Supplementary Information

Section 1: Modeling

Section: 1.1 Stoichiometry Runs

The number of molecules that could be accommodated in the PG laver was unclear since it was not possible to unambiguously dock the molecules manually in this region. A higher number would result in an overcrowded model or push molecules outside the tomogram space and be spatially unconstrained by the tomogram, while a smaller number would not be enough to explain the whole EM map. To determine this, we ran independent modeling runs that only included the PG and DP molecules and the PG layer EM density. We ran six simulations, each with an equal number of PG and DP ranging from 2 to 7. For each of these runs, the representation and sampling followed the IMP modeling protocol (Saltzberg et al., 2021; Viswanath et al., 2017b). The restraints applied included the EM restraint, the immuno-EM restraint, the excluded volume restraint, connectivity restraint, and the cylinder restraint to ensure that the molecules are not too far away from the tomogram. 3 million models were simulated per run. For each run, after filtering the models sampled before equilibration, the top 10% models were determined and the cross-correlation coefficient of these models to the cryo-electron tomogram was computed (Bonomi et al., 2019) (Fig. S1). The number of PG/DP molecules was taken to be four. It was only slightly lower in average cross-correlation than the value for three PG/DP molecules. Selecting four PG/DP copies allowed selecting four PKPs in the PKP layer including the central PKP without introducing any asymmetries in the selection. It also allowed us to maintain 1:1:1:1 stoichiometry for PG:DP:PKP:DC with equal numbers of Dsc and Dsg (2 each). Finally, it was consistent with previous studies which showed that no more than four PG and DP molecules each could fit in the PG laver (Al-Amoudi et al., 2011).

Section: 1.2 Restraints

Distance threshold for sequence connectivity restraint

To set up the connectivity restraint, we need to scale the inter-bead distance to allow the more disordered N/C termini as well as the DC proteins to span a greater end-to-end distance compared to the globular protein domains. For each protein domain with at least a partial disorder (for example, PKP-N, DP-N, etc), we first find the radius of gyration of this fragment assuming the fragment to be completely disordered, using $R_a = 1.92N^{0.6}$ (Kohn et al., 2004) where N is the number of residues. We model the fragment as a chain of monomers composed of *n* statistically independent segments each of length *a*. We assume *n* to be approximately equal to the number of beads in our representation of the fragment as two adjacent beads are free to be in any relative orientation without any other restraints; a is then the inter-bead distance. We then use a relation between the RMS Distance between the two ends of the chain ($R_F = an^{0.6}$) and the radius of gyration (R_G) to estimate *a* for our fragment: $R_{g}^{2}/R_{F}^{2} = 25/176$ (Teraoka, 2002). Another estimate for *a* is calculated internally in IMP and comes from the assumption that the fragment is globular (Alber et al., 2007). The final scaling depends on the weighted sum of these two estimates, the weights corresponding to the portion of the fragment predicted to be disordered by PSIPRED (Buchan and Jones, 2019). Given an estimate of a, we can calculate the surface-to-surface distance for adjacent beads to create an harmonic upper bound restraint such that the beads are only penalized when they are farther than this distance apart. We use the maximum end-to-end distance (an) and find the bead surface-to-surface distance needed to achieve this end-to-end distance. This is approximated by the following relation where r is the typical radius of a bead in our model: d = (an - 2r) / n - 2r. The calculated scale matches the

scale calculated using a more accurate measure for $R_{g}^{2}/R_{F}^{2} \approx 0.95/6$ given by renormalization theory (Teraoka, 2002) up to rounding. However, the scale is only a heuristic parameter and the results obtained are relatively robust to its exact value.

Section 2: Analysis

Section: 2.1 Filtering based on Autocorrelation

In order to filter a computationally feasible subset of models from the large set of sampled models, we first remove the initial few models based on statistical testing (Chodera, 2016; Saltzberg et al., 2021), to consider only the models after equilibration assumed to be in the stationary distribution. Next, we only take every 20th model in the MCMC sampling run (PMI analysis parameter nskip=2, writing every 10th frame to disk). To identify an appropriate number of models to skip, we ran eight independent single-replica runs with all the restraints. We analyzed the spatial autocorrelation of the XYZ coordinates of each bead along the sampling trajectory. We chose as our cutoff the smallest number of sampling steps after which the autocorrelation of all the beads had fallen to at most 85-90%. This allows us to remove the highly correlated models to obtain an independent set of models to analyze downstream.

Section: 2.2 Cross-Correlation of Localization Densities and cryo-electron tomograms

We first computed the predicted localization density by combining the densities from all modeled proteins for the major cluster separately for the PKP layer (PKP-S) and PG-Layer (PG-N,S,C, DP-N,S). We then calculated the cross-correlation between the predicted density and the reference cryo-electron tomogram by calculating the Pearson correlation between the voxel-wise values in the two maps. This is calculated at all grid points at a voxel spacing of 5Å spread over the volume enclosing both the predicted localization density and the cryo-TM map. The values of the maps at these grid points were found by interpolation (RegularGridInterpolator in scipy (Virtanen et al., 2020)). This is similar to calculating Correlation around mean in UCSF Chimera (fitmap) except that the Chimera calculation only involves the non-zero grid points of the reference map, causing the correlation value to change depending on the order of the two maps.

Supplementary Figures

Figure S1 Estimating the number of PG and DP copies and selecting the layout for PKP copies The graph shows the results for independent stoichiometry runs (see Methods, Stage 2 and Supplementary Section 1.1) with the number of PG and DP molecules ranging from 2 to 7. The boxplot marks the mean (red dot) and the standard deviation (black error bars) of the cross-correlation coefficient (Bonomi et al., 2019) between the top 10% best-scoring models (based on their cross-correlation coefficient) and the cryo-tomogram in each of the runs. (Inset) The seven densities in the PKP layer of the tomogram (top view) of which four were full-length PKPs in our model (filled circles) and three were fixed, non-interacting PKP structured regions (empty circles).

Figure S2 Sampling Exhaustiveness protocol for Desmosomal ODP (Viswanath et al., 2017b) **A)** Test for the convergence of the model score for the 24016 good-scoring models. The scores do not continue to improve as more models are added independently. The error

bar represents the standard deviations of the best scores, estimated by repeating sampling of models 10 times. The red dotted line indicates a lower bound reference on the total score. B) Testing the similarity of model score distributions between samples 1 (red) and 2 (blue). The difference in the distribution of scores is significant (Kolmogorov-Smirnov two-sample test p-value less than 0.05) but the magnitude of the difference is small (the Kolmogorov-Smirnov two-sample test statistic D is 0.04); thus, the two score distributions are effectively equal. C) Three criteria for determining the sampling precision (Y-axis), evaluated as a function of the RMSD clustering threshold (X-axis). First, the p-value is computed using the χ^2 -test for homogeneity of proportions (red dots). Second, an effect size for the χ^2 -test is quantified by the Cramer's V value (blue squares). Third, the population of models in sufficiently large clusters (containing at least 10 models from each sample) is shown as green triangles. The vertical dotted grey line indicates the RMSD clustering threshold at which three conditions are satisfied (p-value > 0.05 [dotted red line], Cramer's V < 0.10 [dotted blue line], and the population of clustered models > 0.80 [dotted green line]), thus defining the sampling precision of 82 Å. D) Populations of sample 1 and 2 models in the clusters obtained by threshold-based clustering using the RMSD threshold of 82 Å. Cluster precision is shown for each cluster E-F) Comparison of localization probability densities of models from sample A and sample B for the major cluster. The cross-correlation of the density maps (see Supplementary section 2.2) of the two samples is greater than 0.98.

Figure S3 Fit to data used in modeling A) Fit to the data from biochemical experiments formulated as binding restraints (Methods). Each violin corresponds to the absolute closest distance between the two interacting domains across all protein copies for a model in the

major cluster (Methods). Each distribution corresponds to a restraint in Table S2A. Red horizontal lines correspond to 5th, 50th and 95th percentile (in **A** and **B** both) after outlier removal. **B**) Fit to immuno-EM data (North et al., 1999). Each violin corresponds to the absolute difference between the experimental mean and the model-predicted distance from the membrane (Methods). The inset shows the same information without the absolute value (i.e. signed difference). **C-D**) Fit to the cryo-tomogram for the PKP Layer (**C**) and the PG Layer (**D**). Densities from the model (colored) are shown along with the segmented densities from the tomogram, EMD-1703 (Al-Amoudi et al., 2011)(Methods). The cross-correlation (CC) (Methods, Supplementary Section 2.2) is mentioned for each of the fits. PKP1-S density (including the non-interacting PKP1 molecules) and the PG + DP density are visualized at a ~10% threshold and the tomogram is visualized at the recommended threshold. See also Fig. 3, Table S2.

Figure S4 Fit to data not used in modeling Fit to the data from biochemical experiments not used for modeling (Methods). Each violin corresponds to the closest distance between the two interacting domains across all copies for a model in the major cluster (Methods). Each distribution corresponds to a row in Table S3. Red horizontal lines correspond to 5th, 50th and 95th percentile after outlier removal. See also Table S3.

Figure S5 Additional contact maps Protein-protein contact maps for DP-Dsg1 (**A**), DP-PKP1 (**B**), PG-Dsc1 (**C**), and PG-Dsg1 (**D**) pairs. Maps are colored by the proportion of the models in the major cluster where the corresponding two bead surfaces are within contact distance (10 Å). Rectangles with solid green (broken green) lines outline novel contacts present in >25% (>20%) of the models. See also Fig. 4 and Table S4.

Figure S6 Integrative structures of other ODPs The localization densities for the stratified epithelium ODP with PKP3 (**A**) and basal epithelium ODP with PKP3, Dsg3, Dsc3 (**B**). Colors are in accordance with Fig 1. For more details of modeled proteins in these ODPs, see Table S1. Density thresholds are the same as in Fig 3.

Α		10 20	30	40	50	
			T L A L P S D Q K I	M K T G T S G R Q R V Q E Q V M M T	V K 50	
5	R Q K S K S S Q S	S T L S H S N R G S M Y	DGLADNYNY	G T T S R S S Y Y S K F Q A G N G S	W G 100	
10	YPI <mark>YN</mark> GTLK	R E P D N R R F S S Y S	Q M E N W S R H Y F	P R G S C N T T G A G S D I C F M Q	K I 150	
15	K A S R S E P D L	Y C D P R G T L R K G T		Q N R Y S F Y S T C S G Q K A I K K	C P 200	
20		Q D P V Y I P P I S C N	K D L S F G H S R A	A S S K I C S E D I E C S G L T I P	K A 250	
30		ALRNLVFRSTTN	KLET R R Q N G I	I REAVSLLRRTGNAEIQK	Q L 350	
35	1 T G L L W N L S S	TDELKEELIADA	LPVLADRVII	I P F S G W C D G N S N M S R E V V	D P 400	
40	E V F F N A T G C	LRNLSSADAGRQ	T M R N Y S G L I I	D S L M A Y V Q N C V A A S R C D D	K S 450	
45	V E N C M C V L H	NLSYRLDAEVPT	RYRQLEYNAF	R N A Y T E K S S T G C F S N K S D	K M 500	
50		PEEETNPKGSGW	LYHSDAIRTY	YLNLMGKSKKDATLEACA	G A 550	
55 60		LMSSGMSQLIGL	KEKGLPQIAF	R L L Q S G N S D V V R S G A S L L E N E E D I I E E A C Y T V D N I M	S N 600	
65	¹ Q P Q L A K Q Y F	S S S M L N N I I N L C	RSSASPKAAE	EAARLLLSDMWSSKELQG	V L 700	
70		LGTLAGANSLRN	FTSRF		726	
D						
D	MEVMNLMEQ	PIKVTEWQQTYT	Y D S G I H S G A N	N T C V P S V S S K G I M E E D E A	G 50	
5' 10'		T Y T Q G V P P S Q G D	LEYQMSTTAF	RAKRVREAM CPGVSGEDS	SL 100	
15 ⁻		TKAAMIVNQLSK	KEASRRALMO	G S P Q L V A A V V R T M Q N T S D	L D 200	
20	TARCTTSIL	HNLSHHREGLLA	IFKSGGIPAL	L V R M L S S P V E S V L F Y A I T	T L 250	
25	HNLLLYQEG	AKMAVRLADGLQ	K M V P L L N K N M	N P K F L A I T T D C L Q L L A Y G I	N Q 300	
301	ESKLIIIAN	G G P Q A L V Q I M R N	Y S Y E K L L W T T	T S R V L K V L S V C P S N K P A I '	V E 350	
35	AGGMQALGK	HLTSNSPRLVQN	CLWTLRNLSC	D V A T K Q E G L E S V L K I L V N I	Q L 400	
40	S V D D V N V L T	C A T G T L S N L T C N	N S K N K T L V T G	Q N S G V E A L I H A I L R A G D K I	D 450	
50 ⁻			A VI PRLVOLL		P Y 550	
55	TDGVRMEEI	VEGCTGALHILA	RDPMNRMEIF	F R L N T I P L F V Q L L Y S S V E I	N I 600	
601	Q R V A A G V L C	ELAQDKEAADAI	DAEGASAPL N	MELLHSRNEGTATYAAAV	L F 650	
65	RISEDKNPD	YRKRVSVELTNS	LFKHDPAAWE	E A A Q S M I P I N E P Y G D D M D A	A T 700	
70	YRPMYSSDV	P L D P L E M H M D M D	G D Y P I D T Y S C		50	
	Offerend	1 0 1 0	0.1		00	
	Disordered protein hinding	Relix	Coll			
	Eutrocellular	Be entrent lielin	Citanlasmia	Signal Partida		
~	Extracential	Re-enuant Heilx	Cytoplasmic	Signal Peptide		
C :	PKP1 CHICK			MVCCFPLLL	9	
I	PKP1 HUMAN	MNHSPLKTALAYECFQDQD	NSTLALPSDQKMKTG	TSGRQRVQEQVMMTVKRQKSKSSQSS	60	
1	PKP1_MOUSE	MNHSPLKTALAYECFQDQD	NSTLALPSDQKMKTG	TSGRQRVQEQVMMTVKRQKSKSSQSS	60	
]	PKP1_CHICK	TVLFSFTGSMYDCVADGYG-	-YG-TS <mark>R</mark> GSYYT <mark>K</mark> TQ	MGNSSWGYPLYNGTLKRDAENRRYSS	67	
1	PKP1_HUMAN	TLSHSNRGSMYDGLADNY-1	NYGTTSRSSYYSKFQ	AGNGSWGYPIYNGTLKREPDNRRFSS	119	
]	PKP1_MOUSE	TLSHSNRGSMYDGLADNYNI	NYGTTSRSSYFSKFQ	AGNGSWGYPIYNGTLKREPDNRRFSS	120	
		** ** **** *****	** *** ****** *	** ************************************		
	OVD1 CUTCV	VEOMECHICEKHVEKAVCEDI	IDACCDVCEVONTKC	CREEDEL VCEDBRCHT RKCOVCCDAF	127	
	DKD1 HIMAN	VSOMENWS_PHVDPCSCNT		SPSEPDLICEPPRGILRRSQVGGRAE	176	
	DKD1 MOUSE	VSOMENWS-PHYDRCSCATI		SPSEPDI VCDP-PCTLPKCTLCSK-C	177	
	KFI_HOOBE	*****	**** ********	********	1//	
1	PKP1 CHICK	HKATLNROSIYSSCSTOOG	TTRTSKKIPARALSC	PSSNKPDVVYAQPVMSCKQDAVYGOA	187	
1	<pre>?KP1_CHICK ?KP1_HUMAN</pre>	HKATLNRQSIYSSCSTQQG QKTTQNRYSFYSTCSGQKA	ITRTSKKIPARALSC IKKCPVRPPSC	PSSNKPDVVYAQPVMSCKQDAVYGQA ASKQDPVY-IPPISCNKDLSFGHS	187 229	
1	PKP1_CHICK PKP1_HUMAN PKP1_MOUSE	HKATLNRQSIYSSCSTQQG QKTTQNRYSFYSTCSGQKA HKTTQNRCSFYSTCSGQKA	TTRTSKKIPARALSC IKKCPVRPPSC JKKCPVRPPSC	PSSNKPDVVYAQPVMSCKQDAVYGQA ASKQDPVY-IPPISCNKDLSFGHS TSKQDPVY-VPPISCNKDLSFGHS	187 229 230	

Figure S7 Prediction of disorder in PG and PKP1 and sequence conservation for PKP1 The PSIPRED (Buchan and Jones, 2019) output for PG (**A**) and PKP1 (**B**) are shown with the color scheme displayed below panel B. **C**) Sequence conservation output using Clustal Omega (Goujon et al., 2010; Sievers et al., 2011) for Chick, Human and Mouse PKP1¹⁻²²⁹. The colors represent different kinds of amino acids (acidic: blue, basic: magenta, hydrophobic/small: red, Hydroxyl/sulfhydryl/amine/G: green). An asterisk (*) represents an exact residue match, a colon (:) represents a strongly similar match and a period (.) represents a weakly similar match.

Figure S8 Alphafold2-Multimer predictions The best ranked model (based on PTM + IPTM score) is displayed for each protein pair. **A)** $PG^{107-697}$ (lime) and $Dsc1^{812-894}$ (magenta) **B)** PG^{75-699} (lime) and $Dsg1^{680-768}$ (magenta) **C)** $PKP1^{229-747}$ (lime) and $Dsc1^{722-759}$ (magenta) **D)** $PKP1^{230-744}$ (limer) and $Dsg1^{712-737}$ (magenta) **E)** $DP^{160-584}$ (lime) and $PKP1^{1-60}$ (magenta). Rest of the residues of DP and PKP1 that are away from the interface are in gray. The PKP1 isoform used in **C**, **D**, **E** is PKP1b (in contrast to PKP1a used for integrative modeling in the paper) which has an extra 20-residue segment (PKP1b^{412-432}). This however does not affect any conclusions in the paper or the figure.

Figure S9 Contacts predicted by Alphafold2-Multimer Contact maps (C α -C α distance between residues) for PG-Dsc1 (**A**), PG-Dsg1 (**B**), PKP1-Dsc1(**C**), PKP1-Dsg1(**D**), and PKP1-DP (**E**) based on the best ranked AF2-Multimer model for each protein pair. The map is colored by the distance between C α atoms of a residue pair. Regions in contact distance (C α -C α distance <10Å) are colored black. Distances are shown only for residue pairs with reliable AF2 prediction (PAE <5 and pLDDT >70 for each residue in the pair). Residue pairs without reliable AF2 prediction are colored as >30Å irrespective of their actual C α -C α distance. The PKP1 isoform used in **C**, **D**, **E** is PKP1b as in Fig. S8.

Supplementary Tables

Protein	Residue Ranges	Structure: PDB (chain) or unknown	Type of ODP	Uniprot ID	
DD1	1-177	Unknown	BASAL, UPPER 1,	P15924	
DPT	178-584	3R6N (A)	UPPER 3		
	1-243	Unknown		Q13835-2	
PKP1a	244-700	1XM9 (A)	UPPER 1		
	701-726	Unknown			
	1-125	Unknown		P14923	
PG	126-673	3IFQ (A)	BASAL, UPPER 1, UPPER 3		
	674-745	Unknown			
	570-697	Unknown		Q02413	
DSG1	698-765	3IFQ (C)	UPPER 1, UPPER 3		
	766-842	Unknown			
	715-833	Unknown		Q08554-1	
Docta	834-894	3IFQ (C)	OFFER 1, OFFER 5		
	1-318	Unknown			
PKP3a	319-781	1XM9 (A)	UPPER 3, BASAL	Q9Y446-1	
	782-797	Unknown			
	641-769	Unknown		P32926	
DSG3	770-863	3IFQ (C)	BASAL		
	864-999	Unknown			
	712-819	Unknown			
DSC3a	820-896	3IFQ (C)	BASAL	Q14574-1	
	897	Unknown			

Table S1 Modeled protein domains The different domains of the modeled proteins are shown along with their residue ranges, structure, and the ODP models in which they were used. BASAL refers to basal epithelium, UPPER 1 and UPPER 3 refer to stratified epithelium with PKP1 and PKP3 respectively. UPPER 1 is the ODP displayed in the main text. Regions of unknown structure were represented as flexible 20-residue beads, while regions of known structure were represented as rigid bodies consisting of 30-residue beads. The colors refer to domains without a known structure (red), domains which are homology modeled on a structure template of an isoform or homolog (yellow), and domains which have the structure in the PDB (green). Only the domains in the ODP were modeled; extracellular and transmembrane domains (Dsg3¹⁻⁶⁴⁰, Dsg1¹⁻⁵⁶⁹, Dsc3¹⁻⁷¹¹, Dsc1¹⁻⁷¹⁴) or domains outside the ODP (DP⁵⁸⁵⁻²⁸⁷¹, Dsg1⁸⁴³⁻¹⁰⁴⁹) were not modeled (AI-Amoudi et al., 2011; Garrod and Chidgey, 2008; Nilles et al., 1991).

Protein 1	Protein 2	Domain 1	Domain 2	Experiment	Reference	Data for Restraint Protein 1 residues: Protein 2 residues	Type of ODP
		70-213	570-1049	Y2H	(Hatzfeld et al., 2000)		UPPER 1
PKP1a	DSG1	1-286	568-1049	Y2H	(Kowalczyk et al., 1999)	70-213:570-842	
		1-726	499-1049	OA	(Smith and Fuchs, 1998)		
PKP1a	DSC1	1-726	715-894	OA	(Smith and Fuchs, 1998)	1-726:715-894	UPPER 1
DP	DSC1	1-176	715-894	OA	(Smith and Fuchs, 1998)	1-176:715-894	UPPER 1, UPPER 3
		1-168	1-584	Y2H	(Hatzfeld et al., 2000)	1-168:1-584	UPPER 1
	DP	1-286	1-584	Y2H, co-IP, Loc	(Kowalczyk et al., 1999)		
PKP1a		1-726	1-1014	OA	(Smith and Fuchs, 1998)		
		1-726	1-2871	Loc	(Bornslaege r et al., 2001)		
PG	DP	1-745	1-2871	OA	(Smith and Fuchs, 1998)	1-745:1-584	UPPER 1, UPPER 3, BASAL
PKP3a	DSC1	1-18 & 51-797	715-894	Y2H, co-IP, Loc	(Bonné et al., 2003)	(1-18 + 51-797):715-894	UPPER 3
PKP3a	DSG1	1-18 & 51-293	519-715 Or 715-1k	Y2H, co-IP	(Bonné et al., 2003)	(1-18 + 51-293):570-842	UPPER 3
	DP	19-50	1-2871	Loc	(Bonné et al., 2003)		UPPER 3, BASAL
PKP3a		1-18 & 51-293	1-584	Y2H, co-IP, Loc	(Bonné et al., 2003)	(1-18 + 51-293):1-584 & 19-50:1-63	
		19-50	1-63	Y2H	(Bonné et al., 2003)		
PKP3a	DSC3	1-18 & 51-797	712-897	Y2H, co-IP	(Bonné et al., 2003)	(1-18 + 51-797):712-897	BASAL
PKP3a	DSG3	1-18 & 51-797	641-999	Y2H, co-IP	(Bonné et al., 2003)	(1-18 + 51-797):641-999	BASAL

Table S2A Binding Restraints The protein-protein binding restraints are shown along with the experimental data they are based on. The restraint is formulated by including only the residues that are modeled in our ODP model. If multiple experiments provide data for a protein pair, the data from the experiment with the highest resolution is used. In Columns 3, 4 (and 5), green background (or text) represents the highest resolution information that was used to formulate the restraint and Gray represents other information that is at a lower resolution than the restraint. Experiment abbreviation are as follows: Y2H: Yeast 2 Hybrid, OA: Overlay Assay (in-vitro), Loc: Co-Localization assays, Co-IP: Co-Immunoprecipitation. The ODPs they are used in are mentioned in the last column: BASAL refers to the basal epithelium, UPPER 1 and UPPER 2 refer to the stratified epithelium with PKP1 and PKP3 respectively. UPPER 1 is the ODP model shown in the main paper.

Protein Termini	Residues	Mean dist. (Å)	SE (Å)
DP-N	1-189	103	9.8
PG-N	1-106	229	4.5
PG-C	666-738	108	9
PKP1-N	1-285	158	11
PKP1-C	286-726	42	11
PKP3-N	1-359	158	11
PKP3-C	360-797	42	11

Table S2B Immuno-EM Restraints The antibody binding domains for the different termini, mean distance of the termini from the plasma membrane, and the respective standard errors are shown (North et al., 1999). Domain names are in accordance with Fig. 1.

Protein 1	Protein 2	Domain 1	Domain 2	Experiment	Reference	Data for validation Protein 1 residues: Protein 2 residues
DP	DP	1-1014	1-176	OA	(Smith and Fuchs, 1998)	1-584:1-176
PG	DP	FULL	FULL	Y2H, co-IP	(Kowalczyk et al., 1997)	1-745:1-584
PG	Dsg1	FULL	701-768	co-IP, Loc	(Troyanovsky et al., 1994a)	
PG	Dsg1	123-632	FULL	co-IP	(Wahl et al., 1996)	123-632:701-768
PG	Dsg1	FULL	663-958	ITC	(Choi et al., 2009)	
PG	Dsc1	FULL	858-894	co-IP, Loc	(Troyanovsky et al., 1994b)	
PG	Dsc1	123-632	FULL	co-IP	(Wahl et al., 1996)	123-632: 858-894
PG	Dsc1	FULL	795-894	ITC	(Choi et al., 2009)	
DP	Dsc1	FULL	728-740	co-IP, Loc	(Troyanovsky et al., 1994b)	1-584:728-740
PG	Dsc1	FULL	728-740	co-IP, Loc	(Troyanovsky et al., 1994b)	123-632: 728-740

Table S3 Validation protein-protein binding data not used in modeling The protein-protein binding data and the corresponding references not used in modeling are shown. Data for validation was obtained using the same reasoning as in Table S2A. Experiment abbreviation are as follows: Y2H: Yeast 2 Hybrid, OA: Overlay Assay (in-vitro), Loc: Co-Localization assays, Co-IP: Co-Immunoprecipitation, ITC: Isothermal Calorimetry. Gray text represents the information that was not validated by the ensemble of models.

Protein 1	Residues in protein 1	Protein 2	Residues in protein 2
DP	1-20	Dsc1	795-833
DP	21-60	Dsc1	815-833
DP	21-40	Dsc1	795-814
DP	61-100	Dsc1	815-833
DP	141-177	Dsc1	864-893
DP	178-237	PG	306-335
DP	238-267	PG	276-335
DP	61-80	PG	366-395
DP	81-100	PG	336-395
DP	101-140, 161-177	PG	306-395
DP	141-160	PG	306-425
DP	178-207	PG	246-305, 336-425
DP	208-237	PG	216-305, 336-395
DP	238-267	PG	216-275, 336-455
DP	268-297	PG	246-275
DP	328-357	PG	216-335
DP	448-507	PG	81-120, 126-275
DP	508-537	PG	61-100
DP	1-60	PKP1	141-180
DP	61-100	PKP1	141-160
DP	328-357	PKP1	1-20
Dsc1	795-814	PG	636-658
Dsc1	815-833	PG	336-605, 636-658
Dsc1*	834-863	PG	276-575
Dsc1*	864-894	PG	101-245
Dsc1*	894	PG	101-155
Dsc1	795-814	PG	661-673
Dsc1	815-833	PG	606-635
Dsg1	670-689	PG	606-673
Dsg1	690-697	PG	456-673
Dsg1*	698-727	PG	366-658
Dsg1*	728-757	PG	101-275
Dsg1*	758-765	PG	101-215
Dsg1	766-785	PG	101-185
Dsg1	786-805	PG	126-155
Dsg1	670-689	PG	674-693
Dsg1*	698-727	PG	659-660
Dsg1	766-785	PG	186-215
Dsc1	775-794	PKP1	201-220
Dsc1	795-814	PKP1	181-220
Dsc1	795-814	PKP1	161-180
Dsc1	815-833	PKP1	161-220
Dsg1	650-669	PKP1	181-220
Dsg1	670-689	PKP1	161-220
Dsg1	630-649		201-220
Dsg1	650-669		221-240
Dsg1	670-689		141-160
Dsg1	690-697	PKP1	181-200

Table S4 Protein-Protein contacts in the ODP All the contacts (bead surface-to-surface distance of less than 10 Å) identified in at least 20% (yellow) to 25% (green) of the models in the ensemble are shown (Methods). Contacts consistent with sub-complexes of known structure are marked with an asterisk in column 1.

Protein Domain	Residues	Mutation	Reference	Disease
PG-N	19	$T \rightarrow I$	(Den Haan et al., 2009)	Naxos disease
PG-S	265	$R \rightarrow H$	(Erken et al., 2011)	Naxos disease
PG-S	301	$E \to G$	(Marino et al., 2017)	Naxos disease
PG-C	680-745	WEAAQSMIPI → GGCPEHDSHQ + Δ690-745	(McKoy et al., 2000)	Naxos disease
DP-S	287	$N \to K$	(Whittock et al., 2002)	Skin Fragility - Woolly Hair Syndrome
DP-S	356	$T \rightarrow K$	(Pigors et al., 2015)	Carvajal syndrome
DP-S	564	T→I	(Boulé et al., 2012; Keller et al., 2012)	Carvajal syndrome
DP-S	583	$L \rightarrow P$	(Keller et al., 2012)	Carvajal syndrome
PKP1-S	502	$R \rightarrow H$	COSMIC	Cancer Mutation
PG-N	4	$M \to V$	COSMIC	Cancer Mutation
Dsg1	788	$E\toK$	COSMIC	Cancer Mutation
Dsc1	841	$Y \to F$	COSMIC	Cancer Mutation

Table S5 Mutations The mutations of interest in the different protein domains are shown along with the pathology associated with the mutation (Fig. 5, Results). Domain names are in accordance with Fig. 1.