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1 Supplementary Information

1.1 Experimental setup

For network alignment prediction, GraNA was trained on the training set, tuned on

the valid set, and evaluated on the test set along with other NA baselines, where

the split ratio is 70/10/20. For each dataset, data split was performed 5 times with 5

different seeds.

In the context of NA for biological networks, many different evaluation metrics

have been proposed, and they often focus on different aspects of network alignment

prediction. Ma and Liao (2020) categorized some of the most commonly used metrics

into two types: biological evaluation and topological evaluation. Apart from the

metrics summarized by Ma and Liao (2020), Fan et al. (2019); Li et al. (2022)

also used AUPRC and AUROC for evaluating the predicted network alignment. In

this work, we selected metrics following Singh et al. (2008); Chindelevitch et al.

(2013); Fan et al. (2019); Li et al. (2022) and included AUROC, AUPRC, Jaccard

index (also known as Gene Ontology Consistency), and functional coherence (FC)

as metrics. As the prediction of GraNA is a many-to-many mapping between the

across-species proteins, we cannot directly leverage a particular set of metrics used

in previous studies Saraph and Milenković (2014); Vijayan and Milenković (2017),

such as Edge Correctness (EC) and Node Correctness (NC), which are based on the

assumption that the mapping is one-to-one and require non-trivial modification for

our purpose.

For protein function prediction, we chose the Jaccard index and functional

coherence of the top 200 predicted node pairs given for each train/test split (1000

pairs in total after combining the top pairs from five runs). For a fair comparison,

we filtered anchor links that coincide with positive test pairs from our training data.

Jaccard index describes how similar two proteins are in terms of function, as it is

calculated as |S1 ∩ S2|/|S1 ∪ S2|, where S1, S2 represent respectively the set

of GO terms the two nodes are annotated with. Following previous studies (Singh

et al., 2008; Chindelevitch et al., 2013), we define functional coherence as follows.

GO terms were first mapped to a standardized GO set. Within this set, all GO terms

are at a distance of 5 to the root of the GO hierarchy, and any GO terms with a

distance less than 5 to the root are dropped. We measured the distance only by

considering the relations is a and part of in Biological Process (BP) of the GO, and

we retrieved the ancestor information of each GO term through the QuickGO REST

API (Binns et al., 2009). This design aimed to avoid evaluating functional similarity at

different levels of the Gene Ontology graph. For each protein pair (x, y), functional

coherence is defined as |Sx ∩ Sy|/|Sx ∪ Sy|, whereas Sx, Sy represent the sets

of standardized GO terms with protein x, y respectively. Using Jaccard index and

functional coherence, we are able to quantify the proportion of functional knowledge

that is successfully transferred from the network alignment established by GraNA.

1.2 Baselines

In experiments, we compare GraNA with several existing NA methods. For a fair

comparison, all baseline methods were trained, if needed, and evaluated on the same

data as GraNA. Specifically, for baselines that require anchor links, we used the

same ortholog anchor links that GraNA uses. Default parameters were used for all

baselines.

For unsupervised NA method, we included IsoRank (Singh et al., 2008),

MMseqs2 (Steinegger and Söding, 2017), MUNK (Fan et al., 2019), and ETNA (Li

et al., 2022). MMseqs2 is a tool for calculating sequence similarity and clustering

proteins based on their sequences. We included it as a baseline method for assessing

the relatedness of sequence similarity to functional similarity. IsoRank is an

unsupervised multi-network alignment method, which is based on the intuition that

functionally similar proteins have similar sequences and neighborhood topologies.

The alignment of networks is formulated as an eigenvalue problem. IsoRank was

originally designed to align orthologous pairs using sequence similarity as anchor

links. MUNK, linking two PPIs via orthologs, uses matrix factorization to create a

functional embedding in a way that proteins from different species are embedded in

the same space. Then, a score matrix is calculated between two species, which can be

used for network alignment prediction. ETNA is the state-of-the-art unsupervised NA

method. It first learns representations for proteins from the PPIs via autoencoder and

then applies a cross-training mechanism using orthologs to align the embeddings

from two species. For the supervised NA method, we included TARA-TS and

TARA++ (Gu and Milenković, 2021). From the three versions of TARA-TS

(graphlet (Milenković and Pržulj, 2008), node2vec (Grover and Leskovec, 2016),

metapath2vec (Dong et al., 2017)), we chose the version based on node2vec as

it showed the best performance among the three as shown in their experiments.

Regarding TARA++, for the protein function prediction evaluation framework (Meng

et al., 2016), we implemented TARA++ according to its original definition, which

is the intersection of TARA and TARA-TS predictions. For network alignment

prediction, we had to make a tweak on TARA++: in the TARA++ paper, TARA++ was

developed for the function prediction task but not for the network alignment task.

Therefore, we adapted TARA++ to the network alignment prediction to compare

with GraNA – we first ran TARA and TARA-TS to obtain the predicted probability

(produced by the logistic regression classifier) that a given protein pair shares at least

one GO term and then we took the average to TARA’s and TARA-TS’s predicted

probabilities. The averaged probability was used as the prediction of TARA++. The

average operation here followed the same idea of the intersection operation in the

original TARA++ for function prediction, which took the consensus predictions of

TARA and TARA-TS. In addition to the average, we have tried combining TARA and

TARA-TS by taking their minimum or maximum predicted probability for network

alignment, and the results were similar. Using this approach, we were able to compare

TARA++ to other methods in our network alignment benchmark.

1.3 Hyperparameters

The hyperparameters in GraNA include the total number of epochs, batch size,

learning rate, hidden dimension, number of graph convolution blocks, and graph

convolution type. We comprehensively tested the robustness of GraNA against

different hyperparameter settings. The search space of hyperparameters for training

GraNA was shown in Table S3. For each train/valid/test split, GraNA was first

trained on the training set and then validated on the validation set. We chose the final

combination of hyperparameters for training GraNA based on GraNA’s performances

(AUROC and AUPRC) on the validation set. To avoid an exponential number of

combinations of hyperparameters that would make the grid search infeasible, we

fixed the values of other hyperparameters when tuning one specific hyperparameter.

We evaluated four different types of graph convolution layer: GCN (Kipf and

Welling, 2016), SAGE (Hamilton et al., 2017), GAT (Veličković et al., 2017), and

GEN (Li et al., 2020). The four architectures differ from each other mainly in their

neighborhood information aggregation mechanisms. GCN aggregates neighborhood

information in a weighted mean manner based on node degrees and edge weights

from the normalized Laplacian matrix. SAGE, in comparison, takes a mean over

neighborhood node features for constructing the message for one node. GAT employs

the attention mechanism for aggregating node features, whereas GEN is the layer

we used in GraNA, and it aggregates neighborhood information through a softmax

function.

Raw results averaged on five independent train/valid split for each

hyperparameter setting for alignment between S. cerevisiae and S. pombe were shown

in Figure S9. We observed that GraNA was robust to hyperparameters. Given the

results of hyperparameter tuning and the computational resources available to us, we

built a total of 7 graph convolution blocks, each with a hidden dimension of 128

and a convolution type of GEN (Li et al., 2020), for GraNA. During training, we

used the Adam optimizer with an initial learning rate of 0.001 and a weight decay of

5e-4, and we set the batch size to be 216. We trained GraNA for a maximum of 200

epochs. GraNA was trained on a single NVIDIA A40 GPU card. The running time

analyses of GraNA and baseline methods (TARA, TARA-TS, ETNA) are provided

in Table S6.
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2 Supplementary Tables

Table S1. The number of nodes and edges in the PPI network of each species.

Abbreviations: sce: S. cerevisiae, spo: S. pombe, hsa: H. sapiens, mmu: M.

Musculus, cel: C. elegans, and dme: D. melanogaster.

Type sce spo hsa mmu cel dme

Nodes 5,669 2,334 17,120 7,762 4,439 7711

Edges 110,776 10,525 418,512 47,833 18,301 49,769

Table S2. The number of anchor links (orthologs and sequence similarity) and

protein pairs sharing function in each pair of PPI networks. Orth only: anchor

links that were included only as orthologs; Both orth and seq: anchor links that

were both included as orthologs and sequence similarity relationships; Seq only:

anchor links that were included only as sequence similarity; Pairs sharing func:

cross-species protein pairs that share at least one function. Species abbreviations

are identical to Table S1.

Type sce-spo hsa-sce hsa-mmu hsa-cel hsa-dme

Orthologs 1,485 2,221 10,819 2,561 4,603

Seq similarity 8,324 37,711 191,172 23,419 40,828

Orth only 555 878 3,208 1,400 2,963

Both orth and seq 930 1,343 7,611 1,161 1,640

Seq only 7,394 36,368 183,561 22,258 39,188

Pairs sharing func 195,519 1,021,948 1,938,820 327,907 1,090,256

Table S3. The search space of hyperparameters for training GraNA. GraNA

is trained on train set and validated on valid set. The final combination of

hyperparameters is determined based on GraNA’s performance on the valid set.

Hyperparameter Range

Epochs [50,100,200,300]

Batch size [213, 214, 215, 216, 217]

Learning rate [0.0001, 0.001, 0.01]

Hidden dimension [32, 64, 128, 256]

Block number [1, 3, 5, 7, 9]

Convolution type [GCN, SAGE, GAT, GEN]

Table S4. AUROC of GraNA and baseline methods for predicting network

alignment across species. For each dataset, we reported the AUROC values

averaged over five independent train/test data splits. The abbreviations are

identical to Table S1.

Method sce-spo hsa-sce hsa-mmu hsa-cel hsa-dme

MMseqs2 0.5057 0.5095 0.5102 0.5117 0.5101

IsoRank 0.5650 0.5179 0.5104 0.5143 0.5129

MUNK-f 0.5644 0.5819 0.5372 0.5111 0.5641

MUNK-b 0.5566 0.5772 0.5288 0.5079 0.5576

TARA-TS 0.6241 0.6384 0.6495 0.5848 0.6346

TARA++ 0.6270 0.6311 0.6533 0.5921 0.6372

ETNA 0.7045 0.6631 0.5805 0.5784 0.5891

GraNA-o 0.7707 0.6944 0.6568 0.6174 0.6367

GraNA-s 0.7681 0.6952 0.6473 0.6000 0.6287

GraNA 0.7865 0.7165 0.6755 0.6335 0.6506

Table S5. AUPRC of GraNA and baseline methods for predicting network

alignment across species. For each dataset, we reported the AUPRC values

averaged over five independent train/test data splits. The abbreviations are

identical to Table S1.

Method sce-spo hsa-sce hsa-mmu hsa-cel hsa-dme

MMseqs2 0.0598 0.0547 0.0683 0.0635 0.0572

IsoRank 0.0770 0.0476 0.0628 0.0558 0.0512

MUNK-f 0.0748 0.0562 0.0675 0.0569 0.0578

MUNK-b 0.0740 0.0556 0.0661 0.0559 0.0564

TARA-TS 0.1019 0.0841 0.1140 0.0720 0.0842

TARA++ 0.0927 0.0756 0.1168 0.0783 0.0861

ETNA 0.1832 0.1053 0.0914 0.0720 0.0706

GraNA-o 0.2635 0.1258 0.1320 0.0931 0.0956

GraNA-s 0.2670 0.1336 0.1359 0.0970 0.1010

GraNA 0.2892 0.1511 0.1518 0.1078 0.1120

Table S6. Running time analysis of GraNA and baseline methods TARA,

TARA-TS, and ETNA. The time needed for building topological features and

training model were reported in minutes. Inference time could be neglected

compared to feature-building and model-training time. The abbreviations are

identical to Table S1.

Method Time sce-spo hsa-sce hsa-mmu hsa-cel hsa-dme

TARA
feature 47 205 150 137 162

train <1 1 2 <1 1

TARA-TS
feature <1 1 1 1 1

train <1 1 2 <1 1

ETNA
feature <1 7 7 6 7

train <1 <1 <1 <1 <1

GraNA
feature <1 7 7 6 7

train 9 76 117 20 75
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3 Supplementary Figures

Fig. S1. Impacts of E-value cutoff values used to identify sequence-similar protein pairs as

anchor links. In GraNA, sequence similarity relationships are used as one type of anchor link.

These sequence-similar protein pairs were identified by performing a sequence similarity

search by MMseqs2 and selecting those pairs with an E-value smaller than a cutoff. We

trained a GraNA variant that only used sequence similarity as anchor links (labeled as

GraNA-s) and evaluated its AUPRC score of aligning the PPI networks of H. sapiens and

S. cerevisiae when different E-value cutoffs were used. For reference, the AUPRC scores

of GraNA-o and GraNA were shown. Since GraNA-o did not include sequence similarity

as anchor links and GraNA used the default E-value cutoff of 10−7 , their AUPRC scores

were constant values in the figure.

Fig. S2. AUPRC of GraNA on data splits with different sequence identity thresholds. To

validate GraNA’s effectiveness, we evaluate GraNA using harder data splits, which require

that the train split and the test split are dissimilar in sequences. In practice, we fix the training

sets and only filter test sets. Using MMseqs2 (Steinegger and Söding, 2017) to search the

proteins in the test set that are under the sequence identity threshold, we constitute new test

sets for each threshold. We select sequence identity thresholds 10%, 30%, 50%, 80%, and

100% (the original test split) and evaluate GraNA’s performance for each threshold on five

independent data splits for H. sapiens and S. cerevisiae.

Fig. S3. AUROC of network alignment prediction on sequence identity-based data splits.

To further validate GraNA’s effectiveness under difficult data splits, we compared GraNA

with the best unsupervised and supervised baselines (ETNA and TARA-TS) and a variant

of GraNA (GraNA-o), that only uses orthologs as anchor links, on data splits that ensured

proteins from the train split and the test split are dissimilar in terms of their sequence

identity. Compared to the train/test splits in Fig. 2 where test proteins are ensured to not

appear in the training set, here we create several more challenging train/test splits such that

for the chosen species (the first species, the second species, or both species), its proteins in

the test split must have sequence identity lower than 30% to its proteins in the train split.

In our experiments, we iteratively sampled proteins and added those proteins together with

their sequence-similar proteins (above 30% sequence identity) to the test set. The sequence

identity is calculated by BLASTp (Camacho et al., 2009).
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Fig. S4. AUPRC of network alignment prediction on sequence identity-based data splits.

To further validate GraNA’s effectiveness under difficult data splits, we compared GraNA

with the best unsupervised and supervised baselines (ETNA and TARA-TS) and a variant

of GraNA (GraNA-o), that only uses orthologs as anchor links, on data splits that ensured

proteins from the train split and the test split are dissimilar in terms of their sequence

identity. Compared to the train/test splits in Fig. 2 where test proteins are ensured to not

appear in the training set, here we create several more challenging train/test splits such that

for the chosen species (the first species, the second species, or both species), its proteins in

the test split must have sequence identity lower than 30% to its proteins in the train split.

In our experiments, we iteratively sampled proteins and added those proteins together with

their sequence-similar proteins (above 30% sequence identity) to the test set. The sequence

identity is calculated by BLASTp (Camacho et al., 2009).
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Fig. S5. Network alignment performance on predicting newly discovered alignments

between H. sapiens-M. Musculus based on known alignments. To further demonstrate

GraNA’s potential for application, we compared GraNA with the best unsupervised and

supervised baselines (ETNA and TARA-TS) on predicting the newly discovered alignments

from GO (Consortium, 2004) (2022-12-04) that are not included in GO (Consortium, 2004)

(2018-07-02). Following the method of generating the alignments in the benchmark dataset,

we first create a slim set of GO terms from GO (2018-07-02) and then use it to generate

new alignments in GO (2022-12-04), which contains 48% more functionally similar pairs.

Supervised methods are trained on the supervision from 2018. All methods are evaluated on

the dataset that includes all newly discovered alignments as positive samples and negative

samples downsampled to an equal amount of positive samples. Experiments were repeated

using five random seeds for negative sampling.
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Fig. S6. Network alignment performance of GraNA using different anchor links. We

evaluated the performances of GraNA using only orthologs, only sequence similarity, and

both orthologs and sequence similarity as anchor links for network alignment. Five pairs

of PPIs (S. cerevisiae-S. pombe, H. sapiens-S. cerevisiae, H. sapiens-M. Musculus, H.

sapiens-C. elegans, H. sapiens-D. melanogaster) are used for evaluation. AUPRC of five

independent train/test data splits were reported.
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Fig. S7. Evalutation of the ability to integrate heterogeneous anchor links. To validate

GraNA’s ability to leverage orthology information and sequence similarity information at

the same time, we compared GraNA with two of the best baselines, TARA-TS and ETNA,

for network alignment using different anchor links. We used either orthologs, sequence

similarity, or both orthologs and sequence similarity as anchor links for aligning five pairs of

PPIs (S. cerevisiae-S. pombe, H. sapiens-S. cerevisiae, H. sapiens-M. Musculus, H. sapiens-

C. elegans, H. sapiens-D. melanogaster), on five independent data splits. Abbreviations:

orth: orthologs; seq: sequence similarity.

Fig. S8. ROC curve of GraNA and baselines in the case study. We further included TARA-

TS for comparison in predicting the replaceability of human genes with their yeast orthologs.

TARA-TS is trained and evaluated on the dataset of experimental results by Kachroo et

al. (Kachroo et al., 2015) via five-fold cross-validation.
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Fig. S9. AUROC of GraNA for predicting the alignment between S. cerevisiae and S.

pombe averaged over five independent data splits on valid set. While we are evaluating one

type of hyperparameter, the other hyperparameters remain fixed. We evaluated in total 6

types of hyperparameters, including the total number of epochs, batch size, learning rate,

hidden dimension, block number, and convolution type.

Fig. S10. Functional coherence (FC) based on the network alignments produced by each

method for four pairs of species (H. sapiens-S. cerevisiae, H. sapiens-M. Musculus, H.

sapiens-C. elegans, H. sapiens-D. melanogaster). We chose the top 5,000 ranked protein

pairs and transferred all the functional annotations of one protein in an aligned pair to

predict the other protein’s function. The accuracy of the function prediction was evaluated

by calculating the FC between the sets of the two aligned proteins. Unlike Jaccard index,

FC only focuses on standardized GO terms (at a distance 5 to the root of the GO root) to

avoid bias caused by terms from different levels of the GO hierarchy. Box plots showed

the distribution of the FC of the top 5,000 aligned pairs for each method on five NA tasks

under five random seeds.
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Fig. S11. Precision of network alignment prediction. GraNA and other baselines were

evaluated for aligning functionally similar proteins across five pairs of species, and we used

precision as the metric. For GraNA’s predictions, we first selected the probability threshold

maximizing the f1 score on the valid set and used this threshold to make final alignment

predictions on the test set. GraNA-o is a variant of GraNA that only uses orthologs as

anchor links whereas GraNA refers to the full model that uses both orthologs and sequence

similarity as anchor links. As MUNK is not a bidirectional NA method, the performances

of its forward and backward predictions were shown separately as MUNK-f and MUNK-b.

Performances were evaluated using five independent train/test data splits.

Fig. S12. Recall of network alignment prediction. GraNA and other baselines were

evaluated for aligning functionally similar proteins across five pairs of species, and we used

recall as the metric. For GraNA’s predictions, we first selected the probability threshold

maximizing the f1 score on the valid set and used this threshold to make final alignment

predictions on the test set. GraNA-o is a variant of GraNA that only uses orthologs as

anchor links whereas GraNA refers to the full model that uses both orthologs and sequence

similarity as anchor links. As MUNK is not a bidirectional NA method, the performances

of its forward and backward predictions were shown separately as MUNK-f and MUNK-b.

Performances were evaluated using five independent train/test data splits.
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Fig. S13. Total number of predicted network alignments. GraNA and other baselines were

evaluated for aligning functionally similar proteins across five pairs of species, and we

reported the total number of network alignments predicted by each method. For GraNA’s

predictions, we first selected the probability threshold maximizing the f1 score on the valid

set and used this threshold to make final alignment predictions on the test set. GraNA-o is

a variant of GraNA that only uses orthologs as anchor links whereas GraNA refers to the

full model that uses both orthologs and sequence similarity as anchor links. As MUNK is

not a bidirectional NA method, the performances of its forward and backward predictions

were shown separately as MUNK-f and MUNK-b. Performances were evaluated using five

independent train/test data splits.
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Fig. S14. Performances of protein function prediction. We evaluated TARA, TARA-TS, TARA++, and GraNA in the context of cross-species protein function prediction in an established

protein function prediction framework (Meng et al., 2016), and we used precision, recall, F1 score, and total number of predictions (protein-GO pairs) as metrics. The evaluation framework

starts by performing network alignment prediction on a test set of protein pairs, and then it evaluates the functional predictions made based on the predicted network alignment via statistical

tests. Consistent with other experiments in our manuscript, we only evaluated the methods on pairs of proteins that both have at least one alignment. As the data was unbalanced in the test

set, we subsampled negative pairs of proteins to the number of positive pairs of proteins to construct a balanced test set. We restricted the function prediction only for GO terms from the

slim set to avoid transferring general GO terms such as Biological Process. TARA++ prediction was the overlap of the predictions of TARA and TARA-TS. Performances were evaluated

using five independent train/test data splits.
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