1 <u>SUPPLEMENTARY DATA</u>

2 Synthesis of C781: N-((3S,6S)-1-furan-2-carbonyl)-6-isobutyl-4,7-dioxo-8-(piperidin-4-

3 <u>ylmethyl)octahydro-2H-pyrazino[1,2-a]pyrimidin-3-yl)-3-methylbutaneamide.</u>

4 <u>Chemical Materials:</u>

- 5 *N*-α-Fmoc-protected amino acids, TCFH, DIC, and HOBt were purchased from SynPep (Dublin,
- 6 CA) or from Novabiochem (San Diego, CA). Bromoacetal, 2-Chloro-chlorotrityl, and Wang resins
- 7 were acquired from Rapp Polymere (Tubingen, Germany). Aloc group was used as a side chain
- 8 protecting groups for the $N\alpha$ -Fmoc-Dap(N^{β}-Aloc). Reagent grade solvents, reagents, and
- 9 acetonitrile for HPLC were acquired from VWR (West Chester, PA) or Sigma-Aldrich (St. Louis,
- 10 MO) and were used without further purification unless otherwise noted. Chemicals and reagents
- were obtained from Sigma-Aldrich or TCI (Portland, OR). The solid-phase synthesis was
 performed in fritted syringes using a Domino manual synthesizer obtained from Torviq (Niles,
- 12 perio

14 <u>General Synthesis:</u>

- 15 All solution phase reactions were conducted under Argon atmosphere using oven-dried glassware.
- 16 ¹H NMR spectra were recorded on a Bruker-DRX-300 MHz instrument with chemical shifts
- 17 reported relative to tetramethylsilane (TMS; 0.0 ppm) and residual dimethyl sulfoxide (DMSO;
- 18 2.50 ppm). Proton-decoupled 13 C NMR spectra were referenced to CDCl₃ (77.0 ppm) as well as
- 19 DMSO (39.51 ppm). Low resolution mass spectra were obtained on a Bruker AmaZon SL Ion
- 20 Trap Mass Spectrometer with ESI source (Madison, WI). High resolution mass spectra (HRMS)
- were recorded on a Bruker SolariX Fourier-transform Ion Cyclotron Resonance Mass
 Spectrometer, 9.4T magnet, with ESI source (Madison, WI).

23 *Quality control and purification*:

- The purity of products was checked by analytical reverse phase HPLC using a Waters Alliance 2695 Separation Model (Milford, MA) with a Waters 2487 dual wavelength detector (220 and 280 nm) on a reverse phase column (Waters Symmetry C18, 4.6×75 mm, 3.5μ m). Crude compounds were eluted with a linear gradient of aqueous CH₃CN/0.1% CF₃CO₂H at a flow rate of 1.0 mL/min. Purification of compounds was achieved on a Waters 600 HPLC using a reverse phase column (Vydac C18, 15–20 μ m, 22 \times 250 mm). Compounds were eluted with a linear gradient of CH₃CN/0.1% CF₃CO₂H at a flow rate of 5.0 mL/min. Separation was monitored at 230 and 280 nm Elash chromatography was performed on a borosilicate glass column (2.6 \times 250 mm Sigma-
- 31 nm. Flash chromatography was performed on a borosilicate glass column $(2.6 \times 250 \text{ mm}, \text{Sigma-Aldrich})$ The compounds were sluted
- Aldrich, St. Louis, MO) filled with 60A silicagel (Sigma-Aldrich,). The compounds were eluted
 with a step gradient flow of hexane/EtOAc/MeOH mixtures.
- 34

- 36 Intermediate I: The bromoacetal resin (0.2g, 0.25 mmol) was swelled for 2 hours by the addition
- 37 of DCM. The swollen resin was carried out through the solid-phase procedure. The resin was
- washed successively with dimethylformamide (DMF; 3×2 min), dichloromethane (DCM' 3×2 38 39 2 min), DMSO (5 \times 2 min). Amine displacement of bromine was accomplished with 0.5M
- 40
- solution of 1-N-Boc-4-(aminomethyl)piperidine (0.214 g, 1mmol, 4 equiv.) in DMSO at 60°C
- overnight. The reaction mixture was removed by filtration and the resin was washed successively 41 42
- with DMSO (5 \times 2 min) and DCM (3 \times 2 min). Before coupling of Fmoc-Leu, the resin was 43 neutralized with 10% diisopropylethylamine (DIEA) in DCM (2×3 min), followed by washing
- 44 successively with DCM ($3 \times 2 \min$) and DMF ($5 \times 2 \min$).
- 45 Intermediate II:

46 The intermediate resin I from above (0.2g, 0.25 mmol) was coupled with Fmoc-Leu. The coupling 47 was performed by adding Fmoc-Leu (0.353g, 1 mmol, 4 equiv) and coupling reagents 48 [tetramethylchloroformamidium hexafluorophosphate (TCFH) 0.28g, 1mmol, 4 equiv and; 49 diisopropylethylamine (DIEA) 0.35 mL, 2 mmol, 8 equiv] in DMF (2 mL) to the resin and stirring the mixture overnight. A second TCFH coupling was performed for 3 hour. The reaction mixture 50 51 was removed by filtration and the resin was washed with DMF (5 \times 2 min) and DCM (3 \times 2 min). The N^{α}-Fmoc protecting group was removed with 1:10 piperidine in DMF (1 \times 2 min and 52 53 1×20 min). The resin was washed successively with DMF (5 \times 2 min), DCM (3 \times 2 min), a 54 solution of 0.05 mM solution of Bromophenol Blue in 0.2 M N-hydroxybenzotriazole HOBt in 55 DMF, then DMF (3 \times 2 min). The N^{α}-Fmoc-Dap(Aloc) was coupled using pre-activated 0.3 M HOBt esters in DMF-DCM mixture (3 equiv of N^{α} -Fmoc-Dap(Aloc), 3 equiv of HOBt, and 3 56 equiv of DIC). The resin slurry was stirred for 2 h or until the bromophenol test became negative 57 58 (yellow). The resin was washed with DMF (3×2 min). A second coupling was performed by the HCTU/2,4,6-lutidine procedure (0.3 M solution of 3 equiv of N^{α} -Fmoc-Dap(Aloc), 3 equiv of 59

60 HCTU, and 6 equiv of 2,4,6-lutidine in DMF. The reaction mixture was removed by filtration and

- 61 the resin was washed with DMF (5 \times 2 min), DCM (3 \times 2 min), and then MeOH (3 x 2 min).
- 62 The reactor was placed in vacuum oven to remove solvents.
- 63 <u>Intermediate III:</u>
- 64 The dry intermediate resin II from above (0.2g, 0.25 mmol) was treated with 60% formic acid (2
- mL) for 4 hrs. The resin was filtrated and washed with water (2 x 2 min). Acid filtrate and washes
- 66 were collected and lyophilized. The crude intermediate III was purified using column
- 67 chromatography to yield pure III (74 mg, 53%, $(M+H)^+$ 559.3, HPLC >95%).
- 68 <u>Intermediate IV:</u>
- 69 The dry intermediate III from above (74 mg, 132 μmol) was added to dry 2-Chloro-chlorotrityl
- 70 resin (250 mg, 430 µmol, 2.5 equiv.). Dry DCM (2.0 mL) and DIEA (171 µL, 1.0 mmol) were
- 71 injected into the resin and the mixture was agitated at room temperature for overnight. The reaction
- was quenched by adding MeOH (0.2 mL, 30 min). The reaction mixture was removed by filtration
- and the resin was washed with DMF (3 \times 2 min), DCM (5 \times 2 min), and then DMF (2 x 2 min).
- 74 Final product C781:
- 75 The intermediate resin IV from above was deprotected by piperidine. The N^{α} -Fmoc protecting group was removed with 1:10 piperidine in DMF (1 \times 2 min and 1 \times 20 min). The resin was 76 washed with DMF (5 \times 2 min) and then DCM (5 \times 2 min). The isovaleric acid was coupled using 77 78 0.3 M acid chloride in DCM (isovalervl chloride, 121 mg, 1.0 mmol, 7.6 equiv; pyridine, 80 mL, 79 1.0 mmol, 7.6 equiv). The resin slurry was stirred for 3 h, the reaction mixture removed by filtration, the resin was washed with DCM (5 \times 2 min) and the isovaleric acid was coupled again 80 81 using 5 equiv. The reaction mixture was removed by filtration and the resin was washed successively with DMF (5 \times 2 min), DCM (3 \times 2 min). The N^{α}-Aloc protecting group was 82 removed with Palladium catalyzed cleavage (Tetrakis(triphenylphosphine)palladium(0) 83 (Pd(PPh3)4), 11.5 mg, 0.01 mmol; 1,3-dimethylbarbituric acid, 78 mg, 0.5 mmol) in 0.5 mL DCM 84 85 then repeated (2 \times 30 min). The resin was washed successively with DCM (3 \times 2 min), DMF (5 \times 2 min), with a solution of 0.5 M Sodium diethyldithiocarbamate trihydrate (113 mg in 1 mL) in 86 87 DMF (2 \times 20 min), then washed with DMF (5 \times 2 min). The resin was neutralized by 0.5 M diisopropylethylamine DIEA in DMF (5 \times 2 min), then washed with DMF (5 \times 2 min) and DCM 88 89 (5 x 2 min). The final coupling was performed by adding 2-furoic acid (112 mg, 1 mmol, 7.6 equiv) 90 and coupling reagents [TCFH (0.28g, 1mmol, 7.6 equiv) and DIEA (0.35 mL, 2 mmol, 15.2 equiv)] 91 in DCM (2 mL) to the resin and stirring the mixture overnight. The coupling was repeated for 3 92 hours using 5 equiv of 2-furoic acid. The reaction mixture was removed by filtration and the resin 93 was washed successively with DMF (5 \times 2 min), DCM (7 \times 2 min), then cleaved by strong acid. 94 A cleavage cocktail (2.0 mL) consisting of CF₃CO₂H (94%), H₂O (3%), and 1,2-ethylenedithiol 95 EDT (3%) was injected into the resin and the mixture was agitated at room temperature for 4 h. The solution was filtered, the resin was washed with CF_3CO_2H (2 \times 3 min), the liquid phases were 96 97 collected and concentrated under a stream of nitrogen, and the product was precipitated using cold diethyl ether/hexane [(Et₂O)/hexane]. The crude product was washed three times with cold 98 Et₂O/hexane, lyophilized, purified by HPLC, and characterized as described above. The desired 99 product was 25 mg of C781 as a white lyophilizate (yield 19%). 100
- 101
- 102

103 Analytical data:

104 (M+H)⁺ 515.30, HPLC >95%).

¹H NMR: 0.86 (d, 6H), 0.90 (d, 6H), 1.30 (m, 4H), 1.60 (m, 1H), 1.74 (t, 2H), 1.97 (m. 1H), 2.0

106 (d, 2H), 2.02 (m. 1H), 2.81(m, 4H), 3.3 (t, 2H), 3.50 (t, 2H), 3.70(m, 2H), 4.5 (t, 1H), 5.0 (t, 1H), 107 6.10 (t, 1H), 6.7(t, 1H), 7.30 (d, 1H), 7.92 (d, 1H), 8.25(d, 1H).

108 13C NMR: 26.8 (CH3), 27.5 (CH3), 28.3 (CH), 29.5 (CH), 30.7 (CH2), 32.0 ((CH), 32.5 (CH),

109 48.2 ((CH2), 49.5 (CH2), 52.3 (CH2), 52.8 (CH2), 54.1 (CH2), 58.5 (CH), 114.1 (CH), 117.3

110 (ArCH), 150.5 (ArCH), 151.5 (ArCH), 164.1 (CO), 170. 07 (CO), 172.3 (CO), 177.6 (CO)

111

112	Non-standard	abbreviations f	for medicinal	chemistry:
-----	--------------	-----------------	---------------	------------

113	Alloc	allyloxycarbonyl
114	Boc	t-butyloxycarbonyl
115	Dap	diaminopropionic acid
116	DCM	dichloromethane
117	DIC	N,N'-diisopropylcarbodiimide
118	DIEA	diisopropylethylamine
119	DMF	N,N'-dimethylformamide
120	EDT	1,2-ethylenedithiol
121	ESI-MS	electrospray ionization - mass spectrometry
122	EtOAc	ethyl acetate
123	Et ₂ O	diethylether
124	Fmoc	(9H-fluoren-9-ylmethoxy)carbonyl
125	HBTU	2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium
126		hexafluoro-phosphate
127	HOBt	N-hydroxybenzotriazole
128	HPLC	high performance liquid chromatography
129	OBt	O-benzotriazolyl
130	MeOH	methanol
131	NMR	Nuclear magnetic resonance
132	Pd(TPP) ₄	Palladium (0) tetrakistriphenylphoshine
133	SPE	solid-phase extraction
134	SPPS	solid-phase peptide synthesis
135	TCFH	tetramethylchloroformamidium hexafluorophosphate
136	THF	tetrahydrofuran
137	TFA	trifluoroacetic acid
138	TMS	tetramethylsilane
139		

Supplementary Figure 1: Cytokine and signalling molecule measurements from
 bronchoalveolar lavage fluid (BALF). The top 24 panels represent cytokines and signalling
 molecule concentrations from BALF that did not show significant changes in response to *A. alternata*. Trends are shown in the bottom four panels that did not have sufficient
 measurements to perform statistical evaluations and thus represent preliminary findings.

Cytokine/Signaling Molecule	Abbr.	LDD	LLOQ	Units
Chemokine (C-C motif) ligand 6	CCL6	0.0096	0.021	pg/mL
C-Reactive Protein	CRP	1.1	6.5	ng/mL
Eotaxin	Eotaxin	1.8	5.0	pg/mL
Granulocyte Chemotactic Protein 2	GCP-2	0.091	0.096	ng/mL
Granulocyte-Macrophage Colony-Stimulating Factor	GM-CSF	0.20	0.46	pg/mL
Interferon beta	IFNβ	4.8	11.0	pg/mL
Interferon gamma	IFNγ	0.057	0.090	pg/mL
Interleukin 10	IL-10	0.63	1.0	pg/mL
Interleukin 12p40	IL-12p40	0.085	0.23	ng/mL
Interleukin 12 p70	IL-12p70	2.2	2.5	pg/mL
Interleukin 17A	IL-17A	1.9	3.4	pg/mL
Interleukin 18	IL-18	17	36	pg/mL
Interleukin 1 alpha	IL-1α	6.3	11	pg/mL
Interleukin 1 beta	IL-1β	0.35	0.53	pg/mL
Interleukin 2	IL-2	0.93	1.6	pg/mL
Interleukin 23	IL-23	6.7	11	pg/mL
Interleukin 27	IL-27	2.1	3.5	pg/mL
Interleukin 28	IL-28	1.2	2.1	pg/mL
Interleukin 4	IL-4	0.14	0.30	pg/mL
Interleukin 5	IL-5	4.2	14	pg/mL
Interleukin 6	IL-6	0.71	2.3	pg/mL
Interleukin 9	IL-9	10	14	pg/mL
Insulin	Insulin	4.3	7.7	mUI/mL
Interferon Gamma Inducible Protein	IP-10	0.58	1.7	pg/mL
Growth-Regulated Protein alpha	KC/GRO	0.66	1.1	pg/mL
Monocyte Chemotactic Protein 1	MCP-1	5.4	6.9	pg/mL
Macrophage Colony-Stimulating Factor	M-CSF	0.0011	0.0021	ng/mL
Macrophage Derived Chemokine	MDC	2.1	10	pg/mL
Macrophage Inflammatory Protein 1 alpha	MIP-1α	72	86	pg/mL
Macrophage Inflammatory Protein 1 beta	ΜΙΡ-1β	0.36	0.51	pg/mL
Macrophage Inflammatory Protein 1 gamma	ΜΙΡ-1γ	0.0020	0.0081	ng/mL
Matrix Metalloproteinase 9	MMP-9	0.12	0.25	ng/mL
Neutrophil Gelatinase-associated Lipocalin	NGAL	0.041	0.11	ng/mL
Plasminogen Activator Inhibitor-1	PAI-1	0.0050	0.0066	ng/mL
Receptor for Advanced Glycation End product	RAGE	11	11	ng/mL
Stem Cell Factor	SCF	7.3	13	pg/mL
Tissue Inhibitor of Metalloproteinases 1	TIMP-1	0.069	0.073	ng/mL
Tumor Necrosis Factor alpha	ΤΝFα	2.2	3.7	pg/mL
Thrombopoietin	TPO	0.0057	0.0071	ng/mL
Thymic Stromal Lymphopoietin	TSLP	0.65	1.3	pg/mL
Vascular Cellular Adhesion Protein 1	VCAM-1	0.037	0.052	ng/mL
Vascular Endothelial Growth Factor	VEGF-A	0.40	0.86	pg/mL

145 Table 1: Sensitivity of cytokines and signalling molecules in the Rodent MAP array

(AmpersandBio, Lake Clear, NY). Abbr.: abbreviations used in text; LDD: least detectable
 dose; LLOQ: lower limit of quantification; Units: units of measurement.

148