Supporting Information

Modulation of Intratumoral *Fusobacterium nucleatum* to Enhance Sonodynamic Therapy for Colorectal Cancer with Reduced Phototoxic Skin Injury

Xiao Qu^{1‡}, Fang Yin^{1‡}, Manman Pei^{1‡}, Qian Chen^{1*}, Yuanyuan Zhang¹, Shengwei Lu¹, Xuelian Zhang¹, Ziyuan Liu¹, Xinyao Li¹, Hangrong Chen³, Yang Zhang^{2,1*}, Huanlong Qin^{1*}

¹ Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China

² Precision Medicine Center, Taizhou Central Hospital, 999 Donghai Road, Taizhou, Zhejiang, 318000, China

³ State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Shanghai 200050, China

*Corresponding authors:

Qian Chen, E-mail: chenqian163329@163.com;

Yang Zhang, E-mail: zhangyang0202@tongji.edu.cn;

Huanlong Qin, E-mail: hlongqin@126.com

[‡] The authors contributed equally to this paper.

Figure S1. The average diameter of Au@BSA-CuPpIX in 7 days.

Figure S2. Fluorescence intensity of single oxygen sensor green (SOSG) under different conditions with or without US radiation.

Figure S3. ESR spectra of BSA-CuPpIX+US, Au@BSA-CuPpIX+US, US, BSA-CuPpIX, and Au@BSA-CuPpIX groups, TEMP as a trapping agent.

Figure S4. Western blot analysis of the expression of TLR4, MyD88, and p65 in various treatments of HCT116 cells. HCT116 cells were co-cultured with F. nucleatum for 48 h before treatments.

Figure S5. Western blot analysis of the expression of the apoptosis-related proteins (Cleaved Caspase 3, Cleaved Caspase 9, Bax, Bcl-2) in various treatments of HCT116 cells protein.

Figure S6. Inverted fluorescence microscope images of HCT116 cells stained by Calcein-AM&PI dyes in different treatments (Green fluorescence: calcein AM representing living cells, red fluorescence: PI representing dead cells).

Figure S7. a)The hemolysis of blood cells in the different concentrations of Au@BSA-CuPpIX treatments. b) The ratio of hemolysis in the subgroups.

Figure S8. Mice's body weight after receiving different concentrations of Au@BSA-CuPpIX (5 mg kg⁻¹, 10 mg kg⁻¹, 20 mg kg⁻¹) treatments.

Figure S9. a) and b) Hematological index and biochemical blood analysis of mice after intravenous injection with different concentrations of Au@BSA-CuPpIX (5 mg kg⁻¹, 10 mg kg⁻¹, 20 mg kg⁻¹) treatments.

Figure S10. H&E staining of right kidney, heart, liver, spleen and lung after receiving different concentrations of Au@BSA-CuPpIX (5 mg kg⁻¹, 10 mg kg⁻¹, 20 mg kg⁻¹) treatments.

Figure S11. The fluorescence signal of cy5.5-labeled Au@BSA-CuPpIX in organs of mice after intravenous injection at 30 min, 1 h and 2 h.

Figure S12. Analysis of Au NPs biodistribution in the Heart, kidney, lung, spleen, liver and tumor at 48h. The data are presented as the mean \pm SD.

Figure S13. Blood-circulation curve in rats injected intravenously with Au@BSA-CuPpIX (Mean \pm SD, n=3)

Figure S14. Representative HE, Ki67 stained sections of HCT116 tumor tissue at the end of the experiments in a subcutaneously implanted tumor model in a nude mouse.

Figure S15. HE and Ki67 staining of the tumor after different treatments in the orthotopic CRC model.