
.

Supplementary Materials for
Whole-cell modeling of E. coli

colonies enables quantification of
single-cell heterogeneity in antibiotic

responses

Christopher J. Skalnik 1‡, Sean Y. Cheah 1‡, Michael Y. Yang 1‡, Mattheus
B. Wolff 1, Ryan K. Spangler 1ˆ, Lee Talman 2, Jerry H. Morrison 1, Shayn

M. Peirce 2, Eran Agmon 1,3, and Markus W. Covert 1∗

1Department of Bioengineering, Stanford University, Stanford, CA, USA
2Department of Biomedical Engineering, University of Virginia, Charlottesville,

VA, USA
3Center for Cell Analysis and Modeling and Department of Molecular Biology

and Biophysics, University of Connecticut Health, Farmington, CT, USA
‡These authors contributed equally to this work.

ˆCurrent Address: Altos Labs, Redwood City, California, United States

March 15, 2023

Contents

1 Introduction 3

2 Single-cell E. coli model 3
2.1 wcEcoli . 3
2.2 Simulation parameters . 4
2.3 Simulation state . 4

2.3.1 Save state . 4
2.3.2 Pseudo-random number generator seeds 5

2.4 Partitioning . 5
2.5 Migration tests . 6

1

2.6 EcoliSim . 6
2.7 EngineProcess . 6
2.8 Cell division . 7

3 Spatial environment model 7
3.1 Cell shape . 8

3.1.1 Inputs and outputs . 8
3.1.2 Model description . 8
3.1.3 Parameters . 9

3.2 Multibody physics . 9
3.2.1 Inputs and outputs . 9
3.2.2 Model description . 9
3.2.3 Parameters . 10

3.3 Reaction diffusion . 10
3.3.1 Inputs and outputs . 10
3.3.2 Model description . 10
3.3.3 Parameters . 11

4 Antibiotic response model 11
4.1 Membrane permeability . 11

4.1.1 Inputs and outputs . 11
4.1.2 Model description . 12
4.1.3 Parameters . 12

4.2 Antibiotic diffusion, export, and hydrolysis 12
4.2.1 Inputs and outputs . 12
4.2.2 Model description . 13
4.2.3 Parameters . 15

4.3 Tetracycline-induced changes to gene expression 15
4.3.1 Model description . 15

4.4 Tetracycline binding to ribosomes . 16
4.4.1 Inputs and outputs . 16
4.4.2 Model description . 16
4.4.3 Parameters . 17

4.5 PBP binding and inhibition . 18
4.5.1 Inputs and outputs . 18
4.5.2 Model description . 18
4.5.3 Parameters . 19

4.6 Cell wall growth, division, and lysis . 20
4.6.1 Inputs and outputs . 20
4.6.2 Model description . 20
4.6.3 Murein adjustment . 21
4.6.4 Parameters . 21

References 23

2

1 Introduction

This supplementary material includes a more detailed description of the E. coli model used
for the simulations discussed in the main text. This model, which we call vivarium-ecoli,
was a fork of wcEcoli – the Covert lab’s E. coli Whole-Cell Modeling Project [23; 36]. It
recreated the wcEcoli model using Vivarium – a framework for multiscale, compositional
modeling [1]. This supplement describes the operation of the original model and how it was
migrated to Vivarium (section 2), the new processes that turned the model into an agent
which could be plugged into a spatial environment with other whole-cell models (section 3),
and finally the implementation of antibiotic response mechanisms (section 4).

2 Single-cell E. coli model

The single-cell model used in this paper was based on a snapshot of our wcEcoli repository
(https://github.com/CovertLab/wcEcoli) taken on May 20, 2021. Thus, we will begin
by providing an overview of the wcEcoli model (2.1) before discussing the advantages offered
by the new Vivarium-based model, including greater flexibility in process parameterization
(2.2), data organization (2.3), process organization (2.4), simulation configuration (2.6), and
simulation organization (2.7).

2.1 wcEcoli

The wcEcoli model integrated data from a wide array of databases and published reports to
calculate a set of nearly 20,000 parameters for over 10,000 equations. These equations were
divided into a set of modules called processes, each of which encapsulates a distinct cellular
process (e.g. mRNA transcript initiation, mRNA transcript elongation, etc.). The model
was initialized with counts for all molecules in the cell and used the equations contained
within its processes to calculate how these counts change over time.

There were 12 main processes in vivarium-ecoli adapted from the wcEcoli model. A full
description of most of these original processes and their operation can be found in the
supplementary text for the original release [23]. Since these have already been described, we
only list them in the current supplement. The only exception is the chromosome structure
process, which was added after the original release and will be described in an upcoming
publication. The code for all processes can be found under the ecoli.processes directory.

These are the processes migrated from the wcEcoli repository:

1. Transcription factor binding
2. Equilibrium
3. Two-component system
4. Transcript initiation
5. Transcript elongation
6. RNA degradation
7. Polypeptide initiation
8. Polypeptide elongation

3

https://github.com/CovertLab/wcEcoli

9. Protein degradation
10. Metabolism
11. Chromosome replication
12. Chromosome structure

2.2 Simulation parameters

Most simulation parameters for wcEcoli were held in an object called sim data, which was
generated from literature and database data by a pipeline called the parameter calculator
or ParCa. Further details about the ParCa can be found in the supplementary material
for Macklin et al. [23].

In wcEcoli, processes derived all their parameters from this centralized sim data object. By
contrast, vivarium-ecoli parameterized processes using user-supplied dictionaries, providing
significantly more flexibility in terms of how parameters are sourced. Indeed, in our antibiotic
simulations, while most parameters were still drawn from sim data, others were loaded
from JSON files (see 2.6) or calculated at run time (refer to ecoli.library.parameters

module). To extract the relevant parameters for each process from sim data, we created a
new LoadSimData class that can be found in the ecoli.library.sim data module.

2.3 Simulation state

In wcEcoli, the simulation state was stored in arrays that were designed to hold preset
data types. By contrast, vivarium-ecoli uses dictionary-like internal states that impose no
restrictions on the types of data that can be stored, accessed, and modified by processes.

Briefly, each node in the Vivarium simulation state was a Store object that held data. In
a typical simulation step, processes received the current state of all connected stores, then
returned a set of updates to be applied to those stores. The default file used to pre-populate
stores at the start of a simulation (data/wcecoli t0.json) was created by saving the initial
state of a wcEcoli simulation as a JSON file. Notably, vivarium-ecoli was not restricted to
this single initial state file and could be initialized with any initial state in JSON format,
including states saved mid-way through a cell cycle.

2.3.1 Save state

The ability to start a simulation from any initial state was new to vivarium-ecoli. To take
advantage of this feature, our colony simulations can be configured to create a JSON con-
taining the state of all cells and their shared environment at specific time points. This
saved colony state could subsequently be loaded as the initial state of a future simulation
and pick up from the saved point in simulated time. Note that certain internal states (e.g.
the saved solution in the flux balance analysis solver used by metabolism, the state of the
stochastic simulator used by protein complexation, etc.) could not be easily accessed, saved,
or reloaded, preventing perfect reconstruction from saved states. In the simulations run for
the present work, this imperfect reconstruction introduced slight differences between simu-
lations that ran for the full 26002 seconds uninterrupted (e.g. the baseline simulations) and

4

those that were initialized with a 11550-second saved state of a baseline simulation (e.g. the
antibiotic simulations).

2.3.2 Pseudo-random number generator seeds

To ensure that simulations are reproducible, vivarium-ecoli allowed users to manually set the
initial state and seed of simulations via JSON configuration files or command-line arguments
(see 2.6 for more information on methods of simulation configuration). All simulations
initialized with the same initial state and seed will generate the same results.

If the initial state contains only a single cell, the simulation seed was used to generate sepa-
rate seeds for every pseudo-random number generator (PRNG) employed by that cell (most
processes have their own PRNG). If the initial state contains multiple cells, the simulation
seed was first converted to a series of seeds, one per cell, each of which was then used as
described in the single-cell case. Refer to ecoli.library.sim data for the exact details of
PRNG seeding.

Our model relied on PRNGs both for creating internal unique identifiers (IDs) and to model
biological phenomena such as stochastic processes. Thus, to prevent the clashing of unique
IDs after division, daughter cells were each assigned new simulation seeds by a PRNG in the
mother cell. Similarly, when loading a saved state, an algorithm was used to avoid initializing
the new simulation with the same seed as the simulation which generated the saved state
(refer to the run simulation method of ecoli.composites.ecoli engine process).

2.4 Partitioning

Since the processes in our model share molecular resources, wcEcoli used a partitioning
system to prevent “overdrafts” whereby processes collectively consume more resources than
are present. Partitioning occurs at every time step as follows:

1. Each process reads the currently available molecule counts and requests counts based
on what is available (calculate request).

2. The Allocator attempts to fulfill requests based on process priorities (see below).
3. Each process calculates a change in molecule counts based on the counts it was allocated

(evolve state).

Most processes had equivalent neutral priority with the following exceptions: protein and
RNA degradation had equally higher priorities, the two-component system process had lower
priority, and transcription factor binding had the lowest priority. Chromosome structure and
metabolism were the only processes that were not partitioned in the base model. Instead,
they ran in succession after all other processes had finished updating the simulation state. Re-
quests of higher-priority processes were always handled before the requests of lower-priority
processes. When n processes of the same priority had requests r1, r2, ..., rn whose sum was
greater than the unallocated count cu of a molecule, the Allocator allocated ci molecules

5

to process i as follows, with random allocation of remainders caused by the floor function:

ci =

⌊
cu ·

ri∑n
j=1 rj

⌋
In this way, even if all processes were to deplete their entire share of allocated molecules, the
total count would remain non-negative, preventing overdrafts.

PartitionedProcess was the base class for Vivarium processes that were subject to molecu-
lar partitioning in wcEcoli. This class had calculate request and evolve state methods.
Each partitioned process is wrapped with one Requester process and one Evolver process.
Requester processes called the calculate request of the wrapped process in the first step
of the scheme above. Evolver processes called evolve state of their wrapped process in
the third step.

2.5 Migration tests

To facilitate accurate migration of wcEcoli to the Vivarium framework, we developed a
system for comparing each vivarium-ecoli process with its wcEcoli equivalent, ensuring that
they function the same under a variety of conditions. This system included both unit tests
and whole-model comparisons. Scripts containing migration tests for each process were
placed in the migration directory. These tests were and continue to be run on every change
made on the vivarium-ecoli repository.

2.6 EcoliSim

Vivarium-ecoli introduced a JSON-based interface for simulation configuration called EcoliSim,
enabling the creation of customized configurations for different simulation runs. Using
EcoliSim, simulations could be configured to add or remove processes from the base model,
pass alternative parameters into given processes, and set the run-order of designated order-
dependent processes (e.g. Metabolism), among other features. Configuration files could be
written to “inherit” settings from other configuration files, or merged programmatically with
other configurations using the EcoliSim interface. This allowed simulations to be built in
a modular fashion, for example by combining several configurations that each add a few
related processes and their associated parameters onto the base model.

2.7 EngineProcess

EngineProcess was a new Vivarium process created to improve the communication overhead
of colony-scale simulations. This process served as a wrapper around an entire single-cell
vivarium-ecoli model, allowing the Vivarium engine to assign an operating system (OS)
process to each cell instead of each process within each cell. (Note that OS processes are
distinct though conceptually similar to Vivarium processes.) The E. coli model had over
a dozen processes that were required to communicate with one another for proper function
(see 2.4). This communication was much faster when the processes could share memory
instead of passing messages between OS processes. Thus, by packaging all the processes

6

of individual cells within EngineProcess instances, we benefitted from fast communication
between processes in the same cell without sacrificing the advantages of multiprocessing for
multi-cell simulations. As of writing, there is already work underway to integrate this feature
seamlessly into a future version of the Vivarium core software.

2.8 Cell division

Prior work proposed that E. coli may control cell size by elongating an approximately con-
stant amount per cell cycle [5]. In accordance with this, each cell in our model initiated
division upon reaching a dry mass equal to its initial dry mass plus a media-specific ex-
pected dry mass increase fitted by the parameter calculator (see 2.2). Noise was introduced
by scaling this fitted dry mass increase by a factor randomly sampled from N (1, 0.1). In the
rare case that the dry mass threshold was reached before the cell has accumulated at least
two complete copies of its chromosome, division was delayed until chromosome replication
had completed.

During division, all cell processes and stores were duplicated, resulting in one of each per
daughter cell. Store values were divided as follows:

• Bulk molecules: Each molecule went to each daughter cell with equal probability.
• Chromosomes: Each chromosome was assigned to a daughter cell with equal probability
while ensuring that each daughter got at least one full chromosome.

• Promoters: Followed their associated chromosomes.
• Chromosome domains: Followed their associated chromosomes.
• Origins of replication (oriCs): Followed their associated chromosomes.
• DnaA boxes: Followed their associated chromosomes.
• Active replisomes: Followed their associated chromosomes.
• Active RNAPs: Followed their associated chromosomes.
• Incomplete RNAs: Followed their associated active RNAPs.
• Complete RNAs: Divided like bulk molecules.
• Active ribosomes: Followed their associated incomplete RNAs.
• Listeners: Daughter cells inherited most of their listener values unaltered from the
mother cell. However, for some variables, such as mass, we cut their values in half
upon division as an initial estimate and re-computed their actual values in the first
time step post-division.

For simplicity, division happens instantaneously and the two resulting daughters are placed
end-to-end in the spatial environment model.

3 Spatial environment model

The model represented the environment as a two-dimensional rectangular space. Agent
locations were continuous coordinates (x, y) within this space, and each agent had an angle
from the x-axis, length, width, thrust, torque, and mass. The environment was discretized
into a lattice of sites, each with the same volume. The sites were larger than the agents

7

to reflect how even strong concentration gradients yield approximately equal concentrations
over the small distances bacteria span [24]. Each site in the lattice had a concentration for
each molecule in the environment.

Importantly, the agents did not interact directly; instead, all of their interactions were medi-
ated by changes in the environment, where agents were buffeted by physical forces, molecules
diffused toward homogeneity, and the media could shift between environmental conditions.

3.1 Cell shape

3.1.1 Inputs and outputs

Inputs:

• Width (constant)
• Cell volume

Outputs:

• Length
• Outer membrane surface area
• Inner membrane surface area
• Periplasm volume
• Cytoplasm volume

3.1.2 Model description

The physical shape of the cell was modeled by the newly introduced Shape process. During
our simulations, the MassListener process periodically updated total cell volume by dividing
current cell mass by the assumed constant density of 1.1 g/mL [2]. Shape then used the
calculated volume to compute cell dimensions by assuming a capsule shape formed by a
cylinder capped by hemispheres at each end. The process also assumed a constant width
w, so cells grew exclusively by elongation [25]. Using this information, Shape computed the
length l and outer surface area ao of the cell as follows:

l =
v − 4

3
π
(
w
2

)3
π
(
w
2

)2 + w

ao = 4π
(w
2

)2

+ 2π
w

2
(l − w)

The process also used a parameter fp, the fraction of the cell’s volume consumed by the
periplasm, to calculate the volume of the periplasm vp, the volume of the cytoplasm vc, and
the surface area of the inner membrane ai:

ai = ao(1− fp)
2
3

vp = v ∗ fp
vc = v ∗ (1− fp)

8

3.1.3 Parameters

Parameter Value Description
fp 2× 10−1 Fraction of cell volume consumed by the

periplasm [34].
w 1 µm Width of the cell (constant) [38].

Table SM2: Parameters for the shape process.

3.2 Multibody physics

3.2.1 Inputs and outputs

Inputs:

• Location
• Length
• Width (constant)
• Angle
• Mass
• Thrust
• Torque

Outputs:

• Location
• Length
• Angle
• Mass
• Thrust
• Torque

3.2.2 Model description

The Multibody process was a wrapper around the physics engine pymunk (http://www.
pymunk.org/), which can model individual cell agents as capsule-shaped rigid bodies that
can move, grow, and collide. This engine was configured with elasticity (0.9) to simulate
damped bacterial collisions, random jitter to model Brownian motion, and friction (0.9) to
model cell-cell adhesion. For more information on the meaning of the elasticity and friction
parameters, see the pymunk documentation. Multibody ran pymunk with a time step one-
tenth of its own two-second time step to simulate the movement of agents. It then updated
each agent’s location, angle, thrust, and torque. Upon division, the resulting daughter cells
were placed end-to-end in the same orientation as the mother.

To simulate the low Reynolds environment bacteria experience [29], the process multiplied
linear forces by dl and angular forces by da every pymunk time step. Since dl, da < 1,

9

http://www.pymunk.org/
http://www.pymunk.org/

this multiplication mimicked the high drag of a low Reynolds number environment. Refer
to Agmon et al. [1] for more details about the parameters chosen for this submodel.

3.2.3 Parameters

Parameter Value Description
fj 1× 10−4 pN A random force applied to each agent to sim-

ulate Brownian motion. Manually tuned to
recapitulate the behavior described in [30].

agent shape segment Assumed shape of each cell. Segments are
cylinders capped with hemispheres.

(xb, yb) (50 µm, 50 µm) Dimensions of the environment.
dl 5× 10−1 A fraction by which linear velocities are multi-

plied to approximate a low Reynolds number
(manually tuned).

da 8× 10−1 A fraction by which angular velocities are mul-
tiplied to approximate a low Reynolds number
(manually tuned).

Table SM3: Parameters for the multibody physics process.

3.3 Reaction diffusion

3.3.1 Inputs and outputs

Inputs:

• Environmental concentrations
• For each agent:

– Location
– Molecules to exchange with environment

Outputs:

• Environmental concentrations
• For each agent:

– External environment view
– Molecules to exchange with environment

3.3.2 Model description

The ReactionDiffusion process simulated bounded two-dimensional fields of molecular
concentrations. Each lattice site (x, y) held the local concentrations of any number of
molecules, and diffusion simulated how they homogenized across local sites. At the be-
ginning of each time step, before diffusion between sites was calculated, a set of user-defined,

10

enzyme-catalyzed reactions could be simulated using Michaelis-Menten kinetics. The process
assumed a Hill coefficient of n = 1 for all reactions. This was an appropriate assumption for
the AmpC-catalyzed hydrolysis of ampicillin [26], which is described in 4.2.2.

Once reaction updates were applied, the process simulated diffusion by convolving (with
reflection at the edges) the 2D Laplacian kernel over the lattice (C), multiplying by the
diffusion constant D and the time step ∆t, and adding the result to the lattice:

C ← C +D∆t · C ∗

0 1 0
1 −4 1
0 1 0


Each agent could uptake and secrete molecules at its position in the lattice. The model used
the LocalField process to convert molecular exchanges between agents and the environment
into concentration deltas that were applied at each agent’s lattice site.

3.3.3 Parameters

Parameter Value Description
(xb, yb) (50 µm, 50 µm) Dimensions of the environment.
(nx, ny) (10, 10) Number of bins into which each environmental

dimension is discretized.
zb 3× 103 µm Depth of the environment.
D 6× 102 µm2/s Diffusion constant of glucose, which we use for

all molecules [35].

reaction amp.
AmpC−−−→ amp. hydro. Environmental chemical reaction. In this case,

ampicillin hydrolysis by AmpC.
kcat,h,amp 6.5 1/s Rate constant for ampicillin hydrolysis [26].
KM,h,amp 9× 10−4 mM Michaelis constant for ampicillin hydrolysis

[26].

Table SM4: Parameters for the reaction diffusion process.

4 Antibiotic response model

This section describes all the new cellular processes that were added to model the effects of
tetracycline and ampicillin exposure.

4.1 Membrane permeability

4.1.1 Inputs and outputs

Inputs:

• Porin counts
• Outer membrane surface area

11

Outputs:

• Permeabilities to tetracycline and ampicillin

4.1.2 Model description

The ease with which a molecule is able to diffuse across a membrane can be quantified as its
permeability coefficient or permeability. The Permeability process computed permeabili-
ties for tetracycline and ampicillin based on the abundance of OmpF, the porin primarily
responsible for tetracycline [37] and ampicillin [21] trans-membrane diffusion.

Tetracycline can cross the outer membrane either through a porin, with permeability Pouter,ompf,tet

per unit of porin concentration in the membrane, or through the inner phospholipid bilayer
with permeability Pouter,bilayer,tet. With a porin count nompf and outer membrane surface
area of ao, the permeability for tetracycline crossing the outer membrane was calculated as:

Pouter,tet =
nompf

ao
Pouter,ompf,tet + Pouter,bilayer,tet

Tetracycline can also cross the inner membrane, but it does not do so through porins. Since
the permeability of the inner membrane to tetracycline is constant, it was not computed by
the permeability process.

Ampicillin primarily enters cells through porins, not by traversing the phospholipid bi-
layer [21]. Its permeability through the outer membrane was computed as:

Pouter,amp =
nompf

ao
Pouter,ompf,amp

4.1.3 Parameters

Parameter Value Description
Pouter,ompf,amp 6.63×10−1 cm·µm2/s/porin Permeability of outer membrane to ampi-

cillin [21] divided by the average simulated
number of OmpF porins per square micron of
the outer membrane.

Pouter,ompf,tet 2.35×10−9 cm·µm2/s/porin Porin-attributable permeability of outer mem-
brane to tetracycline [37] divided by the av-
erage simulated number of OmpF porins per
square micron of the outer membrane.

Pouter,bilayer,tet 7× 10−8 cm/sec Permeability of outer membrane to tetracy-
cline without porins [37].

Table SM5: Parameters for the permeability process.

4.2 Antibiotic diffusion, export, and hydrolysis

4.2.1 Inputs and outputs

Inputs:

12

• Periplasmic and cytoplasmic antibiotic concentrations
• External antibiotic concentrations
• Permeabilities

Outputs:

• Periplasmic and cytoplasmic antibiotic concentrations
• Exchange of antibiotics with environment

4.2.2 Model description

The AntibioticTransportOdeint process simulates trans-membrane diffusion, export, and
hydrolysis.

Tetracycline diffusion across the outer membrane

Under physiological conditions, tetracycline can form univalent cations by chelating mag-
nesium ions that are readily available at the surface of the outer membrane (OM) [27; 37].
These magnesium-tetracycline chelates (Tc-Mg+) preferentially cross the outer membrane
by diffusing through the OmpF porin [37]. The rate of diffusion is thought to be depen-
dent on the Donnan potential, which is generated by negatively charged, membrane-derived
oligosaccharides in the periplasm that cannot diffuse through the OM [33].

To model the diffusion of this charged species across the outer membrane, we used the
Goldman-Hodgkin-Katz (GHK) flux equation:

JS = PS
z2sF

2E

RT

[S]i − [S]o exp
(−zsFE

RT

)
1− exp

(−zsFE
RT

) , (1)

where JS is the current density contributed by ion S (A/m2, positive means outward flow of
positive charge), PS is the permeability of the outer membrane for ion S (m/s), [S]o is the
external concentration of ion S (mol/L), [S]i is the internal concentration of ion S (mol/L), zs
is the charge of ion S, E is the membrane potential (J/C), F is Faraday’s constant (C/mol),
R is the gas constant (J/K/mol), and T is the temperature (K).

The GHK flux equation assumes a constant electric field across the membrane and has pre-
viously been shown to fit biological diffusion data measured in vitro [10; 14; 16]. Prior
mathematical analysis revealed that this “constant field” assumption holds only if the fol-
lowing conditions are met [22]:

• The magnitude of the net charge density in the membrane must be small
• The membrane must be thin

Specifically, for membranes on the order of 100 Å thick, including the outer membrane of E.
coli [3; 11], the magnitude of the net charge density in the membrane must be lower than
that produced by 10−3 M of a univalent cation in solution. Since we added tetracycline at
concentrations on the order of 10−6 M, the constant field assumption was reasonable and the
GHK flux equation could be safely applied.

13

To approximate the rate at which Tc-Mg+ diffuses across the outer membrane, we performed
a unit conversion on the GHK flux equation (Eq. 1) and rearranged to yield influx in the

form of change in concentration of a molecule per unit time d[S]i
dt

:

d[S]i
dt

= − JSao
zsFvp

=
aoPS

vp

zsFE

RT

[S]o − [S]i exp
(
zsFE
RT

)
exp

(
zsFE
RT

)
− 1

, (2)

where vp is the periplasmic volume and ao is the outer membrane surface area.

Tetracycline diffusion across the inner membrane

Fick’s first law of diffusion states that the rate of change in internal concentration d[S]i
dt

of a
molecule with external concentration [S]o and permeability PS across a membrane with area
A is:

d[S]i
dt

=
APS

V
([S]o − [S]i), (3)

Since the inner membrane does not contain porins, tetracycline is believed to diffuse from
the periplasm into the cytoplasm in an uncharged form [37]. This would mean that there
are no electrical influences to consider, and Eq. 3 can be and was used instead of Eq. 2.

Ampicillin diffusion across the outer membrane

Ampicillin is an uncharged molecule, so its diffusion across the outer membrane was modeled
using Fick’s law (Eq. 3). Ampicillin diffusion across the inner membrane is minimal [21] and
was not considered in our model.

Antibiotic export

Tetracycline and beta-lactams are exported from E. coli by efflux pumps, predominantly
AcrAB-TolC [21]. Before the identification of AcrAB-TolC, Thanassi et al. [37] postulated
the existence of and computed kinetic parameters for this pump with tetracycline as a
substrate. Later, these kinetic parameters were measured experimentally for ampicillin [21].
The parameters used in our model have been compiled in Table SM6.

We assumed Michaelis-Menten kinetics with potential cooperativity, so the efflux rate v is:

v =
kcat[E][S]n

KM + [S]n
(4)

In the literature, vmax values (nmol/mg dry mass/sec) are reported instead of kcat (1/sec) for
these reactions, so we computed kcat as follows, where ¯[E] is the average pump concentration,
m̄ is the average dry mass, and v̄p is the average periplasmic volume (all drawn from a single-
cell simulation with an initial seed of 0):

kcat = vmax
1
¯[E]
· m̄
v̄p

(5)

14

Beta-lactam hydrolysis

The E. coli reference genome used by our models (https://www.ncbi.nlm.nih.gov/n
uccore/U00096.3) contains the endogenous beta-lactamase gene ampC that exhibits low
and non-inducible expression [26]. We modeled the hydrolysis of ampicillin by AmpC as a
Michaelis-Menten reaction (Eq. 4) where the hydrolysis product is inert.

Implementation

Diffusion reactions take place too quickly for the Vivarium engine to accurately integrate
using the process time step of two seconds. Therefore, the AntibioticTransportOdeint

process used the solve ivp numerical integration function from SciPy [32] to simulate the
ordinary differential equations (ODEs) described above over the course of each two-second
time step.

4.2.3 Parameters

Parameter Value Description
Pinner,tet 3× 10−6 cm/sec Inner membrane permeability to tetracycline

[37].
E −2.15× 101 mV Donnan potential across the outer membrane

[33].
¯[E] 7.16× 10−4 mM Average concentration of AcrAB-TolC.
m̄ 1.64× 103 fg Average wet mass of the cell.
v̄p 2.98× 10−1 fL Average volume of the periplasm.
vmax,e,amp 6.9× 10−2 nmol/mg/sec Maximum rate of ampicillin export [21].
KM,e,amp 2.16× 10−3 mM Michaelis constant for ampicillin export [21].
ne,amp 1.9 Hill coefficient for ampicillin export [21].
vmax,e,tet 3.33× 10−3 nmol/mg/sec Maximum rate of tetracycline export [37].
KM,e,tet 2× 10−1 mM Michaelis constant for tetracycline export [37].
ne,tet 1 Hill coefficient for tetracycline export.
kcat,h,amp 6.5 1/s Rate constant for ampicillin hydrolysis [26].
KM,h,amp 9× 10−4 mM Michaelis const. for ampicillin hydrolysis [26].
nh,amp 1 Hill coefficient for ampicillin hydrolysis [26].

Table SM6: Parameters for the antibiotic diffusion, export, and hydrolysis (antibiotic trans-
port) process.

4.3 Tetracycline-induced changes to gene expression

We modeled tetracycline-induced gene regulatory changes using the TFBinding process that
was already in the model [23].

4.3.1 Model description

In our model, tetracycline-induced gene regulation began with the inactivation of MarR by
tetracycline, which we modeled as a reversible reaction at chemical equilibrium. In the model,

15

https://www.ncbi.nlm.nih.gov/nuccore/U00096.3
https://www.ncbi.nlm.nih.gov/nuccore/U00096.3

as the fraction of inactive MarR increased, so did the occupation of MarA on the promoters
of its downstream regulatory targets. The effect of MarA binding to promoters was tuned
to yield comparable mRNA fold changes as those measured for E. coli cells exposed to 1.5
mg/L of tetracycline (Fig. S6B) [40]. Notably, we chose to silence MarA activity in the
complete absence of MarR, preserving baseline behavior at the cost of rare (< 5%) delays in
tetracycline-induced gene regulation.

In addition to direct regulation by MarA, the ompF gene, which encodes the primary porin
for tetracycline influx, is also subject to post-transcriptional regulation that is triggered by
tetracycline. Specifically, MarA upregulates expression of micF, a small non-coding RNA
that can form duplexes with ompF mRNA and thereby decrease ompF translation [9]. In the
absence of experimental data, we assumed that all synthesized micF transcripts immediately
form irreversible duplexes with free-floating ompF transcripts and that the resulting duplexes
have the same half-life as standalone ompF transcripts. Additionally, we assumed that MarA
increased production of micF RNA just enough to sequester nearly all ompF transcripts
when cells were exposed to 1.5 mg/L of tetracycline.

4.4 Tetracycline binding to ribosomes

4.4.1 Inputs and outputs

Inputs:

• Free tetracycline concentration
• Free 30S concentration
• Free 70S concentration
• 50S concentration
• Tetracycline-bound 30S concentration
• Count of tRNAs
• Cytoplasm volume

Outputs:

• Free tetracycline concentration
• Free 30S concentration
• Free 70S concentration
• 50S concentration
• Tetracycline-bound 30S concentration

4.4.2 Model description

Tetracycline is a bacteriostatic antibiotic that inhibits protein synthesis by binding to a
highly conserved pocket in the 30S ribosomal subunit near the A site, interfering with ac-
commodation of aminoacylated tRNA during polypeptide elongation [15; 18]. Thus, we
introduced the TetracyclineRibosomeEquilibrium process to model ribosomal binding as
a competition between tetracycline and aminoacylated tRNAs. Since the binding constants

16

for tRNAs and tetracycline are both much smaller than the average concentration of active
ribosomes (10−6M < 10−5M), we assumed that all ribosomal A sites are bound by one or
the other at all times. See Table SM7 for the exact binding constants.

Specifically, given a tRNA-ribosome binding constant of KtRNA, a tetracycline-ribosome
binding constant of KTc, ctRNA aminoacylated tRNA molecules, cTc tetracycline molecules,
cR,Tc tetracycline-bound ribosomes, and cR,tRNA tRNA-bound ribosomes, we know that at
equilibrium the following holds:

r =
cR,Tc

cR,tRNA

=
KTc · cTc

KtRNA · ctRNA

Thus, the fraction f of ribosomal A sites bound by tetracycline at equilibrium is equal to:

f =
cR,Tc

cR,Tc + cR,tRNA

=

cR,Tc

cR,tRNA

cR,Tc

cR,tRNA
+ 1

=
r

r + 1
(6)

At the time of writing, vivarium-ecoli lacked a proper mechanistic model for tRNA charging.
Since the average cell in our model reported a total tRNA count about three times the
literature consensus for charged tRNAs [12; 17], the simulated tRNA count was always
multiplied by a factor of 0.33 before further calculations. Additionally, we assumed that
each active ribosome had two bound tRNAs at all times (one in the E site and one in the P
site), further decreasing the pool of charged tRNAs competing for A site binding.

Since we only found parameters that describe the equilibrium binding of tetracycline and
tRNAs to ribosomes and not their binding kinetics, we used a root finder (root scalar from
Scipy [32]) to solve for the equilibrium concentrations of free tetracycline, tetracycline-bound
ribosomes, and free ribosomes. The algorithm used to compute this equilibrium is described
in Algorithm 1.

4.4.3 Parameters

Parameter Value Description
KtRNA 4.5× 106 M−1 Association constant for tRNA-ribosome bind-

ing. Tuned so that simulations give the correct
tetracycline IC50 (see Fig. S6) [31].

KTc 3× 106 M−1 Association constant for tetracycline-ribosome
binding [13].

Table SM7: Parameters for tetracycline-ribosome binding.

17

Algorithm 1: Tetracycline-ribosome equilibrium

Input : ctRNA,tot total tRNA count
Input : cTc free cytoplasmic tetracycline count
Input : c70S active ribosome count
Input : c30S free small subunit count
Input : c30S-Tc tetracycline-bound small subunit count
1. Estimate the count of free, charged tRNAs from the total count.

ctRNA = ctRNA,tot · 0.33− 2 · c70S
2. Use root finder to calculate ∆ tetracycline molecules to bind to (or unbind

from) 30S ribosomes such that the following equation holds:

c30S-Tc +∆ = f · (c70S + c30S + c30S-Tc),

where f is calculated using Eq. 6 with cTc = cTc −∆.
3. Distribute the calculated count of ribosomes bound to tetracycline

proportionally among 30S subunits and 70S active ribosomes.

c70S-Tc,target =

⌊
(c30S-Tc +∆) · c70S

c70S + c30S + c30S-Tc

⌋
c30S-Tc,target = c30S,Tc +∆− c70S-Tc,target

Result: Increase/decrease c30S so that c30S-Tc can be decreased/increased to
c30S-Tc,target. Decrease c70S by c70S-Tc,target and increase c30S-Tc by
c70S-Tc,target (inactivated 70S active ribosomes assumed to dissociate and
form 30S subunits bound to tetracycline).

4.5 PBP binding and inhibition

4.5.1 Inputs and outputs

Inputs:

• Periplasmic ampicillin concentration
• Count of PBP1A, PBP1B (γ isoform) in the cell
• Count of newly produced murein

Outputs:

• Fraction of PBP1A, PBP1B not bound by ampicillin
• Allocation of newly produced murein to pools that are either usable (crosslinked) and
unusable (uncrosslinked) for incorporation into the cell wall

4.5.2 Model description

We modeled the ampicillin-mediated inhibition of PBP transpeptidase activity using a Hill
equation with no cooperativity. This model was implemented in the PBPBinding process.

18

We calculated the proportions of unbound, active PBP1A and PBP1B as follows:

θPBP1A =
1(

1 + [Amp]
KA,PBP1A

) ,
θPBP1B =

1(
1 + [Amp]

KA,PBP1B

) ,
where θPBP1A, θPBP1B are the proportion of unbound PBP1A and PBP1B respectively, [Amp]
is the concentration of ampicillin in the periplasm, and KA,PBP1A and KA,PBP1B are the
ampicillin concentrations necessary to inhibit transpeptidation activity by 50% for PBP1A
and PBP1B, respectively.

KA,PBP1B was parameterized directly from literature [6], whereas KA,PBP1A (specifically for
inhibition of transpeptidation) has not been measured to our knowledge. However, ampicillin
binding affinities for PBP1A and PBP1B have been measured as being within one order
of magnitude [7; 19]. Assuming that the ability of ampicillin to inhibit transpeptidation is
proportional to its binding affinity, KA,PBP1A should also be within one order of magnitude of
KA,PBP1B. Using this plausible range as a guideline, we estimated a KA,PBP1A for ampicillin
inhibition of PBP1A transpeptidase activity that resulted in cell death as expected in single-
cell simulations exposed to the 2 mg/L ampicillin (MIC).

Once the proportions of unbound PBP1A and PBP1B were determined, all the nascent
murein produced by Metabolism in the most recent time step was divided into two pools, one
for crosslinked murein and the other for murein that was not crosslinked due to inhibition of
PBP-catalyzed transpeptidation by ampicillin. The count of crosslinked murein was reported
to the cell wall process for incorporation while uncrosslinked murein was assumed to be
permanently unusable for cell wall synthesis. If a cell had cPBP1A PBP1A and cPBP1B PBP1B
molecules, the count of crosslinked murein cc and uncrosslinked murein cu was partitioned
from the total new murein count cm as follows:

cc = cm

(
θPBP1A ·

cPBP1A

cPBP1A + cPBP1B

+ θPBP1B ·
cPBP1B

cPBP1A + cPBP1B

)
cu = cm − cc

4.5.3 Parameters

Parameter Value Description
KA,PBP1A 0.7 µM Ampicillin concentration at which PBP1A

transpeptidation activity is halved.
KA,PBP1B 1.27 µM Ampicillin concentration at which PBP1B

transpeptidation activity is halved [6].

Table SM8: Parameters for the PBP binding process.

19

4.6 Cell wall growth, division, and lysis

4.6.1 Inputs and outputs

Inputs:

• Murein state (incorporated, usable, and unusable pools)
• Counts of PBP1A, PBP1B
• Fraction of PBP1A, PBP1B not bound by ampicillin
• Cell wall state: lattice, extension factor, whether the wall has cracked

Outputs:

• Updated cell wall lattice
• Extension factor above resting length
• Cracking

4.6.2 Model description

Cell wall growth was modeled as a function of cell shape, available murein, and active PBPs
in the CellWall process. Cell wall state was represented as a 2D lattice on the surface of a
cylindrical shell, in which lattice positions represented the average surface area spanned by a
peptidoglycan unit. Lattice positions filled with ones represented cross-linked peptidoglycan,
while lattice positions filled with zeroes corresponded to gaps where peptidoglycan was not
crosslinked into the cell wall.

Because the E. coli sacculus is elastic primarily in the long direction of the cell, we permitted
lengthwise stretching of the lattice up to the experimentally determined maximum surface
increase, Emax. At each 10 second time step, CellWall first attempted to relax the lattice if
excess murein and PBPs were available. If current cell dimensions provided by the CellShape
process indicated that the cell had grown, the difference between the length of the lattice
and the cell length was first expressed in terms of the number of new columns to be added.

After distributing the murein available to be incorporated (calculated by the PBPBinding

model) uniformly at random among the columns, the content of each new column was de-
termined by sampling several peptidoglycan strands whose lengths followed a geometric
distribution with parameter pstrand estimated from literature data. These strands (stretches
of ones) were placed end-to-end with single-position gaps (0) in between to populate each
newly generated column. Then, Nsites = min(# active PBPs,# new columns) insertion sites
were chosen uniformly at random along the length of the lattice. New columns were then
distributed uniformly at random among the Nsites insertion sites such that ≥ 1 column was
inserted per site.

The CellWall process then inserted these newly sampled columns at their designated in-
sertion sites, resulting in a “proposed” next cell wall state. The size of the largest hole
in the proposed lattice was compared with a critical hole area for lysis from literature
(Acritical = πr2critical). If the proposed lattice crossed this threshold, the CellWall process
first checked to see whether the cell could be saved from lysis by stretching the cell wall

20

further to cover the new cell length. When attempting to stretch, the necessary extension
factor was first compared with Emax to determine whether stretching was possible. If so,
the extension factor E was increased such that the lattice covered the new size of the cell
without incorporation of new murein. This alternative proposed lattice was then evaluated
again for cracking, since the stretching itself increased the physical size of existing lattice
defects. A summary of the steps in cell wall growth is outlined in Algorithm 2.

Once the cell wall had cracked, this was read by the LysisInitiation process. This process
then sampled a waiting time (on the order of 3.2 minutes) from a distribution fitted to
literature data, representing the time that the cell spends with the inner membrane bulging
out through the cell wall. Upon reaching the end of this delay period, Lysis was triggered,
resulting in the removal of the cell from the simulation and the spilling of internal ampicillin
and beta-lactamase into the environment. These environmental changes were enacted by the
ReactionDiffusion process (see 3.3). If a cell survived until division without lysing, the
two resulting daughter cells each inherited one-half of the lattice from the mother cell.

4.6.3 Murein adjustment

In the process of creating a physical representation of the cell wall, we noted that the original
release of the model produced over two times more murein than necessary to completely cover
the surface area of an average cell. As such, we iteratively estimated a corrected homeostatic
objective for murein that resulted in approximately no leftover murein at the start and end of
a representative cell cycle (seed 0). This new objective was about 2.27 times smaller than the
original value and was derived from the assumption that cells do not produce significantly
more murein than necessary to maintain cell wall integrity.

4.6.4 Parameters

Parameter Value Description
pstrand 7.68× 10−2 Strand extension probability. Fitted assuming

a geometric distribution using data from [28;
41].

rcritical 20 nm Critical defect radius to initiate lysis [8].
ℓy 1.03 nm Length of one peptidoglycan unit (along the

direction of the strand) [42].
ℓx 1.4 nm Width of a glycan strand [39].
dx 0.6 nm Typical resting distance between glycan

strands. Estimated such that the initial lattice
uses all initial murein. Together with ℓx, con-
sistent with literature distances between cen-
ters of adjacent strands [4; 39].

Emax 3 Maximum permissible expansion of the cell
sacculus [20].

t̂lysis 192.8 s Mean time to lysis after bulging begins [43].

Table SM9: Parameters for the cell wall process.

21

Algorithm 2: Cell wall growth

Input : m crosslinked murein count
Input : cPBP1A, cPBP1B PBP1A/B counts
Input : θPBP1A, θPBP1B fraction of PBP1A/B that is active
Input : l cell length
Input : e cell wall extension factor
Input : L cell wall lattice with y rows and x columns
1. Calculate new number of columns in cell lattice.

xnew =
l

e · (lx + dx)
2. Shrink extension factor if there is excess murein.

if ⌊m/y⌋ > xnew − x then
xnew = x+ ⌊m/y⌋

enew = max

(
l

xnew(lx + dx)
, 1

)
3. Calculate count of murein allocated to each new column.

m⃗ = multinomal(m, repeat((xnew − x)−1, xnew − x))

4. Sample new cell wall columns.
for column = 0 to xnew − x do

filled = 0
c⃗ = zero-filled array of length y (new column)
while filled < y and filled < m⃗ [column] do

strand = geom(pstrand)
if filled + strand > y or filled + strand > m⃗ [column] then

strand = min(c⃗ [column] − filled, y − filled)
Set positions from filled to filled + strand equal to 1 in c⃗
break

Set positions from filled to filled + strand equal to 1 in c⃗
filled += strand + 1

4. Calculate number of active cell wall synthesis sites.

csyn = min(θPBP1A · cPBP1A + θPBP1B · cPBP1B, ynew − y)

5. Distribute newly generated columns among csyn positions in the initial lattice.
6. Record hole sizes, try to stretch if hole too large, crack if still too large.

if max hole size > πr2critical then

enew =
l

x(lx + dx)
if enew < Emax then

if max hole size > πr2critical then
Cell wall cracked.

else
Cell wall intact.

else
Cell wall cracked.

22

References

[1] Agmon, E., Spangler, R. K., Skalnik, C. J., Poole, W., Peirce, S. M., Morrison, J. H.,
and Covert, M. W. (2022). Vivarium: an interface and engine for integrative multiscale
modeling in computational biology. Bioinformatics, 38(7):1972–1979.

[2] Baldwin, W. W., Myer, R., Powell, N., Anderson, E., and Koch, A. L. (1995). Buoyant
density of Escherichia coli is determined solely by the osmolarity of the culture medium.
Archives of Microbiology, 164(2):155–157.

[3] Bayer, M. (1991). Zones of membrane adhesion in the cryofixed envelope of Escherichia
coli. Journal of Structural Biology, 107(3):268–280.

[4] Braun, V., Gnirke, H., Henning, U., and Rehn, K. (1973). Model for the Structure of the
Shape-Maintaining Layer of the Escherichia coli Cell Envelope. Journal of Bacteriology,
114(3):1264–1270. Publisher: American Society for Microbiology.

[5] Campos, M., Surovtsev, I. V., Kato, S., Paintdakhi, A., Beltran, B., Ebmeier, S. E., and
Jacobs-Wagner, C. (2014). A constant size extension drives bacterial cell size homeostasis.
Cell, 159(6):1433–1446.

[6] Catherwood, A. C., Lloyd, A. J., Tod, J. A., Chauhan, S., Slade, S. E., Walkowiak, G. P.,
Galley, N. F., Punekar, A. S., Smart, K., Rea, D., Evans, N. D., Chappell, M. J., Roper,
D. I., and Dowson, C. G. (2020). Substrate and Stereochemical Control of Peptidoglycan
Cross-Linking by Transpeptidation by Escherichia coli PBP1B. Journal of the American
Chemical Society, 142(11):5034–5048. Publisher: American Chemical Society.

[7] Curtis, N. A., Orr, D., Ross, G. W., and Boulton, M. G. (1979). Affinities of penicillins
and cephalosporins for the penicillin-binding proteins of Escherichia coli K-12 and their
antibacterial activity. Antimicrobial Agents and Chemotherapy, 16(5):533–539.

[8] Daly, K. E., Huang, K. C., Wingreen, N. S., and Mukhopadhyay, R. (2011). Mechanics of
membrane bulging during cell-wall disruption in Gram-negative bacteria. Physical Review
E, 83(4):041922. Publisher: American Physical Society.

[9] Delihas, N. and Forst, S. (2001). MicF : an antisense RNA gene involved in response
of Escherichia coli to global stress factors 1 1Edited by D. Draper. Journal of Molecular
Biology, 313(1):1–12.

[10] Diamond, J. M. and Harrison, S. C. (1966). The effect of membrane fixed charges on
diffusion potentials and streaming potentials. The Journal of Physiology, 183(1):37–57.

[11] DiRienzo, J. M., Nakamura, K., and Inouye, M. (1978). The Outer Membrane Proteins
of Gram-Negative Bacteria: Biosynthesis, Assembly, and Functions. Annual Review of
Biochemistry, 47(1):481–532.

[12] Dong, H., Nilsson, L., and Kurland, C. G. (1996). Co-variation of tRNA Abundance and
Codon Usage inEscherichia coliat Different Growth Rates. Journal of Molecular Biology,
260(5):649–663.

23

[13] Epe, B. and Woolley, P. (1984). The binding of 6-demethylchlortetracycline to 70S, 50S
and 30S ribosomal particles: a quantitative study by fluorescence anisotropy. The EMBO
journal, 3(1):121–126.

[14] Goldman, D. E. (1943). POTENTIAL, IMPEDANCE, AND RECTIFICATION IN
MEMBRANES. Journal of General Physiology, 27(1):37–60.

[15] Grossman, T. H. (2016). Tetracycline Antibiotics and Resistance. Cold Spring Harbor
Perspectives in Medicine, 6(4):a025387.

[16] Hodgkin, A. L. and Katz, B. (1949). The effect of sodium ions on the electrical activity
of the giant axon of the squid. The Journal of Physiology, 108(1):37–77.

[17] Jakubowski, H. and Goldman, E. (1984). Quantities of individual aminoacyl-tRNA
families and their turnover in Escherichia coli. Journal of Bacteriology, 158(3):769–776.

[18] Jenner, L., Starosta, A. L., Terry, D. S., Mikolajka, A., Filonava, L., Yusupov, M.,
Blanchard, S. C., Wilson, D. N., and Yusupova, G. (2013). Structural basis for potent
inhibitory activity of the antibiotic tigecycline during protein synthesis. Proceedings of the
National Academy of Sciences, 110(10):3812–3816.

[19] Kocaoglu, O. and Carlson, E. E. (2015). Profiling of β-Lactam Selectivity for Penicillin-
Binding Proteins in Escherichia coli Strain DC2. Antimicrobial Agents and Chemotherapy,
59(5):2785–2790. Publisher: American Society for Microbiology.

[20] Koch, A. L. and Woeste, S. (1992). Elasticity of the sacculus of Escherichia coli. Journal
of Bacteriology, 174(14):4811–4819.

[21] Kojima, S. and Nikaido, H. (2013). Permeation Rates of Penicillins Indicate that Es-
cherichia coli Porins Function Principally as Nonspecific Channels. Proceedings of the
National Academy of Sciences, 110(28):E2629–E2634.

[22] MacGillivray, A. and Hare, D. (1969). Applicability of Goldman’s constant field as-
sumption to biological systems. Journal of Theoretical Biology, 25(1):113–126.

[23] Macklin, D. N., Ahn-Horst, T. A., Choi, H., Ruggero, N. A., Carrera, J., Mason, J. C.,
Sun, G., Agmon, E., DeFelice, M. M., Maayan, I., Lane, K., Spangler, R. K., Gillies, T. E.,
Paull, M. L., Akhter, S., Bray, S. R., Weaver, D. S., Keseler, I. M., Karp, P. D., Morrison,
J. H., and Covert, M. W. (2020). Simultaneous cross-evaluation of heterogeneous E. coli
datasets via mechanistic simulation. Science, 369(6502):eaav3751.

[24] Macnab, R. M. and Koshland, D. E. (1972). The gradient-sensing mechanism in bacte-
rial chemotaxis. Proceedings of the National Academy of Sciences, 69(9):2509–2512.

[25] Marr, A. G., Harvey, R. J., and Trentini, W. C. (1966). Growth and division of Es-
cherichia coli. Journal of Bacteriology, 91(6):2388–2389.

[26] Mazzariol, A., Cornaglia, G., and Nikaido, H. (2000). Contributions of the AmpC β-
Lactamase and the AcrAB Multidrug Efflux System in Intrinsic Resistance of Escherichia
coli K-12 to β-Lactams. Antimicrobial Agents and Chemotherapy, 44(5):1387–1390.

24

[27] Nikaido, H. and Vaara, M. (1985). Molecular basis of bacterial outer membrane perme-
ability. Microbiological Reviews, 49(1):1–32.

[28] Obermann, W. and Höltje, J. (1994). Alterations of murein structure and of penicillin-
binding proteins in minicells from Escherichia coli. Microbiology.

[29] Purcell, E. M. (1977). Life at low Reynolds number. American Journal of Physics,
45(1):3–11.

[30] Saragosti, J., Silberzan, P., and Buguin, A. (2012). Modeling E. coli Tumbles by Rota-
tional Diffusion. Implications for Chemotaxis. PLoS ONE, 7(4):e35412.

[31] Schilling-Bartetzko, S., Franceschi, F., Sternbach, H., and Nierhaus, K. (1992). Ap-
parent association constants of tRNAs for the ribosomal A, P, and E sites. Journal of
Biological Chemistry, 267(7):4693–4702.

[32] SciPy 1.0 Contributors, Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M.,
Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der
Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones,
E., Kern, R., Larson, E., Carey, C. J., Polat, , Feng, Y., Moore, E. W., VanderPlas, J.,
Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A., Harris, C. R.,
Archibald, A. M., Ribeiro, A. H., Pedregosa, F., and van Mulbregt, P. (2020). SciPy 1.0:
Fundamental algorithms for scientific computing in Python. Nature Methods, 17(3):261–
272.

[33] Sen, K., Hellman, J., and Nikaido, H. (1988). Porin channels in intact cells of Escherichia
coli are not affected by Donnan potentials across the outer membrane. Journal of Biological
Chemistry, 263(3):1182–1187.

[34] Stock, J. B., Rauch, B., and Roseman, S. (1977). Periplasmic space in Salmonella
typhimurium and Escherichia coli. The Journal of Biological Chemistry, 252(21):7850–
7861.

[35] Suhaimi, H., Wang, S., and Das, D. B. (2015). Glucose diffusivity in cell culture medium.
Chemical Engineering Journal, 269:323–327.

[36] Sun, G., Ahn-Horst, T. A., and Covert, M. W. (2021). The e. coli whole-cell modeling
project. EcoSal plus, 9(2):eESP–0001.

[37] Thanassi, D. G., Suh, G. S., and Nikaido, H. (1995). Role of outer membrane barrier
in efflux-mediated tetracycline resistance of Escherichia coli. Journal of Bacteriology,
177(4):998–1007.

[38] Trueba, F. J. and Woldringh, C. L. (1980). Changes in cell diameter during the division
cycle of Escherichia coli. Journal of Bacteriology, 142(3):869.

[39] Turner, R. D., Mesnage, S., Hobbs, J. K., and Foster, S. J. (2018). Molecular imaging
of glycan chains couples cell-wall polysaccharide architecture to bacterial cell morphology.
Nature Communications, 9:1263.

25

[40] Viveiros, M., Dupont, M., Rodrigues, L., Couto, I., Davin-Regli, A., Martins, M.,
Pagès, J.-M., and Amaral, L. (2007). Antibiotic Stress, Genetic Response and Altered
Permeability of E. coli. PLoS ONE, 2(4):e365.

[41] Vollmer, W., Blanot, D., and De Pedro, M. A. (2008). Peptidoglycan structure and
architecture. FEMS Microbiology Reviews, 32(2):149–167.

[42] Vollmer, W. and Höltje, J.-V. (2004). The Architecture of the Murein (Peptidogly-
can) in Gram-Negative Bacteria: Vertical Scaffold or Horizontal Layer(s)? Journal of
Bacteriology, 186(18):5978–5987.

[43] Wong, F. and Amir, A. (2019). Mechanics and Dynamics of Bacterial Cell Lysis. Bio-
physical Journal, 116(12):2378–2389.

26

	Introduction
	Single-cell E. coli model
	wcEcoli
	Simulation parameters
	Simulation state
	Save state
	Pseudo-random number generator seeds

	Partitioning
	Migration tests
	EcoliSim
	EngineProcess
	Cell division

	Spatial environment model
	Cell shape
	Inputs and outputs
	Model description
	Parameters

	Multibody physics
	Inputs and outputs
	Model description
	Parameters

	Reaction diffusion
	Inputs and outputs
	Model description
	Parameters

	Antibiotic response model
	Membrane permeability
	Inputs and outputs
	Model description
	Parameters

	Antibiotic diffusion, export, and hydrolysis
	Inputs and outputs
	Model description
	Parameters

	Tetracycline-induced changes to gene expression
	Model description

	Tetracycline binding to ribosomes
	Inputs and outputs
	Model description
	Parameters

	PBP binding and inhibition
	Inputs and outputs
	Model description
	Parameters

	Cell wall growth, division, and lysis
	Inputs and outputs
	Model description
	Murein adjustment
	Parameters

	References

