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Supplementary Information

Deep Local Analysis deconstructs protein - protein interfaces and accurately
estimates binding affinity changes upon mutation

by Yasser Mohseni Behbahani, Elodie Laine and Alessandra Carbone

Definition of the interfacial residues
We define interfacial residues as those displaying a change in solvent accessibility between the free (isolated) protein and the
complex (Levy, 2010). We used NACCESS (Hubbard and Thornton, 1993) with a probe radius of 1.4Å to compute residue solvent
accessibility.

Building the cubic volumetric map
To build the cubic volumetric map, the atomic coordinates of the input structure are first transformed to a density function (Pagès
et al., 2019). The density d at a point v⃗ is computed as

d(v⃗) =
∑

i≤Natoms

exp
[
−

( v⃗ − a⃗i

σ

)2]
ti, (S 1)

where a⃗i is the position of the ith atom, σ is the width of the Gaussian kernel set to 1Å, and ti is a vector of 167 channels
corresponding to residue-specific atom types, or 4 channels corresponding to the four amino acid-independent chemical elements (O,
C, N and S) (see (Pagès et al., 2019) for a detailed list). The hydrogen atoms are discarded. Then, the density is projected on a 3D
grid comprising 24 × 24 × 24 voxels of side 0.8Å. The map is oriented by defining a local frame based on the common chemical
scaffold of amino acid residues in proteins (Pagès et al., 2019). More precisely, for the nth residue, the (x⃗, y⃗, z⃗) directions and the
origin of the cube are defined by the position of the atom Nn, and the directions of Cn−1 and Cαn with respect to Nn. The X-axis
is parallel to the vector pointing from Cn−1 to Nn. The Y-axis, perpendicular to the X-axis, is defined in such a way that Cαn lies
in the half-plane Oxy with y > 0. The Z-axis is defined as the vector product X × Y . The origin of the cube is determined in such a
way that Nn is located at position (6.1Å, 6.6Å, 9.6Å). This choice ensures that all the atoms of the central residue fit in the cube.
More details can be found in (Pagès et al., 2019). This representation is invariant to the global orientation of the structure while
preserving information about the atoms and residues relative orientations.

Auxiliary features
For predicting ∆∆Gbind, we combined the embedding vectors of the volumetric maps with five pre-computed auxiliary features
(Fig. 1C), among which four describe the wild-type residue:

• a one-hot vector encoding the protein structural region to which it belongs, either the interior (INT), the surface (SUR), or, if it
is part of the interface, the support (S or SUP), the core (C or COR), or the rim (R or RIM), as defined in (Levy, 2010). We
directly took the annotations available in the SKEMPI database (Jankauskaitė et al., 2019) (see below for a description of the
database). We previously demonstrated the usefulness of the S-C-R classification for predicting and analysing protein interfaces
with other macromolecules (protein, DNA/RNA) (Mohseni Behbahani et al., 2022; Corsi et al., 2020; Raucci et al., 2018; Laine
and Carbone, 2015).

• its physico-chemical properties (PC, a float value) to be found at interfaces, scaled between 0 and 1 (Negi and Braun, 2007).
• its circular variance (CV, a float value) (Mezei, 2003; Ceres et al., 2012) with a sphere radius of 12 Å on the protein structure.

For each protein atom, CV measures the density of protein atoms around it within a sphere. The CV of a given residue is
obtained by averaging values over its atoms and indicates its degree of burial in the protein. CV values range from 0 to 1 and
protruding residues have a value close to 0.

• its conservation level Tjet (a float value) determined by the Joint Evolutionary Trees (JET) method (Engelen et al., 2009). JET
estimates evolutionary conservation by explicitly accounting for the topology of the phylogenetic tree relating the query protein
to its homologs.

We used the JET2 package (Laine and Carbone, 2015) to compute PC, CV and Tjet. We previously showed the usefulness of these
properties for detecting protein-protein interfaces and inferring their functions (Laine and Carbone, 2015). The fifth feature is
specific of the mutation, that is
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• a numerical score (a float value) estimating the functional impact of point mutations from multiple sequence alignments computed
for single (monomeric) proteins by GEMME (Laine et al., 2019). To do this estimation, GEMME combines the conservation
levels Tjet with amino acid frequencies and the minimum evolutionary distance between the protein sequence and a homologous
protein presenting the mutation.

We built the input multiple sequence alignments for JET and GEMME by performing five iterations of the profile HMM homology
search tool Jackhmmer (Eddy, 2011) against the UniRef100 database of non-redundant proteins (Suzek et al., 2015) using the
EVcouplings framework (Hopf et al., 2019). We used the default bitscore threshold of 0.5 bit per residue.

Experimental values for ∆∆Gbind

We used SKEMPI v2.0 (Jankauskaitė et al., 2019), the most complete source for experimentally measured binding affinities
of wild-type and mutated protein complexes. It includes the smaller databases AB-Bind, PROXiMATE, and dbMPIKT (Geng
et al., 2019a). In total, it reports measurements for over 7 000 single and multiple point mutations coming from 345 protein
complexes, including antibody-antigen (AB/AG) and protease-inhibitor (Pr/PI) assemblies, and assemblies formed between major
histocompatibility complex proteins and T-cell receptors (pMHC-TCR). For each entry, corresponding to a single or multiple
mutation, the database provides the PDB structure of the wild-type complex, the names of the partners, the binding affinities of the
wild-type and mutated complexes, some related experimental measurements, details about the experimental method and conditions,
and the structural region of the mutation site(s), either INT, SUR, SUP, COR or RIM (Levy, 2010). The mutations happening in
the interface (SUP, COR, RIM), in particular in the core (COR), induce bigger changes in binding affinity than the ones located
in the non-interacting surface (SUR) or the interior (INT) of the protein (Fig. S 12). Overall, we observed a tendency for the
mutations to be deleterious rather than beneficial. The most impactful single-point mutation is located in the complex 1CHO with
∆∆Gbind = 8.802 kcal/mol. This rich body of annotations helps us to analyze our results and identify the weak and strong points
of DLA-mutation by evaluating its performance with respect to different classifications.

We restricted our experiments to the entries for which the binding affinity of the wild-type and mutant complexes were determined
using a reliable experimental method, namely ITC, SPR, FL, or SP, as done in (Vangone and Bonvin, 2015). This first filtering step
led to 4 974 entries associated with 255 protein complexes. We retained 4 634 entries from 245 complexes by excluding mutation
entries with ambiguous free energy or without energy change. We then focused only on 3 393 single-mutation entries coming from
222 complexes. After removing duplicated entries (a protein complex with the same mutations), we remained with 2 975 mutations.
We finally randomly selected a subset of 2 003 mutations associated with 142 complexes due to the computational cost of Backrub
modeling. We call this subset S2003.

Protein-protein complex 3D structures
We created two databases of protein-protein complex 3D structures, namely PDBInter and S2003-3D, for training and validation
purposes. PDBInter was curated from the Protein Data Bank (PDB) (Berman et al., 2002) and thus contains only experimental
structures. S2003-3D was generated using the "backrub" protocol implemented in Rosetta (Smith and Kortemme, 2008) and thus
contains only 3D models.
PDBInter. We downloaded all PDB biological assemblies (June 2020 release) from the FTP archive rsync.wwpdb.org::ftp/data/
biounitrsync.wwpdb.org::ftp/data/biounit. We discarded the entries with more than 100 chains or with a resolution lower than 5Å.
We also removed the protein chains smaller than 20 residues or with more than 20% of unknown residues. We then redundancy-
reduced the resulting dataset using annotations from the SCOPe database (Fox et al., 2014; Chandonia et al., 2022). The 5 055
protein complex structures that were finally retained do not share any family level similarity between them according to the SCOPe
hierarchy.
S2003-3D. We generated 3D models with a high level of precision using the Rosetta backrub protocol for the wild-type and mutated
complexes from S2003 and explicitly accounted for the conformational variability. We followed a modeling protocol similar to that
reported in (Barlow et al., 2018). It relies on the backrub method (Smith and Kortemme, 2008) for sampling side chain and backbone
conformational changes. Our goal was to accurately mimic and explore the fluctuations around a native state. The protocol unfolds
in two optimization steps carried out on the side chains and the backbone (Fig. S 6):

1. for the backbone and the side chains, it applies quasi-Newton minimization for continuous optimization of torsion angles: Φ, Ψ,
χ1, χ2, χ3, etc.

2. for the side chains only, it performs Monte Carlo simulation with the backbone-based side-chain rotamer library of Dunbrack
(Shapovalov and Dunbrack, 2011) for discrete combinatorial rotamer optimization, also known as repacking.

Split complexes based on sequence identity
To split train and test sets based on complex sequence identity, we directly exploited the clusters of sequence identity available from
the PDB https://www.rcsb.org/docs/programmatic-access/file-download-services#sequence-clusters-data. Two protein complex
have the same sequence identity if all their chains share the same clusters.

rsync.wwpdb.org::ftp/data/biounit
rsync.wwpdb.org::ftp/data/biounit
https://www.rcsb.org/docs/programmatic-access/file-download-services#sequence-clusters-data
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Evaluation of ssDLA on the validation set from PDBInter
To visualise the performance of the model, we generated logos from pseudo alignments of 20 columns corresponding to the 20 amino
acids. In the column corresponding to the amino acid ai, the frequency of occurrence of each amino acid aj corresponds to the
propensity of ssDLA to predict aj when the true central residue of the input cube is ai. Note that the propensity is computed by
counting the number of times aj has maximum probability score among the 20 candidate amino acids. If some amino acid was never
predicted, we simply put a gap character.

Different experimental setups for the supervised prediction of ∆∆Gbind

We experimented different setups of supervised learning by using different combinations of auxiliary features and different initialisation
schemes for the network weights. In the basic set up, the only auxiliary feature we used was the structural region of the wild-type
residue (SR). We previously showed that this information significantly contributes to the performance of the DLA framework
(Mohseni Behbahani et al., 2022). On top of that, we also considered evolutionary information, by using the GEMME scores
(SR-GEMME) or the Tjet conservation levels (SR-Tjet). In its most complete form, DLA-mutation combines SR, GEMME scores,
Tjet, and descriptors of the buriedness (CV ) and physico-chemical properties (PC ) of the wild-type residue (All). For the network
weights, we either started from the weights of the pre-trained ssDLA (fine tuning) or randomly initialised them. For each mutation,
DLA-Mutation considers 30 pairs of cubes extracted from the mutation site of the associated 30 backrub models. The predicted
∆∆Gbind is an average over all 30 models.

Training and evaluation of downstream tasks: prediction of residue- and interface-level properties
We generated embedding vectors (ek) for all the cubes representing a given input interface. For training purposes, we redundancy-
reduced the set of 142 complexes from S2003 based on a 30% sequence identity cutoff. We then performed a 50/50 split at the
cluster level. This resulted into 85 train and 57 test complexes for the first, residue-based, task. As training and testing samples, we
considered:

• either all interfacial residues (4710 residues for train and 3397 residues for test) extracted from the X-ray crystal structures of
S2003;

• or only the residues belonging to the positions with mutation from S2003 (1700 residues for train and 303 residues for test)
extracted from the wild-type backrub models of S2003-3D. We performed two experiments here: (i) pick up one backrub model
at random (out of 30) to generate the input cubes, (ii) average the embedding vectors computed for a given interfacial residue
over the 30 backrub models.

For the second, interface-based task, due to missing annotations, we used only 22 train and 52 test complexes. We computed the
average embedding vector over all interfacial residues before giving it to the classifier. In addition, we focused only on the X-ray
crystal structures. In both tasks, the number of epochs depended on the size of train set and the learning rate (0.00001). We stopped
the training when the validation loss converged to a steady value (Fig. S 13).
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Table S 1. Benchmark datasets of changes of binding affinity upon mutation

Name Number of Number of Type of Source
complexes mutations point mutations Database

ZEMu (Dourado and Flores, 2016) 65 1240 single+multiple SKEMPI1

S1102 (Geng et al., 2019b) 57 1102 single SKEMPI1

S487 (Geng et al., 2019b) 56 487 single SKEMPI2

S645 (Pires and Ascher, 2016) 29 645 single AB-Bind

S787 (Wang et al., 2020) 24 787 single AB-Bind

S4947 (Wang et al., 2020) - 4947 single SKEMPI2

S4169 (Rodrigues et al., 2019) 319 4169 single SKEMPI2

S8338† (Rodrigues et al., 2019) 319 8338 single SKEMPI2

S1721 (Rodrigues et al., 2021) 147 1721 single+multiple SKEMPI2

S1402 (Xiong et al., 2017) 114 1402 single+multiple SKEMPI1

S1131 (Xiong et al., 2017) 114 1131 single SKEMPI1

M1707 (Zhang et al., 2020) 120 1707 multiple SKEMPI2

S2003 142 2003 single SKEMPI2

† S8338 is generated from S4169. It doubles the number of samples by assigning reverse mutation energy changes to the negative
values of its original energy values in order to increase the robustness of the predictive method.

Table S 2. Different approaches for the prediction of changes of binding affinity upon mutation.

Approach Type Information ∆∆Gbind Train Test PCC RMSE
directly set set ( kcal

mol )

FLEX (Barlow et al., 2018) Physics Structure - - ZEMu 0.63 -

BindProfX (Xiong et al., 2017) Physics+Statistics Structure+Sequence ✓ -
S1402 0.691

-
S1131 0.738

iSEE (Geng et al., 2019b) ML Structure+Sequence ✓
S1102 - 0.80* 1.41
S1102 S487 0.25 1.32

mCSM-AB (Pires and Ascher, 2016) ML Structure ✓ S645 - 0.53 -

mCSM-PPI2 (Rodrigues et al., 2019) ML Structure ✓
S4169 - 0.76* 1.19
S8338 - 0.82* 1.18

mmCSM-PPI (Rodrigues et al., 2021) ML Structure ✓
S1721 - 0.87* 1.41
S1721† S1721† 0.70 2.06

TopNetTree (Wang et al., 2020) ML Structure ✓

S4947 - 0.82* 1.11
S4169 - 0.79* 1.13
S8338 - 0.85* 1.11
S645 - 0.65* 1.57
S4947 S787 0.53 1.45
S1131 - 0.85* -

Hom-ML-V2 (Liu et al., 2022) ML Structure ✓
S4169 - 0.80* 1.06
S645 - 0.58* -
S1131 - 0.857* 1.28

MuPIPR (Zhou et al., 2020) ML Sequence ✓
S1102 - 0.85* 1.23
S1400 - 0.88* 1.32
S1102 S487 0.25 1.36

GraphPPI (Liu et al., 2020) ML Structure ✓

S645 - 0.67* -
M1707 - 0.88* -
S645 - 0.53§ -

M1707 - 0.76§ -
S645 - 0.48¶ 1.74

M1707 - 0.73¶ 2.26

* Mutation-based cross validation, in which a complex (or even the same mutation position of that complex) can be found in different
folds. § Leave-one-complex-out cross validation. ¶ Leave-one-structure-out cross validation. † A subset of 1126 mutations used for
training/CV and a subset of 595 mutations held out as non-redundant blind test at mutation level. ML: Machine learning, PCC:
Pearson Correlation Coefficient, RMSE: Root Mean Squared Error.
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Table S 3. Weights of amino acids classes in self-supervised learning

Amino acid Weights
167 channels 4 channels

A 0.768 0.768
C 4.100 4.100
D 0.901 0.751
E 0.724 0.724
F 1.117 1.117
G 0.825 0.825
H 1.747 1.747
I 0.920 0.920
K 0.904 0.904
L 0.529 0.529
M 2.088 2.088
N 1.170 1.170
P 0.856 0.856
Q 1.182 1.182
R 0.717 0.717
S 0.885 0.885
T 0.920 0.920
V 0.817 0.817
W 2.897 2.897
Y 1.109 1.109

Table S 4. Seven classes of amino acids

Class name Description Amino acid(s) Representative color

ARO Aromatic F, W, Y, H Green
CAST Hydroxyl-containing and Alanine C, A, S, T Black
PHOB Aliphatic hydrophobic I, L, M, V Red
POS Positively charged K, R Purple
POL-N Polar and negatively charged N, Q, D, E Blue
GLY Glycine G Gray
PRO Proline P Orange



6 Yasser Mohseni Behbahani et al.

A B

Fig. S 1. An example of masking with a sphere of 5 Å. Masking atoms inside a spherical volume of radius 5 Å randomly centered on the central
interfacial residues (A) arginine or (B) isoleucine. Top is the intact local environment and bottom is the masked one. Both interfacial residues belong to
the same interface.
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A B

Fig. S 2. Frequency of interfacial amino acids in PDBInter. For each amino acid type, we report the number of times it appears in the core, the
rim, or the support of the interface. A train set. B. Validation set.

A B

Fig. S 3. Train and validation loss curves of ssDLA. The x-axis is the number of epochs and the y-axis is the log-loss (categorical cross-entropy).
(A) Default ssDLA model, where we used 167 channels corresponding to 167 amino acid-specific atom types (see (Pagès et al., 2019) for a detailed list).
(B) Simplified model where we considered only 4 atom types (C, N, O, S).
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Fig. S 4. The predictive performance of six experimental setups on a test set of 391 mutations from 32 unseen protein complexes
(randomly selected from S2003 dataset) with a complex-based train and test split. A-D. The training process fine-tunes the weights of the
pre-trained model ssDLA and includes All (A), SR (B), SR-GEMME (C) or SR-Tjet (D) features. E-F. Training starts from randomly initialized weights
with All (E) or SR (F) features.
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Fig. S 5. Performance of simplified ssDLA model with 4 channels. The predictive power of simplified ssDLA model where we considered only 4
atom types (C, N, O, S) is evaluated on the validation set of PDBInter. The three logos represent the propensities of each amino acid to be predicted
(having maximum score in the output layer), depending on the true amino acid (x-axis) and on its structural region (see Methods). Amino acids are
colored based on seven similarity classes: ARO (F, W, Y, H) in green, CAST (C, A, S, T) in black, PHOB (I, L, M, V) in red, POS (K, R) in purple,
POL-N (N, Q, D, E) in blue, GLY (G) in gray and PRO (P) in orange (see Methods).
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Fig. S 6. Pipeline for the generation of mutated complexes with backrub. After filtering the SKEMPI v2.0 database, we retained 2003 single
point-mutations for 142 complexes (S2003). A wild-type structure undergoes a local minimisation of backbone and side-chain torsion angles followed by a
Monte Carlo simulation step. We applied it to produce 30 models for each mutated structure and 30 for the wild-type. This process is followed by a
repacking step applied to wild-type and mutation models. For the mutation positions at the interface of each model, we compute the associated cubic
volumetric maps.
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Fig. S 7. A comparison between the performance of DLA-Mutation (trained on only structural features; green) and iSEE (blue) on S487
dataset. The input 3D models and training and evaluation procedure were directly taken from (Geng et al., 2019b). To train DLA-Mutation, we used
fine-tuning of the weights and only structural information as auxiliary features (SR). A. DLA-Mutation B. iSEE.
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Fig. S 8. Comparison between DLA-Mutation (trained only on structural features) and other ∆∆GBind predictors. We report values for
112 mutations coming from 17 protein complexes not seen during the training or optimisation of any of the predictors. A. DLA-Mutation was trained on
945 mutations from S2003 coming from complexes sharing less than 30% sequence identity with those from this test set. To train DLA-Mutation, we used
fine-tuning of the weights and only structural information as auxiliary features (SR). B-E. The scores reported for FoldX (B), BindProfX (C), iSEE (D)
and mCSM (E) were taken directly from (Geng et al., 2019b).



Deep Local Analysis-Mutation 11

A B C D

E F G H

P
re

d
ic

ti
o
n
 s

co
re

P
re

d
ic

ti
o
n
 s

co
re

Experimental ΔΔGbind (kcal/mol)Experimental ΔΔGbind (kcal/mol)Experimental ΔΔGbind (kcal/mol)Experimental ΔΔGbind (kcal/mol)

1CHO

PCC: 0.635
RMSE: 1.63

1JCK

PCC: 0.622
RMSE: 1.73

1MI5

PCC: 0.257
RMSE: 0.69

3M62

PCC: 0.663
RMSE: 1.00

3MZG

PCC: -0.515
RMSE: 1.18

4L3E

PCC: 0.301
RMSE: 1.14

4OZG

PCC: 0.248
RMSE: 0.72

4PWX

PCC: 0.248
RMSE: 0.92

Fig. S 9. DLA-Mutation predictions for mutations to Alanine separated by different complexes. Predictions are obtained with the DLA-
Mutation architecture with a fine-tuned pre-trained model and All auxiliary features. A. 3M62, B. 1CHO, C. 1JCK, D. 4L3E, E. 1MI5, F. 4OZG, G.
4PWX, H. 3MZG.
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Fig. S 10. Prediction of the amino acid classes for the mutation sites using embedding vectors extracted by ssDLA. Train and test
were performed on the subset of mutation sites of the X-ray crystal and wild-type backrub structures of S2003. A. The confusion matrix and per-class
F1-scores for the embedding vectors of X-ray structures extracted by default ssDLA (167 channels). B-C. The confusion matrix and per-class F1-scores
for the embedding vectors of wild-type backrubs extracted by default ssDLA with two aggregating schemes: averaging over backrub models (B) or
choosing a single backrub model (C). In the confusion matrices the percentage values and the colors indicate recall.
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Fig. S 11. Prediction of the interaction functional classes using embedding vectors extracted by ssDLA. Train and test were performed on
the X-ray crystal structures of S2003. A-B. The confusion matrix (A) and per-class F1-scores (B) for the embedding vectors extracted by default ssDLA
(167 channels). In the confusion matrices the percentage values and the colors indicate recall. The aggregating scheme for each complex is the averaging
of embedding vectors over is interfacial residues.
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Fig. S 12. Distribution of ∆∆Gbind values in SKEMPI v2. We focus here only on the single point mutations. The different distributions correspond
to the different protein structural regions: COR (1500 mutations), SUP (437 mutations), RIM (824 mutations), INT (223 mutations), and SUR (423
mutations).

A B C

Fig. S 13. Train and validation loss curves of the downstream task: prediction of amino acid classes. x-axis is the epochs and the y-axis is
the loss function (categorical cross-entropy). A-B. Embedding vectors extracted by default ssDLA model (167 channels, A) or by simplified model (4
channels, B) from X-ray crystal structures of S2003. C. Embedding vectors extracted by default ssDLA from wild-type backrub models of S2003.


