | | | | | | | academic and | | | | | | | | academic | | | | | | | | urologists | | | | O'Neil, | Interrupted time | Increase in | Patients with bladder | Likelihood of | Relative increase: 644% | In | | 2016 ³⁷ | series, 2001- | reimbursement for | cancer treated after vs. | receiving an office- | (95%CI 584%, 704%) | hypothesized | | | 2013 | office-based | before an increase in | based cystoscopic | | direction | | | Patients with | cystoscopic procedures | reimbursement for office- | procedure | | | | | bladder cancer, | Did physicians increase | based cystoscopic | | | | | | among | use of office-based | procedures, compared to | | | | | | Medicare | cystoscopic procedures | patients treated in | | | | | | beneficiaries (N | after the | hospitals or ambulatory | | | | | | = approximately | reimbursement | surgical centers | | | | | | 1.2 million) | increase? | | | | | a: Confidence intervals were derived from the point estimate and standard error presented by the authors. b. Range of results does not represent a statistical confidence interval, but the variation the estimate across various analytic models. c: Differences were presented without formal tests of significance, because the study included the entire population of interest rather than a sample. Abbreviations used: N/A, not applicable; NR, not reported; RR, risk ratio; OR, odds ratio; PD, prevalence difference; RT, radiation therapy; IMRT, intensity modulated radiation therapy; PD, prevalence difference; GI, gastrointestinal; SD, standard deviation; ADT, androgen deprivation therapy. **eTable 3**. Study Results for Studies With Critical Risk of Bias. "Direction of association between financial incentives and care delivery" describes whether the measured association was in the direction hypothesized by the study authors under the assumption of physician responsiveness to financial incentives ("In hypothesized direction"), or in the direction counter to the hypothesis ("Contrary to hypothesized direction"). NR, not reported; RR, risk ratio; PD, prevalence difference; ADT, androgen deprivation therapy; ESA, erythropoiesis-stimulating agent; RT, radiation therapy; | Lead
author and
year of
publication | Study setting | Financial incentive studied, and analytic question | Exposure and control groups | Primary
outcome[s] | Result and measure of confidence | Direction of association between financial incentives and care delivery a | |--|---|--|---|---|--|---| | Chang,
2009 ³⁸ | Retrospective
cohort, 2004-
2007
Patients
receiving ADT
for prostate
cancer (N =
NR) | Decrease in reimbursement for ADT, following the Medicare Modernization Act Did physicians decrease use of ADT in response to lower reimbursement? | Patients treated within fee-for-
service Medicare after vs.
before a decrease in
reimbursement for ADT,
compared to those treated
within the Veterans Affairs
health care system. | Total number of claims for ADT across all patients within health care system. | Difference-
in-
differences,
Medicare
vs VA =
-8.3% | In
hypothesized
direction | | EIllis,
2015 ³⁹ | Retrospective
cohort, 2000-
2007
Patients
receiving ADT
for prostate
cancer (N =
12,943) | Decrease in reimbursement for ADT, following the Medicare Modernization Act Did physicians decrease use of ADT in non-indicated settings in response to lower reimbursement? | Patients treated after a decrease in reimbursement for ADT, compared to before | Likelihood of receiving non-indicated ADT | PD = -7.4 | In
hypothesized
direction | | Feinberg,
2014 ⁴⁰ | Retrospective
cohort, 2010-
2012
Cancer patients
treated within
a group of
oncology
medical home | Oncology practice reimbursement under an "oncology medical home" model Are cancer patients treated under an oncology medical home reimbursement model | Patients treated after vs. before practice conversion to an oncology medical home structure, compared to those treated in practices that did not become oncology medical homes | Change in number of office visit claims | Difference-
in-
differences,
oncology
medical
home vs
not = -0.3
visits | Contrary to
hypothesized
direction | | | practices (N = 12,060) | more or less likely to
receive chemotherapy,
more chemotherapy
administrations, more
office visits, or generic-
only treatment | | Change in number of chemotherapy | (measure of
confidence
NR)
NR ^b | No
association | |-------------------------------|---|---|---|--|---|---------------------------------| | | | regimens? | | administrations Change in percentage of patients who received chemotherapy | NR ^b | No
association | | | | | | Change in percentage of patients whose treatment regimens contained only generic drugs | NRb | No
association | | Gawade,
2017 ⁴¹ | Retrospective
cohort, 2005-
2013 | Change in Medicare
coverage for ESAs
Did physicians decrease | Patients treated after vs. before coverage restrictions | Likelihood of receiving ESA, breast cancer | PD = -50.5 | In
hypothesized
direction | | | Patients
receiving
chemotherapy | the use of ESAs after coverage restrictions limited their reimbursement for many cancer patients? | | Likelihood of receiving ESA, colon cancer | PD = -39.1 | In
hypothesized
direction | | | for breast,
colon, lung
ovarian,
prostate | | | Likelihood of receiving ESA, lung cancer | PD = -52.7 | In
hypothesized
direction | | | cancer,
multiple
myeloma, or
non-Hodgkin
lymphoma (N
= 348,012)° | | | Likelihood of receiving ESA, multiple myeloma | PD = -52.3 |
In
hypothesized
direction | | | | | | Likelihood of
receiving ESA,
non-Hodgkin
lymphoma | PD = -36.0 | In
hypothesized
direction | | | | | | Likelihood of receiving ESA, ovarian cancer | PD = -60.5 | In
hypothesized
direction | | | | | | Likelihood of receiving ESA, prostate cancer | PD = -42.6 | In hypothesized direction | |------------------------------|--|--|--|--|--|--| | Hershman, 2014 ⁴² | Retrospective cohort, 2000- 2007 Patients receiving chemotherapy for breast, colon, lung ovarian, or prostate cancer (N = 121,169) | Change in Medicare coverage for ESAs Did physicians decrease the use of ESAs after coverage restrictions limited their reimbursement for many cancer patients? | Patients treated after vs. before coverage restrictions | Likelihood of receiving ESA | PD = -8.3 | In
hypothesized
direction | | Hess,
2010 ⁴³ | Retrospective
cohort, 2006-
2008
Cancer patients
(N = 10,389) | Change in Medicare coverage for ESAs Did physicians decrease the use of ESAs after coverage restrictions limited their reimbursement for many cancer patients? | Patients treated after vs. before coverage restrictions | Change in the proportion of care episodes during which an ESA was given Change in the proportion of care episodes during which a transfusion was given | PD = -10.9
(p < 0.001)
PD = 1.3 (p
= 0.015) | In hypothesized direction In hypothesized direction | | Loy, 2016 ⁴⁴ | Retrospective
cohort, 2011-
2013
Patients
receiving RT
for primary
breast, skin,
lung, or | Oncology practice reimbursement on a "case based" model rather than fee-for- service Are cancer patients treated with RT under a case based | Patients treated after vs. before case based payment model began | Likelihood of receiving guideline-concordant number of radiation fractions, all patients | RR = 1.0
(95%CI
0.98, 1.08) | No
association | | | prostate cancer, or treatment of bone metastasis (N = 984) | reimbursement model more or less likely to receive a guideline-concordant number of radiation fractions? | | Likelihood of receiving guideline-concordant number of radiation | RR = 1.0
(95%CI
0.94, 1.04) | No
association | | | | fractions broad | | 1 | |-------|--|---------------------|-------------|--------------| | | | fractions, breast | | | | | | cancer | | | | | | Likelihood of | RR = 1.0 | No | | | | receiving | (95%CI | association | | | | guideline- | 0.89, 1.09) | | | | | concordant | | | | | | number of | | | | | | radiation | | | | | | fractions, lung | | | | | | cancer | | | | | | Likelihood of | RR = 1.1 | In | | | | receiving | (95%CI | hypothesized | | | | guideline- | 1.01, 1.15) | direction | | | | concordant | • | | | | | number of | | | | | | radiation | | | | | | fractions, prostate | | | | | | cancer | | | | | | Likelihood of | RR = 0.9 | Contrary to | | | | receiving | (95%CI | hypothesized | | | | guideline- | 0.84, 1.01) | direction | | | | concordant | , | | | | | number of | | | | | | radiation | | | | | | fractions, skin | | | | | | cancer | | | | | | Likelihood of | RR = 2.0 | In | | | | receiving | (95%CI | hypothesized | | | | guideline- | 1.21, 3.24) | direction | | | | concordant | ,, | d cc | | | | number of | | | | | | radiation | | | | | | fractions, bone | | | | | | metastasis | | | |
1 | | motadiadia | | | a: In cases where estimates were not reported (or derivable), direction of association was determined from authors' stated conclusions. b: Results were reported graphically, but not numerically c: Patient number not directly reported; this figure was derived by summing across disease-specific cohorts eFigure 1. PRISMA Diagram. # eFigure 2. Risk of Bias Assessment for Studies With Critical Risk of Bias. Risk of bias assessment of included studies, performed using ROBINS-I tool. The domains "classification of interventions" and "deviations from intended interventions" were assessed as resulting in low risk of bias for all studies, and are not shown. Blue, low risk of bias; green, moderate risk of bias; yellow, high risk of bias; red, critical risk of bias; grey, unknown risk of bias. | | Risk of bias due to confounding | Risk of bias in participant selection | Risk of bias due to missing data | Risk of bias in measurement of outcomes | Risk of bias in selection of reported result | Overall risk of bias | Comment | |----------------|---------------------------------|---------------------------------------|----------------------------------|---|--|----------------------|--| | Chang, 2009 | | | | | | | Important uncontrolled confounders, no statistically robust analysis | | Ellis, 2015 | | | | | | | No appropriate control group to analyze impact of reimbursement | | Feinberg, 2014 | | | | | | | Important uncontrolled confounders, inadequate control groups, small sample size, high likelihood of selection bias | | Gawade, 2017 | | | | | | | Important uncontrolled confounders | | Hershman, 2014 | | | | | | | Important uncontrolled confounders | | Hess, 2010 | | | | | | | Important uncontrolled confounders, high likelihood of selection bias | | Loy, 2016 | | | | | 0 | | Uncontrolled study without adjustment for potential confounders, small sample with lack of detail on selection methods, inappropriate outcome measures | # **eReferences** - 1. Sterne JA, Hernán MA, Reeves BC, et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. *BMJ*. October 2016:i4919. doi:10.1136/bmj.i4919 - 2. Ata B, Killaly BL, Olsen TL, Parker RP. On Hospice Operations Under Medicare Reimbursement Policies. *Manag Sci.* 2013;59(5):1027-1044. doi:10.1287/mnsc.1120.1606 - 3. Bennett CL, Bishop MR, Tallman MS, Somerfield MR, Feinglass J, Smith TJ. The association between physician reimbursement in the US and use of hematopoietic colony stimulating factors as adjunct therapy for older patients with acute myeloid leukemia: results from the 1997 American Society of Clinical Oncology survey. Health Services Research Committee of the American Society of Clinical Oncology. *Ann Oncol Off J Eur Soc Med Oncol*. 1999;10(11):1355-1359. - 4. Bennett CL, Stinson TJ. Does reimbursement affect physician decision making? *Cancer Treat Res.* 2000;102:137-149. - 5. Colla CH, Morden NE, Skinner JS, Hoverman JR, Meara E. Impact of payment reform on chemotherapy at the end of life. *J Oncol Pract Am Soc Clin Oncol*. 2012;8(3 Suppl):e6s-e13s. doi:10.1200/JOP.2012.000539 - 6. Ellis S. Declining overuse of hormone therapy for localized prostate cancer: Predictors of reimbursement responsiveness and emerging patterns of care. 2013. https://sph.unc.edu/files/2015/10/ellis_hpm_abstract.pdf. Accessed June 1, 2018. - 7. Halpern MT, Fiero MH. Factors Influencing Receipt of Mental Health Services Among Medicaid Beneficiaries With Breast Cancer. *Psychiatr Serv Wash DC*. 2018;69(3):332-337. doi:10.1176/appi.ps.201700024 - 8. Hemani ML, Makarov DV, Huang WC, Taneja SS. The effect of changes in Medicare reimbursement on the practice of office and hospital-based endoscopic surgery for bladder cancer. *Cancer*. 2010;116(5):1264-1271. doi:10.1002/cncr.24875 - 9. Herman MG, Mills MD, Gillin MT. Reimbursement versus effort in medical physics practice in radiation oncology. *J Appl Clin Med Phys.* 2003;4(2):179-187. doi:10.1120/1.1566491 - 10. Makarov DV, Hu EYC, Walter D, et al. Appropriateness of Prostate Cancer Imaging among Veterans in a Delivery System without Incentives for Overutilization. *Health Serv Res*. 2016;51(3):1021-1051. doi:10.1111/1475-6773.12395 - 11. McKoy JM, Tigue CC, Bennett CL. Does reimbursement affect physicians' decision making? Examples from the use of recombinant erythropoietin. *Cancer Treat Res.* 2008;140:235-251. - 12. Millman DS. Reimbursement of freestanding radiation oncology centers. *Adm Radiol AR*. 1989;8(10):49-50. - 13. Newcomer LN, Gould B, Page RD, Donelan SA, Perkins M. Changing physician incentives for affordable, quality cancer care: results of an episode payment model. *J Oncol Pract*. 2014;10(5):322-326. doi:10.1200/JOP.2014.001488 - 14. O'Shaughnessy MJ, Jarosek SL, Virnig BA, Konety BR, Elliott SP. Factors associated with reduction in use of neoadjuvant androgen suppression therapy before radical prostatectomy. *Urology*. 2013;81(4):745-751. doi:10.1016/j.urology.2012.12.044 - 15. Ramsey SD, Fedorenko C, Chauhan R, et al. Baseline Estimates of Adherence to American Society of Clinical Oncology/American Board of Internal Medicine Choosing Wisely Initiative Among Patients With Cancer Enrolled With a Large Regional Commercial Health Insurer. *J Oncol Pract*. 2015;11(4):338-343. doi:10.1200/JOP.2014.002717 - 16. Retchin SM. Perioperative Management of Colon Cancer Under Medicare Risk Programs. *Arch Intern Med.* 1997;157(16):1878. doi:10.1001/archinte.1997.00440370126013 - 17. Shahinian VB, Kaufman SR, Yan P, Herrel LA, Borza T, Hollenbeck BK. Reimbursement and use of intensity-modulated radiation therapy for prostate cancer. *Medicine (Baltimore)*. 2017;96(25):e6929. doi:10.1097/MD.00000000000000929 - 18. Shen X, Showalter TN, Mishra MV, et al. Radiation oncology services in the
modern era: evolving patterns of usage and payments in the office setting for medicare patients from 2000 to 2010. *J Oncol Pract*. 2014;10(4):e201-207. doi:10.1200/JOP.2013.001270 - 19. Soumerai SB, Ross-Degnan D, Gortmaker S, Avorn J. Withdrawing payment for nonscientific drug therapy. Intended and unexpected effects of a large-scale natural experiment. *JAMA*. 1990;263(6):831-839. - 20. Jacobson M, O'Malley AJ, Earle CC, Pakes J, Gaccione P, Newhouse JP. Does reimbursement influence chemotherapy treatment for cancer patients? *Health Aff Proj Hope*. 2006;25(2):437-443. doi:10.1377/hlthaff.25.2.437 - 21. Weight CJ, Klein EA, Jones JS. Androgen deprivation falls as orchiectomy rates rise after changes in reimbursement in the U.S. Medicare population. *Cancer*. 2008;112(10):2195-2201. doi:10.1002/cncr.23421 - 22. Hadley J, Mandelblatt JS, Mitchell JM, et al. Medicare breast surgery fees and treatment received by older women with localized breast cancer. *Health Serv Res.* 2003;38(2):553-573. - 23. Epstein AJ, Johnson SJ. Physician response to financial incentives when choosing drugs to treat breast cancer. *Int J Health Care Finance Econ*. 2012;12(4):285-302. doi:10.1007/s10754-012-9117-y - 24. Ellis SD, Chen RC, Dusetzina SB, et al. Are Small Reimbursement Changes Enough to Change Cancer Care? Reimbursement Variation in Prostate Cancer Treatment. *J Oncol Pract*. 2016;12(4):e423-436. doi:10.1200/JOP.2015.007344 - 25. Jung J, Xu WY, Kalidindi Y. Impact of the 340B Drug Pricing Program on Cancer Care Site and Spending in Medicare. *Health Serv Res.* January 2018. doi:10.1111/1475-6773.12823 - 26. Mitchell JM, Sunshine JH. Consequences of physicians' ownership of health care facilities--joint ventures in radiation therapy. *N Engl J Med.* 1992;327(21):1497-1501. doi:10.1056/NEJM199211193272106 - 27. Smith BD, Pan I-W, Shih Y-CT, et al. Adoption of intensity-modulated radiation therapy for breast cancer in the United States. *J Natl Cancer Inst*. 2011;103(10):798-809. doi:10.1093/jnci/djr100 - 28. Bekelman JE, Suneja G, Guzzo T, Pollack CE, Armstrong K, Epstein AJ. Effect of practice integration between urologists and radiation oncologists on prostate cancer treatment patterns. *J Urol.* 2013;190(1):97-101. doi:10.1016/j.juro.2013.01.103 - 29. Mitchell JM. Urologists' use of intensity-modulated radiation therapy for prostate cancer. *N Engl J Med*. 2013;369(17):1629-1637. doi:10.1056/NEJMsa1201141 - 30. Williams SB, Huo J, Chapin BF, Smith BD, Hoffman KE. Impact of urologists' ownership of radiation equipment in the treatment of prostate cancer. *Prostate Cancer Prostatic Dis*. 2017;20(3):300-304. doi:10.1038/pcan.2017.9 - 31. Elliott SP, Jarosek SL, Wilt TJ, Virnig BA. Reduction in physician reimbursement and use of hormone therapy in prostate cancer. *J Natl Cancer Inst.* 2010;102(24):1826-1834. doi:10.1093/jnci/djq417 - 32. Jacobson M, Earle CC, Price M, Newhouse JP. How Medicare's payment cuts for cancer chemotherapy drugs changed patterns of treatment. *Health Aff Proj Hope*. 2010;29(7):1391-1399. doi:10.1377/hlthaff.2009.0563 - 33. Jacobson M, Earle CC, Newhouse JP. Geographic variation in physicians' responses to a reimbursement change. *N Engl J Med*. 2011;365(22):2049-2052. doi:10.1056/NEJMp1110117 - 34. Conti RM, Rosenthal MB, Polite BN, Bach PB, Shih Y-CT. Infused chemotherapy use in the elderly after patent expiration. *J Oncol Pract*. 2012;8(3 Suppl):e18s-23s. doi:10.1200/JOP.2012.000541 - 35. Quek RGW, Master VA, Portier KM, et al. Association of reimbursement policy and urologists' characteristics with the use of medical androgen deprivation therapy for clinically localized prostate cancer. *Urol Oncol.* 2014;32(6):748-760. doi:10.1016/j.urolonc.2014.02.017 - 36. Shahinian VB, Kuo Y-F. Reimbursement cuts and changes in urologist use of androgen deprivation therapy for prostate cancer. *BMC Urol.* 2015;15:25. doi:10.1186/s12894-015-0020-y - 37. O'Neil B, Graves AJ, Barocas DA, Chang SS, Penson DF, Resnick MJ. Doing More for More: Unintended Consequences of Financial Incentives for Oncology Specialty Care. *J Natl Cancer Inst*. 2016;108(2). doi:10.1093/jnci/djv331 - 38. Chang SL, Liao JC, Shinghal R. Decreasing use of luteinizing hormone-releasing hormone agonists in the United States is Independent of Reimbursement Changes: A Medicare and Veterans Health Administration claims analysis. *J Urol.* 2009;182(1):255-260; discussion 261. doi:10.1016/j.juro.2009.02.141 - 39. Ellis SD, Nielsen ME, Carpenter WR, et al. Gonadotropin-releasing hormone agonist overuse: urologists' response to reimbursement and characteristics associated with persistent overuse. *Prostate Cancer Prostatic Dis.* 2015;18(2):173-181. doi:10.1038/pcan.2015.10 - 40. Feinberg B, Milligan S, Olson T, et al. Physician behavior impact when revenue shifted from drugs to services. *Am J Manag Care*. 2014;20(4):303-310. - 41. Gawade PL, Berlin JA, Henry DH, et al. Changes in the use of erythropoiesis-stimulating agents (ESAs) and red blood cell transfusion in patients with cancer amidst regulatory and reimbursement changes. *Pharmacoepidemiol Drug Saf.* 2017;26(11):1357-1366. doi:10.1002/pds.4293 - 42. Hershman DL, Neugut AI, Shim JJ, Glied S, Tsai W-Y, Wright JD. Erythropoiesis-stimulating agent use after changes in medicare reimbursement policies. *J Oncol Pract*. 2014;10(4):264-269. doi:10.1200/JOP.2013.001255 - 43. Hess G, Nordyke RJ, Hill J, Hulnick S. Effect of reimbursement changes on erythropoiesis-stimulating agent utilization and transfusions. *Am J Hematol*. 2010;85(11):838-843. doi:10.1002/ajh.21837 - 44. Loy BA, Shkedy CI, Powell AC, et al. Do Case Rates Affect Physicians' Clinical Practice in Radiation Oncology?: An Observational Study. *PloS One*. 2016;11(2):e0149449. doi:10.1371/journal.pone.0149449