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1 Result tables for TSignal and SignalP 6.0

Numeric CS and SP type performance metrics reported as tables. The numbers in these tables represent
the mean and standard deviation results over 5 runs and are the same ones used in Figures 3 and 4 from
the main text.

Sec/SPase I
eukarya gn-bacteria gp-bacteria archaea

Tolerance 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
TSignal 0.714± 0.010 0.749± 0.009 0.781± 0.013 0.806± 0.016 0.532± 0.012 0.599± 0.017 0.630± 0.016 0.632± 0.019 0.700± 0.055 0.748± 0.049 0.760± 0.039 0.760± 0.039 0.581± 0.031 0.645± 0.030 0.645± 0.030 0.689± 0.033

SignalP 6.0 0.701 0.727 0.759 0.778 0.582 0.612 0.627 0.657 0.706 0.706 0.706 0.706 0.563 0.625 0.625 0.656

Sec/SPase II
eukarya gn-bacteria gp-bacteria archaea

Tolerance 0 1 2 3 0 1 2 3 0 1 2 3
TSignal 0.893± 0.006 0.898± 0.004 0.898± 0.004 0.902± 0.004 0.925± 0.008 0.925± 0.008 0.925± 0.008 0.925± 0.008 0.732± 0.062 0.732± 0.062 0.732± 0.062 0.732± 0.062

SignalP 6.0 0.881 0.881 0.885 0.893 0.901 0.91 0.91 0.91 0.667 0.667 0.667 0.667

Tat/SPase I
eukarya gn-bacteria gp-bacteria archaea

Tolerance 0 1 2 3 0 1 2 3 0 1 2 3
TSignal 0.640 0.750± 0.016 0.802± 0.0126 0.830± 0.016 0.554± 0.103 0.693± 0.076 0.831± 0.0543 0.831± 0.054 0.411± 0.069 0.543± 0.056 0.563± 0.0543 0.563± 0.0543

SignalP 6.0 0.692 0.75 0.769 0.789 0.625 0.625 0.75 0.75 0.353 0.47 0.47 0.47

Table 1: CS F1 scores for TSignal and SignalP 6.0 computed on the benchmark dataset DB .

Sec/SPase I
eukarya gn-bacteria gp-bacteria archaea

Tolerance 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
TSignal 0.68± 0.015 0.713± 0.015 0.744± 0.019 0.768± 0.022 0.466± 0.012 0.525± 0.018 0.552± 0.016 0.554± 0.017 0.624± 0.039 0.666± 0.037 0.678± 0.038 0.678± 0.038 0.678± 0.036 0.752± 0.04 0.752± 0.04 0.803± 0.034

SignalP 6.0 0.661 0.685 0.715 0.733 0.534 0.562 0.575 0.603 0.632 0.632 0.632 0.632 0.643 0.714 0.714 0.75

Sec/SPase II
eukarya gn-bacteria gp-bacteria archaea

Tolerance 0 1 2 3 0 1 2 3 0 1 2 3
TSignal 0.952± 0.005 0.958± 0.003 0.958± 0.003 0.962± 0.003 0.976± 0.004 0.976± 0.004 0.976± 0.004 0.976± 0.004 0.788± 0.104 0.788± 0.104 0.788± 0.104 0.788± 0.104

SignalP 6.0 0.913 0.913 0.917 0.925 0.929 0.938 0.938 0.938 0.583 0.583 0.583 0.583

Tat/SPase I
eukarya gn-bacteria gp-bacteria archaea

Tolerance 0 1 2 3 0 1 2 3 0 1 2 3
TSignal 0.645± 0.039 0.757± 0.017 0.809± 0.014 0.837± 0.014 0.641± 0.125 0.801± 0.101 0.96± 0.08 0.96± 0.08 0.452± 0.067 0.598± 0.057 0.618± 0.031 0.618± 0.031

SignalP 6.0 0.679 0.736 0.755 0.774 0.714 0.714 0.857 0.857 0.375 0.5 0.5 0.5

Table 2: CS precision scores for TSignal and SignalP 6.0 computed on the benchmark dataset DB .

Sec/SPase I
eukarya gn-bacteria gp-bacteria archaea

Tolerance 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
TSignal 0.752± 0.005 0.789± 0.003 0.823± 0.007 0.849± 0.01 0.62± 0.016 0.698± 0.017 0.734± 0.019 0.738± 0.023 0.8± 0.084 0.853± 0.078 0.867± 0.06 0.867± 0.06 0.511± 0.038 0.567± 0.038 0.567± 0.038 0.606± 0.044

SignalP 6.0 0.747 0.774 0.808 0.829 0.639 0.672 0.689 0.721 0.8 0.8 0.8 0.8 0.5 0.556 0.556 0.583

Sec/SPase II
eukarya gn-bacteria gp-bacteria archaea

Tolerance 0 1 2 3 0 1 2 3 0 1 2 3
TSignal 0.841± 0.008 0.846± 0.005 0.846± 0.005 0.85± 0.005 0.88± 0.015 0.88± 0.015 0.88± 0.015 0.88± 0.015 0.689± 0.044 0.689± 0.044 0.689± 0.044 0.689± 0.044

SignalP 6.0 0.852 0.852 0.856 0.864 0.875 0.883 0.883 0.883 0.778 0.778 0.778 0.778

Tat/SPase I
eukarya gn-bacteria gp-bacteria archaea

Tolerance 0 1 2 3 0 1 2 3 0 1 2 3
TSignal 0.635± 0.047 0.745± 0.018 0.796± 0.016 0.824± 0.021 0.489± 0.089 0.611± 0.061 0.733± 0.042 0.733± 0.042 0.38± 0.075 0.5± 0.063 0.52± 0.075 0.52± 0.075

SignalP 6.0 0.706 0.765 0.784 0.804 0.556 0.556 0.667 0.667 0.333 0.444 0.444 0.444

Table 3: CS recall scores for TSignal and SignalP 6.0 computed on the benchmark dataset DB .
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Sec/SPase I
eukarya gn-bacteria gp-bacteria archaea
MCC1 MCC1 MCC2 MCC1 MCC2 MCC1 MCC2

TSignal 0.874± 0.009 0.851± 0.016 0.662± 0.013 0.936± 0.032 0.787± 0.022 0.741± 0.044 0.710± 0.047
SignalP 6.0 0.868 0.811 0.649 0.878 0.734 0.737 0.728

Sec/SPase II
gn-bacteria gp-bacteria archaea

MCC1 MCC2 MCC1 MCC2 MCC1 MCC2

TSignal 0.816± 0.005 0.840± 0.006 0.883± 0.022 0.898± 0.009 0.802± 0.044 0.718± 0.069
SignalP 6.0 0.836 0.841 0.894 0.893 0.871 0.719

Tat/SPase I
gn-bacteria gp-bacteria archaea

MCC1 MCC2 MCC1 MCC2 MCC1 MCC2

TSignal 0.957± 0.010 0.939± 0.009 0.846± 0.018 0.854± 0.016 0.869± 0.072 0.839± 0.090
SignalP 6.0 0.946 0.934 0.788 0.806 0.802 0.807

Table 4: SP type MCC1 and MCC2 scores scores for TSignal and SignalP 6.0 computed on the benchmark
dataset DB .
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2 Novel, experimentally verified eukaryote SPs

We tested five other popular SP prediction methods (SignalP 6.0, PRED-TAT, LipoP, Phobius, and
DeepSig) on the four novel eukaryote SPs using their respective publicly available web servers. The tests
were conducted with the corresponding available versions of these models from the 6th of May, 2022.
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Figure 1: Functional signal peptide testing in human HEK293T cells. (A) schematic of the secreted
Gaussia luciferase (GLuc) assay. GLuc constructs with appended N-terminal signal peptides are secreted
into the cell culture medium, whereas constructs with no or non-signal peptide sequences are not secreted.
(B) Luminescence of GLuc constructs containing different N-terminal peptides measured from cell media
26 hours after transfection. Full method description in section 5.2.1. (C) Primary sequences of tested,
functional signal peptide-containing N-terminal peptide sequences

.

2.1 Assessing signal-peptide function with secreted Gaussia luciferase

Different N-termini were fused to a Gaussia princeps luciferase (Gluc) that had been cloned into pcDNA5/FRT/TO.
For this the Gluc-encoding plasmid was first digested with AgeI and NheI restriction enzymes (NEB).
DNA constructs encoding a known non-SP sequence (MGTRSDST amino-acid sequence) or a known SP
sequence (the human preprolactin SP with four additional mature-chain amino acids) were then cloned
in to the linearized plasmid using a T4-ligase (NEB) (SPless and pPL-SP Gluc constructs, respectively),
while the putative novel SP encoding DNAs were cloned in using the NEBuilder Hifi DNA Assembly
(NEB). The sequences of all the cloned constructs were verified with Sanger sequencing.

For assessing if a cloned N-terminus contains a functional SP which can drive the secretion of Gluc,
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MPAHIPYQELNSQEKKRNLLLAFEAAESVGIKPSLVRILFCILVITRATADAQSRMQIFVKTLTGKTITLInput Sequence:
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOMMMMMMMMMMMMMMMMMIIIIIIIIIIIIIIIIPredicted Labels:

MYHCHSGSKPTEKGANEYAYAKWKLCSASAICFIFMIAEVVGGHITRATADAQSRMQIFVKTLTGKTITLInput Sequence:
IIIIIIIIIIIIIIIIIIIIIIIIMMMMMMMMMMMMMMMMMMMMMOOOOOOOOOOOOOOOOOOOOOOOOOPredicted Labels:

MDSRLQEIRERQKLRRQLLAQQICGIWLKPWKLGVRFVPLFLIPLALTRATADAQSRMQIFVKTLTGKTIInput Sequence:
SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSOOOOOOOOOOOOOOOOOPredicted Labels:

MVFSNNDEGLINKKLPKELLLRMLFSLLLNFTWSNPECTKYVHSIGLTRATADAQSRMQIFVKTLTGKTIInput Sequence:
SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOPredicted Labels:

Figure 2: The resulted predictions for the four experimentally validated mammalian signal peptides
obtained using TSignal.

we transfected HEK293T cells with the cloned plasmids. These transient transfections were done by first
plating the cells on a 96-well plate by pipeting in to each well 100 µl cell suspension which contained 0.1·106
cells / ml in DMEM + 10% FBS (DMEM-FBS). The plated cells were then grown at 37◦ C under 5%
CO2 for 24 hours after which the media was exchanged to fresh DMEM-FBS. Cells were then transfected
with 150 ng DNA per well using 3.6 µl Transporter 5 (Polysciences) transfection reagent per well. Four
separate wells were prepared for each transfected plasmid. 4h after transfection, the transfection reagent-
containing media was removed, the cells were washed with 1xPBS and fresh DMEM-FBS was added on
the cells. 22h after this media exchange, the cell media was collected and the luminescence of the secreted
Gluc was measured with the Gaussia Glow-Juice Luciferase assay kit (p.j.k) on an Enspire multimode
plate reader (Perkin Elmer).
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3 Additional positional encoding effect

3.1 Solving the one-to-one map problem
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Figure 3: Dot product values of sine-based positional encodings.

Our architecture concatenates the same sine-based positional encoding to both the encoder’s output
(denoted E30 in the main text) and to the decoder’s input (D0). The cross-attention mechanism of the
decoder should therefore easily identify which residue corresponds to the label it is predicting at position
i, as the dot-product value will be fixed for any relative label/input position in the sequence. Furthermore,
the highest dot product is achieved when label yi attends to its corresponding input embedding ei, and
symmetrically degrades for ei+j , and ei−j , for j ∈ {1, 2, . . .}.

Note that the dot product’s actual values in the decoder’s cross attention will be different than those
depicted in Figure 3, as the concatenated [E30,i⊕WS [i]] and [D0⊕WS [i]] (WS is the sine-based positional
encoding in this case) will first pass through linear mappings, and then the dot-product between these
will be computed. Nevertheless, we hypothesize that the CS prediction performance increase compared
to the state-of-the-art tagging approach is a good indication that this approach provides a well-suited
alternative.
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Figure 4: Analysis of performance increase when adding sinusoidal positional encoding to the residue
vector representations (from ProtBERT) before using them as kay and value vectors in the decoder. The
cleavage site F1 scores are computed for all tolerances and all organism groups for Sec/SPase I. We
compare adding a sine-based extra positional encoding, an extra linear positional encoding and no extra
positional encoding at all. These experiments were conducted with additive positional encodings.
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4 SWA effect

Stochastic weight averaging has been shown to improve generalization through finding wider local optima.
The method uses the fact that under certain assumptions, weights retrieved by stochastic gradient methods
are samples from the posterior probability p(w|D). Therefore, averaging the parameters wi at multiple
checkpoints i during training should give a wider, less prone to overfitting solution. Compared to dropout,
weight decay or other forms of regularization, SWA only requires selecting good learning rates, instead of
e.g. extensive grid or random search for new hyperparameters.

To select an appropriate learning rate for the SWA procedure, we loaded and further trained an
already converged model and determined the minimum learning rate that made the model diverge. The
ProtBERT parameters were a lot more sensitive to an increased learning rate. The model diverges with
an encoder learning rate above 2 · 10−5, while the decoder learning rate can be increased up to 3 · 10−4

without leaving the local optima. We choose learning rates of 10−5 and 10−4 for ProtBERT and decoder
parts of TSignal respectively, ensuring as much exploration as possible without risking divergence.

We first train using early stopping based on the validation CS-F1 score, which stops the model at some
epoch ep. We further tune the model from the checkpoint epoch ep using SWA for ep/2 more epochs.
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Figure 5: Validation F1 scores for Sec/SPase I over the epochs. SWA has a clear stabilization effect and
helps the model generalize better through finding a better local mode.

7



5 Probability calibration

The prediction values being higher (more confident) in classification tasks, does not necessarily reflect a
higher chance of the actual prediction being correct. Probability miscalibration is a common problem
in very deep architectures. Although techniques like batch and layer normalization (Ioffe and Szegedy,
2015; Ba et al., 2016) or skip connections proved useful in helping these large models converge faster and
generalize better, it has been shown that performance increments achieved by more and more complex
models come at the cost of not yielding useful confidence scores (Guo et al., 2017).

In Equation 1, the interval [0, 1] (the possible values for the classification predictions) is divided into
M bins Bm. Then, acc(Bm) is the computed (empirical) accuracy of the model when its prediction
probabilities are found in that interval p ∈ Bm. Similarly, conf(Bm) is the associated probability of bin m
(the mid point of the interval Bm). In a perfectly calibrated model, its confidence scores would be equal
to the computed accuracy, and the resulting expected calibration error ECE would be 0. Visually, this
means that the red bars in Figure 6 perfectly match the blue ones. We show the probability calibration
of our model for the CS prediction, where we consider the CS probability to be the predicted probability
p(ŷ ∈ {intracellular, extracellular, transmembrane}), after a sequence of SP predictions. The ECE is
defined as:

ECE =

M∑
m=1

|Bm|
n

|acc (Bm)− conf (Bm)| . (1)

We estimated to what degree the probabilities of our model are miscalibrated. We evaluated ECE
for the cleavage site prediction probability calibration for Sec/SPase I predictions for various tolerance
levels. As mentioned in the main text, the annotation may not match the true CS. We also believe that
the information about the probability of a CS actually being within 0,1,2 or 3 residues given a certain
prediction confidence should be useful. We, therefore, opted to report also the accuracy calibration plots
for various tolerance levels, although during the training we always use the tolerance level of zero. Figure 6
shows that the prediction results are approximately calibrated for different tolerance levels: TSignal is
slightly overconfident for tolerance values 0 and 1, and nearly perfectly calibrated for tolerance values 2
and 3.
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Figure 6: Cleavage site prediction probability calibration for Sec/SPase I predictions for various tolerance
levels. Calibration error is assessed using the expected calibration error (ECE).
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6 Residue saliency maps

We approximate the importance of a specific residue for a given prediction by taking the gradients of
that prediction wrt. the input representations fed to the ProtBERT model, described in Equation 1 of the
main text (and denoted as E0). For both CS and SP type predictions we extract ŷ[ic+1] and ŷ1, where
ŷ[ic+1] is the vector of predicted label probabilities of the first non-SP prediction ic+1 (which we consider
as a CS prediction) and ŷ1 is the first label prediction in a sequence, which determines the SP type.

We assess the average importance over multiple sequences, and therefore align the sequences wrt. the
true CS when determining the cysteine importance in Sec/SPase II CS predictions ŷ[ic+1]. Similarly, we
align Tat directed sequences according to the “RRXFLK” motif when checking the residue importance
of the SP type prediction given by the gradients of ŷ1. A visual illustration for the alignment for Tat
sequences is shown in Figure 7. The equation describing the average importance scores for residues ri at
position i (relative to CS or the RR motif) over multiple sequences is given below:

ISri =
1

Ni

1

d

Ni∑
j=1

d∑
k=1

abs

[
∇Ej,k

0,i

(
max
c∈Y

p(ŷt,j = c)

)]
, (2)

where Ni is the total number of residues at position i across the tested sequences, d is the model’s
dimension, Ej,k

0,i is the input residue representation E0 of residues at the (relative) position i, in the

jth sequence, on the kth dimension of our d-dimensional input vector representation of residues, and
p(ŷt,j = c) is the model’s predicted probability that the first residue (SP type prediction, t = 1) or the
CS residue (t = ic+1) of sequence j belongs to class c.

In Figure 7 we give a simplified example of three Tat sequences aligned to the RR motif, which
shows Ni being computed separately for each relative position i. Note that this is crucially different than
simply dividing the summed importance scores (gradients) of the sequence residues to the total number of
sequences. A similar approach was employed for the CS alignment in the Sec/SPase II analysis we made.

R R R F L K
R R D F L K
R R H F L K

/ / / M N
/ M L M Y
M H N I H

S S ...
S V ...
A A ...

Twin-arginine motif

N−7

= 2
N0

= 3
N3

= 3

Figure 7: Illustration of the Twin-arginine alignment method. N0 is arbitrarily chosen as the “center”
of the RR motif at the phenylalanine residue, and all other indices are relative to N0. The length of
the preceding and following residues relative to the center of the motif varies, so the average importance
scores have to be taken considering the number of residues Ni at each relative position i.
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7 Different model variants

We use the ProtBERT model of Elnaggar et al. (2021) and experiment with four transformer model
variations. The best performing approach is using the ProtBERT LM as the encoder of a modified
encoder-decoder architecture from Vaswani et al. (2017). The ProtBERT residue representations are used
in the second multi-head attention of each of the decoder’s layers as keys and values, as described in the
main text. Masked token prediction (and next sentence prediction in natural language) enabled BERT
LMs to encode rich representations of tokens using unsupervised learning. Note however that BERT
models use an identical architecture as the encoder of Vaswani et al. (2017). Therefore, the method we
present uses a form of transfer learning, where the transformer encoder is initialized with the pre-trained
ProtBERT weights. This is a crucial aspect that enables these highly complex transformer architectures
to be trained on the relatively small SP dataset we use.

In the first experiment, we consider a randomly initialized 3-layered encoder-decoder transformer
architecture. The inputs of this architecture are retrieved by ProtBERT, but we do not further fine-tune
the LM’s weights. This approach would be equivalent to replacing the input embeddings denoted as E0 in
the main text with ProtBERT’s residue representations (which are fixed in this approach, as ProtBERT
does not change during training).

In the second experiment we tune the ProtBERT weights on the SP-CS prediction task separately, and
then extract the tuned representations of the resulting protein LM to train a 3-layered encoder-decoder,
similar to the first experiment. To fine-tune ProtBERT (separately), we use the fact that the input and
output sequences have the same length - we extract the ProtBERT LM’s representations from the last
layer, having N vectors summarized by E30 ∈ RN×d. Each vector is passed to a linear layer that predicts
a corresponding label ŷk, and the gradients w.r.t. the cross entropy loss between ŷk and the true yk flow
through the ProtBERT parameters.

We then experiment with tuning ProtBERT along with our randomly initialized encoder-decoder
architecture, effectively extending the number of our encoder’s layers to 33 (ProtBERT having 30 layers
to which three additional layers are added from the randomly initialized encoder-decoder architecture).

Removing the additional encoder layers yields the final model, which achieved the best results. We
tune ProtBERT and the transformer decoder layers together, using the same Adam optimizer, but with
separate learning rates.

Additionally, our experiments showed that when we do not tune the ProtBERT model (either prior
tuning or training ProtBERT together with TSignal), the results are better if we separate the SP type
predictions from the sequence predictions (experiments a and b). We do this by training TSignal with an
agnostic ”S” label, for any signal peptide, and then have a second convolutional model predict the signal
peptide type. The architecture used for the signal peptide type prediction is similar to the convolutional
architecture of Gligorijević et al. (2021). We report the comparative CS-F1 performance results in Figure 9.
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Figure 8: The four types of models that we tested. a) ProtBERT model is not further tuned, and
its parameters are not modified during the 3-layered encoder-decoder model training. b) ProtBERT
parameters are separately tuned on the SP label prediction task and an encoder-decoder transformer
architecture is trained using the tuned ProtBERT representations as inputs. c) ProtBERT is part of the
model, trained together with the rest of the parameters. d) ProtBERT is treated as the encoder of the
transformer encoder-decoder architecture, with no other additional encoder parameters being added.
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Figure 9: Comparison between the experimented methods. The best performance is achieved when
ProtBERT is used as the encoder of our transformer model. We also test adding a three additional layers
to the ProtBERT LM, effectively creating a 33-layered transformer encoder that is used by our 3-layered
decoder. Tuning ProtBERT separately, yielded worse results, but it still performs better than using only
the raw ProtBERT embeddings, without modifying its weights at all.
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8 Performance on all data from D
We measured the model’s F1 score on the whole homology partitioned data to retrieve a reliable perfor-
mance estimation for our model. We ran the model training five times and plotted the mean and 95%
confidence interval in the shaded area in Figures 10, 11, and 12. The final test performance is very stable,
having a low test performance variance, especially for organism groups and SP types where there is a
reasonably high amount of training sequences. These results and the ones related to the performance
score as a function of training data amount, show that our model should have better and more reliable
performance as more data becomes available in the future. We could not compare this against SignalP
6.0, as they do not report numeric results for Tat/SPase II and Sec/SPase IV SP types.
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Figure 10: Performance of TSignal measured by the cleavage site F1 score over varying tolerance levels
for Sec/SPase II and Sec/SPase IV. The F1 scores are computed over the whole dataset through nested
cross-validation. The model is trained and tested five times, and the mean and 95% confidence estimates
of the performance are plotted.
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Figure 11: Performance of TSignal measured by the cleavage site F1 score over varying tolerance levels for
Sec/SPase II and Sec/SPase IV. Noticeably, Sec/SPase II prediction performance is very similar across
different tolerance levels, as the model easily learns to predict the CS on the Cys residue. Additionally,
the Sec/SPase IV predictive performance is reasonably good and stable given the very low amount of
data.
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Figure 12: Performance of TSignal measured by the cleavage site F1 score over varying tolerance levels
for Tat/SPase I and Tat/SPase II. The model is very good at distinguishing Tat from Sec directing SPs.
Possibly due to the much longer SPs however, the cleavage sites in Tat/SPase I SPs seem to be less precise
for tolerance 0 predictions, but become very good and stable for higher tolerance levels. In Tat/SPase
II proteins, there is a noticeable increase in performance between tolerance 0 and 1 for gn-bacteria and
archaea, due to the contextualized representation of residues. With only 19 sequences in the whole D
dataset, gn-bacteria Tat/SPase II already have stable and good CS predictions, and we expect that
archaea and gp-bacteria will also drastically increase with more data, as now only eight and six sequences
respectively are present in all the available data D.
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9 Adding organism group information
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Figure 13: Performance of TSignal with and without organism group information. The averages along
with 95% confidence intervals for five runs are shown across organism groups and SP types, for the full
(homology-partitioned) dataset D2. The resulting overall F1-CS scores are 0.872/0.874 when using and
when not using organism group information, respectively. MCC1 and 2 performance when with OG
information 0.932/0.901 and without 0.935/0.905.

Similar to the findings of (Teufel et al., 2022), Figure 13 suggests there is little to no influence of
organism group being included in the model. Some differences can be noted for different SP types of
archaea for example, but these contain very few sequences, and therefore the differences might be an
arterfact of the training procedure’s stochasticity.

2Note that for this ablation study, we report the performance across all the approximately 19 thousand sequences in
D, which should give more reliable estimates than results reported only on DB ⊂ D (which we use throughout the main
manuscript to compare against SignalP 6.0).
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