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A Empirical Bayes with NGBoost885

Empirical Bayes overview886

In the simplest version of empirical Bayes, we specify the form of the prior distribution and as-

sume that that prior is shared across all genes—for example, for gene i we might assume the prior

distribution is s
(i)
het ∼ LogitNormal(µ, σ) with density pµ,σ(s

(i)
het), where the LogitNormal(µ, σ) dis-

tribution is defined such that logit(s
(i)
het) = log(s

(i)
het/(1 − s

(i)
het)) is normally distributed with mean

µ and variance σ2. We can then estimate µ and σ using the observed LOF data for each gene,

yyy1, . . . , yyyM, by maximizing the marginal likelihood:
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Next, we can compute the posterior distribution of s
(i)
het for each gene,
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However, rather than learning the parameters for the prior from only the LOF data, we can also887

use gene features to learn gene-specific prior parameters, µi and σi. To do this, we used a machine888

learning approach, NGBoost, to learn functions f and g such that µi = f (xxxi) and σi = g(xxxi), where889

xxxi is a vector of gene features associated with gene i. In the next few sections, we will describe890

how we learned f and g.891

NGBoost892

NGBoost (Natural Gradient Boosting) is an approach for training gradient boosted trees to predict893

the parameters of a probability distribution [17]. Gradient boosted trees are a type of machine894

learning model typically used to predict outcomes y, from features X, producing point estimates895

such as predictions of E[y | X]; in contrast, NGBoost uses gradient boosted trees to predict p(y |896

X = xxx) by learning parameters of p(y | X = xxx) as functions of xxx—in other words, NGBoost allows897

us to learn the full distribution of y conditioned on observing the features xxx.898

Specifically, for gene i, we assume the prior distribution is s
(i)
het ∼ LogitNormal(µi, σi), with

density pµi ,σi
(s

(i)
het). µi = f (xxxi) and σi = g(xxxi) are functions of the vector of gene features xxxi,

where f and g are parameterized as gradient-boosted trees. We chose this distribution as previous

work has suggested that s
(i)
het is distributed on a logarithmic scale [1, 2, 4], yet, s

(i)
het is also bounded

between 0 and 1. Both of these properties are enforced by the LogitNormal distribution. In Sup-

plementary Note B, we develop a population genetic likelihood p(yyyi | s
(i)
het), where yyyi is a vector

that represents the observed frequencies of each possible loss of function variant for the gene.
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Then, with M genes in the training set, the score that NGBoost maximizes during training is:

M

∑
i=1

S (yyyi; µi, σi) =
M

∑
i=1

log p (yyyi) =
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∑
i=1

log
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)
. (3)

To do this, NGBoost first initializes the parameters of f and g such that all genes have the same

prior distribution. Next, NGBoost adopts a gradient descent approach to maximize the score func-

tion: for each iteration until training ends, NGBoost first computes the natural gradient of gene

i’s score with respect to the parameters µi and σi of pµi ,σi
(s

(i)
het), where the natural gradient of

S = S(yyyi; µi, σi), is defined as:

∇̃S ∝ I−1
µi ,σi

∇µi ,σi
S (4)
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is the Fisher Information Matrix for pµi ,σi
(s

(i)
het) and ∇µi ,σi

represents differentiation with respect to899

µi and σi. Natural gradients take into account the underlying “information geometry” of the space900

of distributions in a way that standard gradients do not [85]. As an example, changing the variance901

of a Normal distribution from 0.1 to 0.2 is much more dramatic than changing the variance from902

10.1 to 10.2. After computing the natural gradient, NGBoost fits a decision tree to each dimension903

of the natural gradient, updating µi and σi in the direction that most steeply increases the gene’s904

score. While gradient-boosting algorithms (including NGBoost, by default) typically fit a single905

decision tree at each iteration, we allow NGBoost to fit one or more trees, which performs slightly906

better in practice (see “Training and Validation” in Methods).907

Below, we summarize the training algorithm. Let µ
(t)
i , σ

(t)
i denote the parameters of the prior at908

training iteration t.909

1. Initialize parameters for all genes, i = 1, ..., M:910

µ
(0)
i , σ

(0)
i = argmaxµ,σ ∑

M
i=1 S(yyyi; µ, σ)911

2. For iterations t = 1, ..., T:912

(a) For each gene, calculate natural gradients of the score:913

∇̃S
(

yiyiyi; µ
(t)
i , σ

(t)
i

)
, whose two components we denote as ∇̃Sµ and ∇̃Sσ914

(b) Fit decision trees f (t) and g(t) on the natural gradients:915

f (t) = fit

({
xxxi, ∇̃Sµi

}M

i=1

)
916

g(t) = fit

({
xxxi, ∇̃Sσi

}M

i=1

)
917

(c) Update the parameters for each gene, where η is a learning rate that is chosen by the918

user as a hyperparameter919

µ
(t)
i = µ

(t−1)
i − η f (t)(xxxi)920

σ
(t)
i = σ

(t−1)
i − ηg(t)(xxxi)921
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Once training is complete, we obtain a learned prior with parameters µ
(T)
i , σ

(T)
i , and can com-

pute the posterior distribution of shet

p
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)
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)
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µ
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)

p (yyyi)
(6)

as well as the mean of this distribution

E

[
s
(i)
het | yyyi

]
=

∫ 1

0
s
(i)
het p(s

(i)
het | yyyi)ds

(i)
het (7)

To compute 95% Credible Intervals, we compute the CDF of the posterior distribution using922

Pytorch’s cumulative_trapezoid function [86]. Then, the 95% Credible Interval per gene is de-923

fined as [lb(i), ub(i)] such that P(s
(i)
het < lb(i)) = 0.025 and P(s

(i)
het < ub(i)) = 0.975.924

NGBoost— implementation details925

To initialize parameters (step 1 in the training algorithm), we perform gradient descent with the926

AdamW optimizer [87] implemented in PyTorch [86] with a learning rate of 5 × 10−4 and other-927

wise default settings. We initialize the optimization at µ = −5 and σ = 0.5.928

To compute the integrals in the score calculation, we use the torchquad package for numerical929

integration [88], which allows us to use PyTorch’s automatic differentiation system to compute930

gradients. We perform integration using Boole’s rule, integrating from 5 × 10−8 to 1 − 5 × 10−8
931

with 106 sample points.932

The Fisher Information Matrix is approximated using a Monte Carlo approach: we sample shet933

from the prior 1,000 times, compute the gradient for each sample, and approximate the expectation934

using the sample mean.935

To flexibly fit decision trees at each training iteration, we use the XGBoost package, a library936

used for fitting standard gradient boosted trees [89]. In comparison to the default NGBoost learner,937

XGBoost supports missing features and allows for adjustment of numerous hyperparameters (see938

“Training and Validation” in Methods). In contrast to typical applications of XGBoost, we only939

allow a few (1-4) trees to be fit at each training iteration, as we are using XGBoost within a training940

loop rather than as a standalone approach for model fitting.941

All distributions were implemented using PyTorch, and training was conducted with GPU942

support when available, with tree_method = "gpu_hist" for the XGBoost learners.943
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B Population Genetics Model944

Overview of model945

Some of the most commonly used measures of gene constraint (pLI [11], LOEUF [12]) are framed946

in terms of the number of unique LOFs observed in gene, O, relative to the number expected947

under a null model, E. While operationalizing constraint as some function of O and E captures the948

intuition that seeing fewer LOFs than expected is evidence that a gene is conserved, the numerical949

values of pLI and LOEUF are difficult to interpret. In practice this means that such measures950

can be useful for ranking which genes are important, but it makes it difficult to contextualize951

these results in terms of other types of variants, such as missense or noncoding variants, or copy952

number variants. Previous approaches have pioneered using a population genetics model in this953

context to obtain interpretable estimates, albeit with different technical details that we discuss954

below [1, 2, 4].955

In order to obtain a more interpretable measure of constraint, we formalize constraint as the

strength of natural selection acting against gene loss-of-function in a population genetics model.

That is, we can ask how much fitness is reduced on average for an individual with one or two non-

functional copies of a gene relative to individuals with two functional copies, following previous

work [1, 2, 4]. To tie this concept of constraint to observed allele frequency data, we use a slightly

simplified version of the discrete-time Wright Fisher model. This model contains mutation, se-

lection, and genetic drift, and assumes that there are only two alleles and that the population is

panmictic, monoecious, and has non-overlapping generations. While all of these assumptions are

violated in humans (there are four nucleotides, population structure, two sexes, and overlapping

generations), the model still provides a good approximation to allele frequency dynamics through

time. If the allele frequency in generation k is fk, then we model the allele frequency in the next

generation via binomial sampling:

2Nk+1 fk+1 ∼ Binomial (2Nk+1, p ( fk)) , (8)

where Nk+1 is the number of diploid individuals in generation k + 1, with956

p( fk) :=
(1 − shet) f̃k

(
1 − f̃k

)
+ (1 − shom) f̃k

2

(
1 − f̃k

)2
+ 2(1 − shet) f̃k

(
1 − f̃k

)
+ (1 − shom) f̃k

2
,

where f̃k = fk(1 − µ1→0) + µ0→1(1 − fk) is the allele frequency after alleles change from non-957

LOF to LOF at rate µ0→1 and from LOF to non-LOF at rate µ1→0. The function p(·) arises from958

considering bidirectional mutation and approximating a model of diploid selection where the959

relative reproductive success of individuals with 0, 1, or 2 copies of the LOF are 1, 1− shet, and 1−960

shom respectively [13]. In practice, most LOF variants are extremely rare, and so it is exceedingly961

unlikely to find individuals homozygous for the LOF. This makes estimating shom as a separate962

parameter very difficult, and so we instead assume that shom = min {2shet, 1}. This is equivalent963

to assuming genic selection (i.e., additive fitness effects) with the constraint that an individual’s964

relative fitness cannot be lower than 0.965

Equation 8 fully specifies the model except for an initial condition. That is, we need to know966

what the distribution of frequencies is in generation 0. One mathematically appealing choice967
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would be to assume that the population is at equilibrium at time 0, but this seemingly straight-968

forward choice results in nonsensical conclusions. To see why, if the mutation rates are low and969

selection is negligible, then at equilibrium, with extremely high probability the population will970

either be in a state where the frequency of the LOF allele is very close to zero or in a state where971

the frequency of the LOF allele is very close to one. If the mutation rates between the two alleles972

are close to equal, then these two cases happen roughly equally often. That is, we would expect973

there to be a ∼50% chance that the population is fixed or nearly fixed for the LOF mutation. If974

there are multiple independently evolving sites at which an LOF could arise (or if there are many975

more ways to mutate to an LOF state than a non-LOF state), then the chance that any of these sites976

is fixed or nearly fixed for an LOF rapidly approaches 100%. Under this equilibrium assumption,977

we thus reach the absurd conclusion that the mere act of observing a gene that is functional in a978

majority of the population is overwhelming evidence that the gene is strongly selected for. An-979

other way of viewing this is that in reality we can only observe genes that are functional in an980

appreciable fraction of the population, and so we should somehow be conditioning on this event,981

whereas the equilibrium assumption looks at a given randomly chosen stretch of DNA and asks982

whether it could be a gene given some set of mutations. Indeed, any randomly chosen stretch of983

DNA could be made a gene through a series of mutations, but for any given stretch it would be984

extremely unlikely to be a functional gene, and the equilibrium assumption exactly captures how985

rare this would be.986

We instead use the equilibrium of another process as the initial condition, which avoids these987

conceptual pitfalls. We assume the distribution of frequencies at generation 0 is the equilibrium988

conditioned on the LOF allele never reaching fixation in the population. We then compute the like-989

lihood of observing a given present-day frequency while continuing to condition on non-fixation990

of the LOF allele. This assumption implies that no matter the current frequency of the LOF vari-991

ant, we know that at some point in the past the population was fixed for the functional version of992

the gene, and the LOF variant can thus be thought of as being “derived” and the non-LOF variant993

“ancestral”. In the limit of infinitely low (but non-zero) mutation rates, this assumption become994

equivalent to the commonly assumed “infinite sites” model commonly used to compute frequency995

in population genetics [90]. In contrast to the infinite sites model, where the probability that any996

given site is segregating must be 0, our model allows us to compute the probability that a given997

site is segregating. Furthermore, we can easily model recurrent mutation which can be important998

for sites with large mutation rates (such as CpGs) and large sample sizes [91], whereas under the999

infinite sites model each mutation necessarily happens at a unique position in the genome, ruling1000

out the possibility of recurrent mutation. Below we will write pDTWF(y | shet) for the probability1001

mass function computed using this procedure, with “DTWF” representing Discrete-Time Wright-1002

Fisher, and y being an observed LOF allele frequency.1003

Equation 8 is easy to describe and simulate under, and a very similar model has been used1004

in an approximate Bayesian computation approach to estimate shet [4]. While simulation is easy,1005

computing likelihoods under this model is difficult for large sample sizes, and unfortunately we1006

need explicit likelihoods in our empirical Bayes approach. In recent work [16], we have developed1007

an efficient method for computing likelihoods under this model. The key idea is that the above1008

dynamics can be written as1009

vk+1 = MT
k vk

where vk is a vector of dimension 2N + 1 where entry i is the probability that there are i haploids1010
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that have the LOF allele in generation k, and Mk is a matrix where row i is the the probability mass1011

function of the Binomial distribution in Equation 8 given that the allele frequency in generation1012

k is i/2Nk. This formulation makes clear that we can obtain the likelihood of observing a given1013

frequency at present given some initial distribution by performing a series of matrix-vector multi-1014

plications. Naively this would be prohibitively slow as Mk can be as large as 107 × 107, but in [16]1015

we show that Mk is approximately highly structured — it is both approximately extremely sparse1016

and approximately extremely low rank. Combining these insights we can perform matrix-vector1017

multiplication that is provably accurate while reducing the runtime for matrix-vector multiplica-1018

tion from O(N2
k ) to O(Nk). Similar insights can be used to speed up the computation of equilibria,1019

which we discuss in detail in [16]. Furthermore, as discussed above, we actually want to com-1020

pute likelihoods conditioned on non-fixation of the LOF allele, but that is as simple as setting the1021

column of Mk corresponding to fixation to 0, and then renormalizing v. We precompute these1022

likelihoods for each possible pair of mutation rates (to and from the LOF allele) across a range of1023

shet values (100 log-linearly spaced points between 10−8 and 1, as well as 0). We describe how we1024

set the mutation rates and the population sizes implicit in Mk below.1025

Modeling misannotation of LOFs1026

Under the likelihood described above, and as seen in Figure 2A, positions where a LOF variant1027

could occur, but no LOF alleles are observed are slight evidence in favor of selection, while high1028

frequency variants are extremely strong evidence against selection. Meanwhile, we suspect that1029

many variants that are annotated as causing LOF actually have little to no effect on the gene prod-1030

uct due to some form of misannotation. If these misannotated variants evolve effectively neutrally,1031

they can reach high frequencies and cause us to artifactually infer artificially low levels of selec-1032

tion. These misannotated variants can be particularly problematic for approaches that combine1033

frequencies across all LOFs within a gene to obtain an aggregate gene-level LOF frequency [1,2,4].1034

LOEUF [12] and pLI [11] avoid this problem by throwing away all frequency information1035

except for whether an LOF is segregating or not. While this approach is more robust, the ignored1036

frequency information is extremely useful for estimating the strength of selection. For example,1037

consider a gene where we expect to see 5 unique LOFs under neutrality and we see 3 segregating1038

LOFs. This might seem like weak or negligible constraint (O/E = 0.6), but if those 3 sites are all1039

highly mutable and the variants at those sites are each only present in a single individual, then it1040

is plausible that this gene is quite constrained.1041

To take full advantage of the information in the LOF frequencies while remaining robust to1042

misannotation, we take a composite likelihood approach [92], closely related to the Poisson ran-1043

dom field assumption commonly used in population genetics [90]. We approximate gene-level1044

likelihoods as a product of variant level likelihoods1045

p(i)
(

yyy(i) | s
(i)
het

)
≈

Ji

∏
j=1

pvariant

(
yyy
(i)
j | s

(i)
het

)
,

where yyy(i) is a vector of the observed allele frequencies at each possible LOF site in gene i, and1046

s
(i)
het is the selection coefficient for having a heterozygous loss-of-function of gene i. Under this1047

formulation, we can easily model misannotation by assuming that each LOF independently has1048
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some probability of being misannotated, pmiss, and that misannotated variants evolve neutrally:1049

pvariant

(
y
(i)
j | s

(i)
het

)
= (1 − pmiss)pDTWF

(
y
(i)
j | s

(i)
het

)
+ pmiss pDTWF

(
y
(i)
j | 0

)
.

Using this formulation, we can take full advantage of the rich information included in the exact1050

sample frequencies of each LOF variant, while still being robust to occasional misannotation. In1051

practice, we precompute pvariant using a grid of pmiss values, and then to obtain the likelihood at1052

arbitrary values of shet and pmiss we linearly interpolate in log-likelihood space. Below, we discuss1053

our approach for setting pmiss.1054

Given a probability of misannoation, we can then calculate a posterior probability that any1055

given variant has been misannotated. We include a table of these misannotation probabilities for1056

all possible LOFs in Supplementary Table XXX.1057

As an example of the importance of correcting for misannotation, we consider the case of the1058

gene PPFIA3 (ENSG00000177380). This gene has a LOEUF score of 0.12 and so appears very1059

constrained, but in an early version of our model where we did not incorporate variant mis-1060

annotation, we inferred a posterior mean value of shet of ∼2 × 10−4, which is right at the bor-1061

der of being nearly neutral. Inspecting the LOF data for this gene, we find that all potential1062

LOFs are either not observed or observed in a single individual, except for a single splice donor-1063

disrupting variant at 16% frequency. There are no obvious signs indicating that this variant is1064

misannotated (e.g., in terms of coverage or mappability). If we model misannotation, however,1065

we find that this variant is likely misannotated (posterior probability of misannotation > 99.999%),1066

and as a result we estimate extremely strong selection against gene loss-of-function (posterior1067

mean shet of ∼ 0.234). Indeed, a single autosomal dominant missense variant in this gene is1068

suspected to have caused a number of severe symptoms including developmental delay, intel-1069

lectual disability, seizures, and macrocephaly in an Undiagnosed Diseases Network participant1070

(https://undiagnosed.hms.harvard.edu/participants/participant-159/) [93].1071

Modeling the X chromosome1072

We must slightly modify our model when applying it to the X chromosome. Because males only1073

have one copy of the X chromosome, there are only 3/4 as many X chromosomes as autosomes1074

(assuming an approximately equal sex ratio). As a result, when dealing with the X chromosome1075

we scale all population sizes to 3/4 of the size used for the autosomes (rounded to the nearest1076

integer). We also need to slightly modify the expected frequency in the next generation. We as-1077

sume haploid selection in males with strength shom, and diploid selection in females with selection1078

coefficients shet and shom for individuals heterozygous and homozygous for the LOF variant re-1079

spectively. This selection results in modified allele frequencies in the pool of males and females,1080

and the we assume that each chromosome in the next generation has 1/3 probability of coming1081

from a male, and 2/3 probability of coming from a female. This means that the expected fre-1082

quency in the next generation is 1/3 times the post-selection frequency in males plus 2/3 times1083

the post-selection frequency in females. Variants within the pseudoautosomal regions on the X1084

are modeled identically to variants on the autosomes. Agarwal and colleagues also considered1085

selection on the X in the context of LOF variants, with a model similar to that described here [4].1086
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Model parameters1087

Our model has three key parameters — the mutation rate, the demographic model (i.e., population1088

sizes through time), and the probability that different variants are misannotated.1089

We obtained mutation rates from gnomAD [12, Supplemental Dataset 10], which take into ac-1090

count trinucleotide context and methylation level (for CpG to TpG mutations). In our population1091

genetics model, we assume that there are only two alleles (a functional allele and an LOF allele),1092

whereas in reality there are four nucleotides. We approximate the rate of mutating from the func-1093

tional allele to the LOF allele as being the sum of the mutation rates from the reference nucleotide1094

to any nucleotide that might result in LOF. For example, if the reference allele is A, and either a1095

C or a T would result in LOF, then we say that the rate at which the functional allele mutates to1096

the LOF allele is the rate at which A mutates to C in this context plus the rate at which A mutates1097

to T in this context. For the rate of back mutation from the LOF allele to the functional allele, we1098

compute a weighted average of the rates of each possible LOF nucleotide back-mutating to any1099

possible non-LOF nucleotide, weighed by the probability that the original non-LOF nucleotide1100

mutated to that particular LOF nucleotide. Continuing our previous example, suppose A mutates1101

to C at rate 1 × 10−8 and A mutates to T at a rate 1.5 × 10−8. Then conditioned on there having1102

been a single mutation resulting in a LOF variant, there is a 1/2.5 = 0.4 chance that the LOF is C1103

and 0.6 chance that the LOF is T. We then compute the back mutation rate as 0.4 times the rate at1104

which C mutates to A in this context plus the rate at which C mutates to G in this context (since1105

both A and G do not result in LOF) plus 0.6 times the rate at which T mutates to A in this con-1106

text plus the rate at which T mutates to G in this context. Implicitly this scheme assumes that the1107

flanking nucleotides in the trinucleotide context do not change, and we further assume that all1108

mutations resulting in CpGs result in unmethylated CpGs.1109

For the population sizes in each generation, we used the “CEU” model inferred in [75] using1110

the 1000 Genomes Project data [94]. This model was also used in [4]. Population sizes under this1111

model are relatively constant before 5156 generations ago (approximately 155 thousand years ago)1112

and the effects of strong selection are relatively insensitive to all but the most recent population1113

sizes, so for a computational speedup we assumed that the population size was constant prior1114

to 5156 generations ago. Recently, [4] found that this CEU model underestimates the number1115

of low frequency variants and that changing the population size to 5,000,000 for the most recent1116

50 generations provides a better fit to the data. We used both demographic models and found1117

qualitatively similar results, with slightly better fit provided by the modified model, so we used1118

that demographic model for all subsequent analyses. In both cases, we modified the most ancient1119

population sizes, which are relatively constant, to be actually constant to speed up likelihood1120

calculations. The demographic models are presented in Supplementary Figure 1.1121

The only remaining model parameter is pmiss the probability that any given LOF is misan-1122

notated. Throughout we focus on LOFs that either introduce early stop codons, disrupt splice1123

donors, or disrupts splice acceptors. Given that predicting which variants have these different1124

consequences involves different bioinformatic challenges, we inferred separate misannoatation1125

probabilities pc
miss for c ∈ {stop codon, splice donor, splice acceptor}. Below we write pmiss for the1126

collection of these three misannotation parameters. To get a rough estimate of these parameters1127

and avoid excessive computational burden, we took an h-likelihood approach [95,96]. That is, we1128

jointly maximized the likelihood across all genes with respect to their selective constraints as well1129
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Supplementary Figure 1: CEU Demography inferred by Schiffels and Durbin [75], modified by

Agarwal and colleagues [4], and further modified for this paper.

as the the three misannotation probabilities that are shared across all genes:1130

max
pmiss,s

(1)
het,...,s

(M)
het

M

∑
i=1

log p
(

y(i) | s
(i)
het, pmiss

)
.

This approach of just using the maximum likelihood estimates of shet for each gene contrasts with1131

the standard empirical Bayes approach, which would involve marginalizing out the unknown shet1132

values. Yet, this marginalization step depends on the prior on shet, which we learn via our NGBoost1133

framework. As a result, we would need to repeatedly run our NGBoost framework as an inner loop1134

to perform the standard empirical Bayes approach on pmiss. For our application, these values are1135

nuisance parameters, and the results are relatively insensitive to their exact values so we opted for1136

this simpler h-likelihood approach. Ultimately, we estimate that the probability of misannotation1137

is 0.7%, 6.1%, and 8.4% for stop codons, splice donors, and splice acceptors respectively.1138
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C Feature processing and selection1139

We compiled 10 types of gene features from several sources:1140

1. Gene structure. Gene structure features were derived from GENCODE gene annotations (Re-1141

lease 39) [78]. Such features include the number of transcripts and, for the primary transcript1142

of each gene (the transcript tagged Ensembl_canonical), the number of exons as well as the1143

length and GC content of the transcript, total coding region, 5’ UTR, and 3’ UTR.1144

2. Gene expression. We used gene features from 77 bulk and single-cell RNA-seq datasets, pro-1145

cessed and derived in [97]. These datasets can be grouped into 24 categories representing1146

tissues, cell types, and developmental stage (Table 6). For each dataset, features were de-1147

rived separately from all data and from individual cell clusters (for example, gene loadings1148

on principal components). In addition, features were derived from comparisons between1149

clusters (for example, t-statistics for differential expression). Finally, we include a metric, τ,1150

that summarizes the tissue-specificity of gene expression [98].1151

3. Biological pathways and Gene Ontology terms. First, we included previously curated biological1152

pathway features [97, 99]. In addition, to include GO terms that capture additional known1153

relationships between genes, we downloaded Biological Pathway (BP), Molecular Function1154

(MF), and Cellular Component (CC) terms [100] with at least 10 member genes using the1155

procedure described in [10]. Features for each gene were encoded as binary indicators of the1156

gene’s membership in the pathways and GO terms.1157

4. Connectedness in protein-protein interaction (PPI) networks. We included previously computed1158

measures of the connectedness of protein products of genes in PPI networks [10]. Connect-1159

edness was calculated as the number of interactions per protein weighted by the interaction1160

confidence scores.1161

5. Co-expression. First, we included previously computed measures of the connectedness of1162

genes in co-expression networks [10], where connectedness measures the relative number1163

of neighbors of each gene in the network, averaged over tissues. Next, for each gene, we1164

derived features representing its co-expression with other genes (i.e. correlation in their ex-1165

pression levels across samples). To do this, we downloaded from the GeneFriends database1166

a co-expression network derived from GTEx RNA-seq samples [101,102], calculated the vari-1167

ance in the co-expression for each gene, and kept the 6,000 most variable genes. Then, we1168

included the co-expression with each of these 6,000 genes as a feature.1169

6. Gene regulatory landscape. Gene regulatory features include the counts and properties of the1170

enhancers and promoters that regulate each gene. First, we included the number of pro-1171

moters per gene estimated by the FANTOM consortium using Cap Analysis of Gene Ex-1172

pression [10, 103]. Next, for each gene, we calculated the number, summed length, and1173

summed score of enhancer-to-gene links predicted using the Activity-By-Contact (ABC) ap-1174

proach [49,104], where an enhancer is considered linked to a gene if its ABC score is ≥ 0.015.1175

We computed separate features for each of 131 biosamples. We also included features de-1176

rived by aggregating over all biosamples for both ABC enhancers and predicted enhancers1177
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from the Roadmap Epigenomics Consortium [10, 105, 106]—these feature include the num-1178

ber of biosamples with an active enhancer element, the total number of enhancer elements,1179

the total number of enhancer elements after taking merging enhancer domains, the total1180

length of the merged domains, and the average total enhancer length in an active cell type.1181

Finally, we included the enhancer-domain score for each gene [9] as a feature.1182

7. Conservation across species. For each gene, we calculated the mean and 95th percentile phast-1183

Cons scores over the gene’s exons for multiple alignments of 7, 17, 20, 30, and 100 verte-1184

brate species to the human genome [107]. We downloaded phastCons Scores from https:1185

//hgdownload.soe.ucsc.edu/goldenPath/hg38/. In addition, we included the fraction of1186

coding sequence (CDS) or exons constrained across 240 mammals or 43 primates sequenced1187

in the Zoonomia project [108], with constraint determined by the per-base phyloP [109] or1188

phastCons score. Zoonomia data were downloaded from https://figshare.com/articles/1189

dataset/geneMatrix/13335548.1190

8. Protein embedding features. We included as features the embeddings learned by an autoen-1191

coder (ProtT5) trained on protein sequences [110]. Embeddings were downloaded from1192

https://zenodo.org/record/5047020. The embedding for each protein is a fixed-size vec-1193

tor that captures some of the protein’s biophysical and functional properties. For each gene1194

with more than one protein product, we averaged the embeddings of the proteins for that1195

gene.1196

9. Subcellular localization. We included as features the subcellular localization of each pro-1197

tein and whether the protein is membrane-bound or soluble, as predicted by deep neu-1198

ral networks trained on the ProtT5 protein embeddings [110, 111]. Possible subcellular1199

classes included nucleus, cytoplasm, extracellular space, mitochondrion, cell membrane,1200

endoplasmatic reticulum, plastid, Golgi apparatus, lysosome or vacuole, and peroxisome.1201

Predictions were one-hot encoded, and for each gene with more than one protein product,1202

we summed the predictions for the gene’s proteins. Predictions were downloaded from1203

https://zenodo.org/record/5047020.1204

10. Missense constraint. We included a measure of each gene’s average intolerance to missense1205

variants (UNEECON-G score) [112]. UNEECON-G scores incorporate variant-level features1206

to account for differences in the effects of missense variants on gene function.1207

In addition to these 10 groups of features, we included a binary indicator for whether the1208

gene is located on the X chromosome. Genes in the pseudoautosomal regions were categorized as1209

autosomal.1210

After compiling these features (total of 65,383), we performed feature selection to minimize1211

the practical complexity of training on such a large feature set and the complexity of the resulting1212

model. First, we removed features with zero variance and features where the Spearman corre-1213

lation of the feature values with O/E (the ratio of observed over expected unique LOF variants,1214

computed using gnomAD data) was less than 0.1 or had a nominal p-value ≥ 0.05. Next, we per-1215

formed simultaneous feature selection and an initial round of hyperparameter tuning using the1216

shap-hypetune package, which uses Bayesian optimization to identify a set of features and hyper-1217

parameters that minimize the loss of a machine learning model fit on the training data. Specifically,1218

we fit gradient-boosted trees using XGBoost to predict O/E from the gene features; we chose to1219
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perform feature selection using XGBoost rather than NGBoost as training XGBoost models is sub-1220

stantially faster, and because we expect features/hyperparameters that perform well for XGBoost1221

to also perform well for NGBoost. For each set of hyperparameters, shap-hypetune performs back-1222

ward step-wise selection by removing the k least influential features (we chose k = 1000 and1223

calculated influence using SHAP scores) at each step. Finally, we performed further feature se-1224

lection using shap-hypetune by fixing the hyperparameters and performing backward step-wise1225

selection with k = 50. Ultimately, we included 1,248 features in the model.1226
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D Estimating additional gene properties using GeneBayes1227

GeneBayes is a flexible framework that can be used to infer other gene-level properties of interest1228

beyond shet. In Figure 6, we presented a schematic of the key components of GeneBayes that users1229

should specify, which we describe in more detail now.1230

First, users should specify the gene features to use as predictors. We expect the gene features1231

we use for shet estimation to work well for other applications, but GeneBayes supports any choice1232

of features. In particular, GeneBayes can handle categorical and continuous features without fea-1233

ture scaling, as well as features with missing values.1234

Next, users should specify the form of the prior distribution. GeneBayes supports the distri-1235

butions defined by the distributions package of PyTorch. GeneBayes also supports custom dis-1236

tributions, as long as they implement the methods used by GeneBayes (i.e. log_prob and sample)1237

and are differentiable within the PyTorch framework.1238

Finally, users need to specify a likelihood function that relates their gene property of interest to1239

observed data. The likelihood can be specified in terms of a PyTorch distribution, or as a custom1240

function.1241

After model training, GeneBayes outputs a per-gene posterior mean and 95% credible interval1242

for the property of interest. For each parameter in the prior, GeneBayes also outputs a metric for1243

each feature that represents the contribution of the feature to predictions of the parameter.1244

In the next section, we describe in more detail the two example applications that we outlined1245

in Figure 6.1246

Example applications1247

Differential expression1248

In this example, users have estimates of log-fold changes in gene expression between conditions1249

and their standard errors from a differential expression workflow, and would like to estimate log-1250

fold changes with greater power (e.g. for lowly-expressed genes with noisy estimates).1251

Likelihood We define ℓ
(i)
DE and ℓi as the estimated and true log-fold change in expression respec-1252

tively for gene i, and si as the standard error for the estimate. Then, we define the likelihood for ℓi1253

as1254

ℓ
(i)
DE | ℓi ∼ Normal(ℓi, s2

i ).

Prior We describe two potential priors that one may choose to try. The first is a normal prior1255

with parameters µi and σi:1256

ℓi ∼ Normal(µi, σ2
i ).

The second is a spike-and-slab prior with parameters πi, µi, and σi, which assumes that gene i1257
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only has a πi probability of being differentially expressed:1258

zi ∼ Bernoulli(πi)

ℓi|zi ∼

{
0, if zi = 0

Normal(µi, σ2
i ), if zi = 1

Variant burden tests1259

In this example, users have sequencing data from patients with a disease or (if calling de novo1260

mutations) sequencing data from family trios, and would like to identify genes with excess muta-1261

tional burden in patients (e.g. an excess of missense or LOF variants). One approach is to infer the1262

relative risk for each gene (denoted as γi for gene i), defined as the expected ratio of the number1263

of variants in patients to the number of variants in healthy individuals.1264

Likelihood Let Ei be the number of variants we expect to observe for gene i given the study1265

sample size and sequence-dependent mutation rates (e.g. expected counts obtained using the1266

mutational model developed by [84]). Next, let Oi be the number of variants observed in patients1267

for gene i. Then, we define the likelihood for ηi as1268

Oi | ηi ∼ Poisson(ηiEi).

Prior Because ηi is non-negative, one may want to choose a gamma prior with parameters αi1269

and βi:1270

ηi ∼ Gamma(αi, βi).
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Gene shet LOEUF

RPL11 0.75 0.3

RPL18 0.72 0.28

RPL5 0.71 0.17

RPL35A 0.67 0.41

RPL15 0.61 0.27

RPL26 0.61 0.38

RPS15A 0.61 0.56

RPS7 0.60 0.31

RPS10 0.60 0.27

RPS26 0.58 0.48

RPL27 0.56 0.48

RPS24 0.48 0.59

RPS29 0.40 1.2

RPS27 0.31 0.64

RPS28 0.26 0.8

RPL35 0.25 0.72

Supplementary Table 1: LOEUF and shet for ribosomal proteins associated with Diamond-Blackfan

anemia
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Supplementary Figure 2: Additional validation analyses. A) Precision-recall curves comparing the per-
formance of shet estimates from GeneBayes against other constraint metrics in classifying non-essential genes. B)

Precision-recall curves comparing the performance of shet against other constraint metrics in classifying developmen-
tal disorder genes. C) Enrichment of de novo mutations in patients with developmental disorders, calculated as the
observed number of mutations over the expected number under a null mutational model. We plot the enrichment of
missense, splice, and nonsense variants in the 10% of genes considered most constrained by shet (blue) and in all
other genes (gray), including (left) and excluding (right) known developmental disorder genes. Bars represent 95%
confidence intervals.
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