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Table S1. The 𝑆!"# scores of the six single methods on the new_test_dataset. The calculation of Smin 
requires the information content (IC) of GO terms. Since some GO terms predicted by the external methods 
may not occur in our training dataset, we set the IC values for such GO terms to 0, which will give some 
advantage to the methods. Bold numbers denote the best results.  

Method 𝑆!"# 

CC MF BP 
Naïve 14.462 17.112 44.988 
Diamond 14.602 12.388 42.301 
DeepGOCNN 14.010 14.966 42.756 
TALE 13.943 13.167 43.274 
DeepFri 15.197 14.956 43.175 
TransFun 12.865 12.515 40.528 

 
 
 

 
Figure S1. Distribution of the maximum sequence identity between the test proteins of three GO function 
categories in new_test_dataset and the proteins in the training dataset.  Most test proteins have very low 
sequence identity (<15%) with the proteins in the training dataset.  



   
 

   
 

 
Table S2. The results of the six individual methods on the test proteins in new_test_dataset that have less 
than 30% sequence identity with the proteins in the training dataset. After removing proteins with sequence 
identity >=30%, there are 530, 538 and 888 proteins in the cellular component, molecular function and 
biological process categories respectively. Bold numbers denote the best results.  

Method Fmax AUPR 
CC MF BP CC MF BP 

Naive 0.578 0.286 0.290 0.435 0.46 0.181 
Diamond 0.406 0.341 0.271 0.080 0.118 0.071 
DeepGOCNN 0.610 0.427 0.311 0.568 0.291 0.195 
TALE 0.618 0.471 0.291 0.636 0.429 0.178 
DeepFRI 0.509 0.434 0.282 0.355 0.273 0.150 
TransFun 0.634 0.570 0.303 0.624 0.571 0.297 

 
 
An ablation study of the deep learning architecture of TransFun 
 

The architecture of the final TransFun model consists of 4 blocks of Equivariant Graph Neural Networks 
(EGNNs). In this section, we perform an ablation study to assess the contributions of the various EGNN 
blocks in the architecture and discuss the results that influence our design choices. We also use a multi-
layer perceptron (MLP) that uses only sequence features as input to predict protein function. The MLP 
serves as a baseline to study the contribution of using protein structures to construct graph representations 
for the EGNN architecture of TransFun. Below are different architectural variants and designs considered 
in the ablation study.  

EGNN1-4 denotes the final deep learning architecture used in our work. It is composed of 4 blocks 
of EGNNs, labeled as EGNN1, EGNN2, EGNN3 and EGNN4 respectively. Each EGNN block has 4 
equivariant graph neural network layers. EGNN1 has an input dimension of 1022, equal to the feature 
embedding dimension for each node. It takes as input a protein graph with the per-residue embedding and 
generates a new embedding of dimension 𝐶.		 𝐶 is set to the number of GO classes to be predicted. EGNN2 
takes as input the protein graph and embedding features of size  𝐶 from EGNN1 and produces an output of 
size 𝐶/2. EGNN3 takes in the initial per-sequence embedding of dimension 1022 for the protein to generate 
the new per-sequence embedding of dimension 𝐶/2. The last EGNN block (EGNN4) takes as input the 
initial protein graph and the embedding features of dimension C/2 from EGNN2 to generate an output of 
dimension of C/4. The output embeddings (features) from EGNN1, EGNN2 and EGNN4 are aggregated 
by using a global mean pooling to obtain representative features for each protein. This is then concatenated 
with the per-sequence outputs of EGNN3, resulting in a 2	 ∗ 	𝐶	 + 	𝐶/4 output features. The concatenated 
features are then passed through two fully connected (FC) linear layers, separated by batch normalization 
and RELU function to reduce the dimension to 𝐶.   

EGNN-1 denotes an architecture that has the EGNN1 block but does not have EGNN2, EGNN3 and 
EGNN4 blocks. EGNN1-3 denotes an architecture that has the EGNN1, EGNN2, and EGNN3 blocks, but 
does not have EGNN4 block.  EGNN1-2_SUM denotes an architecture consisting of EGNN1 and EGNN2 
blocks only. The input dimension of the two blocks is 1022 and their output dimension is C. The output 
embeddings of the two blocks are aggregated by summation instead of concatenation used in the final 
architecture (EGNN1-4), EGNN-1 and EGNN1-3.  

The last architecture considered in this ablation study is an MLP, which consists of 4 linear layers, 
separated by a RELU activation function and dropout layers. The first linear layer takes in as input the per-



   
 

   
 

sequence embedding with a dimension of 1022 and generates an output embedding of size C, where C is 
the number of classes. The second layer takes in the embedding from the previous layer, with a size of C 
and generates an output of size C/2. This is then passed to the third layer, which takes an input of size C/2 
and outputs an embedding of size C/4.  We then concatenate the outputs of the layers 1, 2 and 3 as input 
for the fourth linear layer. The output of the fourth layer is then passed through a sigmoid layer to predict 
the probabilities of GO terms. Different from EGNN1-4 that use both sequence and structure inputs, the 
MLP uses only sequence information as input.  

We compare the performance of the 5 architectures above on the validation dataset for about 10 
epochs. Figure S2 shows the F1 score of the different architectures in the three function categories 
(biological process, molecular function, and cellular component) on the validation dataset at a probability 
threshold of 0.5. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S2. The F1 score of the five architectures (EGNN1-4, EGNN-1, EGNN1-3, EGNN1-2_SUM, and 
MLP) at the probability threshold of 0.5 on the validation dataset for about 10 epochs in the three GO 
function categories (biological process, molecular function, and cellular component). EGNN1-4 has four 
EGNN blocks. EGNN-1 has one EGNN block. EGNN1-3 has three EGNN blocks. EGNN1-2_SUM has 
two EGNN blocks and uses summation instead of concatenation to combine the outputs of the two blocks. 
MLP is a multi-layer perceptron that uses only sequence information as input without leveraging protein 
structures as the EGNN architectures do.  Generally, the final architecture used in this work – EGNN1-4 
performs better than the other architectures. Most EGNN architectures using protein structure as input 



   
 

   
 

perform better than the MLP that uses only sequence information as input. EGNN1-2_SUM performs worst 
because it uses summation to combine the output of its EGNN blocks, while the other three EGNN 
architectures use concatenation to combine them.  
 


