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S1. Simulation Study with Discrete Covariates

We use the same setting as the simulation study in Janes and Pepe (2009), where covariate Z is a discrete
scalar. As discussed in the introduction section of main manuscript, our point estimator reduces to the
nonparametric estimator considered by Janes and Pepe (2009) when covariate takes finite values. However,
our inference procedure, especially the sample-based variance estimator, is different from the proposal in
Janes and Pepe (2009) and is the focus of the evaluation here.

The biomarker from cases M7 and controls My follows normal distribution conditional on Z: My ~ N(0,1)
and My ~ N(0.9,1) if Z =0, My ~ N(0.2,1) and M; ~ N(0.9,1) if Z = 1. We consider both specificity
at controlled sensitivity level and sensitivity at controlled specificity level in this study, since specificity at
controlled senstivity level is of interest for this paper whereas the reverse way allows us to directly compare
with the performance in Janes and Pepe (2009). The true covariate-adjusted specificity is 0.20, 0.31, 0.48,
and 0.60 under controlled sensitivity level 0.95, 0.90, 0.85 and 0.80. The true covariate-adjusted sensitivity
is 0.21, 0.33, 0.50, 0.80 under controlled specificity level 0.95, 0.90, 0.85 and 0.80. We implement both
sample-based standard error and bootstrap-derived standard error. With mean and SE of estimators, we
construct Wald-type confidence intervals as well as logit-transformed confidence interval (Pepe et al. 2003,
page 102). Janes and Pepe (2009) reported that logit-transformed confidence interval can improve coverage
when controlled specificity is close to 0 or 1.

Table S1 and S2 present the simulation results from this setting. Our standard error estimators are
close to the standard deviation obtained in both tables, indicating that our proposed inference procedures
are effective. Comparing Table S1 and the results in Janes and Pepe (2009), our sample-based inference
procedure achieves better covarage rate, especially when controlled specificity is 0.95. Although Table S2
focus on estimating specificity under controlled sensitivity and Janes and Pepe (2009) is the reverse way, the
evaluation metrics such as percentage bias and confidence interval coverage rates are comparable between
the two studies. We again find that our proposed method has similar or even higher coverage rate comparing
with Janes and Pepe (2009).

S2. Proof of Theorems

Proof of Theorem 1. We first establish the consistency and asymptotic normality of ,@ These results for
quantile regression have been established by, for example, Koenker (2005, section 4.1.1 and theorem 4.1)
under fixed design. Although we consider random design, among other assumptions, similar arguments
follow through to give the consistency of B and
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Table S1: Results under the simulation setting with discrete covariate values. Sensitivity po under controlled

specificity ¢g is estimated and presented.

Sample-based Boostrap-based
SE Cov  LCov SE Cov LCov
¢o = 0.95, pg =0.21
100 310 885 1190 93.00 92.66 905 92.02 90.48

ny =no Bias SD

200 166 642 795 91.52 91.74 671 93.78 92.94
500 93 416 467 91.72  91.52 429 93.56 93.10
1000 44 293 324 93.16 93.02 304 93.88 93.74

¢o = 0.90, po =0.33
100 200 920 1126  92.50 93.30 962 93.78 94.20

200 95 670 770 9220 92.98 691 94.04 94.38
500 49 424 466 92.86 92.76 438 93.88 93.96
1000 19 300 323 93.68 93.48 309 9412  94.60

$o = 0.85, po = 0.50
100 108 872 1017 92.42 93.84 919 93.98 95.80

200 39 640 706 92.58 93.46 657 93.96 94.88
500 20 400 434 93.46 93.62 416 93.74 94.54
1000 2 284 300 94.00 94.20 291 94.34  94.56
$o = 0.50, po = 0.80
100 -15 607 683 93.70 95.22 640 95.10 96.12
200 -13 421 469 9432 9534 444 94.70 95.80
500 0 270 286 94.24 94.94 276 94.82 95.04
1000 -16 192 200 95.04 95.04 195 95.10 94.96

Bias, (p—p) x 10%; SD, standard deviation (x10%); SE, mean standard error
(x10%); Cov (%) and LCov (%), coverage rates of 95% confidence interval

and logit-transformed confidence interval.



Table S2: Results under the simulation setting with discrete covariate values. Specificity po under controlled

sensitivity ¢q is estimated and presented.

Sample-based Boostrap-based
SE Cov  LCov SE Cov LCov
po = 0.95, ¢g =0.19
100 202 819 1071  90.76  93.08 839 93.12 91.46

ny =no Bias SD

200 94 570 724 91.04 92.30 608 94.94 94.58
500 32 372 417 90.28 91.70 382 9420 94.16
1000 22 261 287 91.36 91.74 270 94.58 94.66

po = 0.90, ¢ = 0.30
100 144 871 1117 90.86 9234 909 94.26 95.28

200 42 612 730 90.94 92.02 651 94.68 95.26
500 27 389 439 91.76  92.28 410 94.80 94.98
1000 6 282 303 92.08 92.36 290 93.98 94.30

Po :0.85, ¢0 =047
100 42 886 1061 91.10 92.36 912 94.18 95.66

200 16 632 709 90.88 91.74 647 93.84 94.68
500 10 398 436 92.48 92.68 411 94.32 94.66
1000 -6 286 301 92.58 92.78 288 04.22 94.32
po = 0.80, ¢o = 0.59
100 1 832 971 91.22 92.28 863 94.48 95.84
200 -8 588 660 91.40 92.04 612 94.52  95.50
500 0 372 402 92.62  92.90 384 94.72 95.12
1000 -3 265 280 93.46 93.42 270 94.74  94.76

Bias, (¢—¢) x 10; SD, standard deviation (x10%); SE, mean standard error
(x10%); Cov (%) and LCov (%), coverage rates of 95% confidence interval

and logit-transformed confidence interval.



where Dy = EZ®? and D, = E{F,(ZT 8,)Z%%}.
Next we turn to q@ By Condition 4a and the consistency of 3, the consistency of $ can be easily

established. For asymptotic normality, we have
no
ny* (6 — ¢0) = ny > S {I(Mo; < Z5B) — Pr(Mo < Z{ o)}

i=1

=ng * N {I(My; < ZEB) - Pr(My < Z1BI8 = B)}

i=1
+ n(l)/Q{Pr(Mo < Z{BIB = B) — Pr(Mo < Zj o)}

Since Fy(t; z) is differentiable at ZOTBO, in light of (1), Delta method leads to
d _ _
B, = N(o, cpo(1 — po) DI D' DyD; 1D2), (2)

where Dy = E{F(;(Z()Tﬁo)zo}. Meanwhile, A, (/@) can be written as
An(Bo) + {4n(B) — An(B0)}. (3)

n -
where A, (Bp) = nal/z i{I(MOi < ZLBy) — ¢o}. By central limit theorem,
i=1

An(Bo) % N(0,60(1 = o)) (4)
On the other hand,

E[{A,(B) — Au(B0)}?] = ng* ZE{I Mo; < Z38) — I(Mo; < Z{80)

i=1

— Pr(My < Z§ BIB) + Pr(My < Z§ Bo)}
= B(B[{1(M, < ZTB) ~ 1(My < Z o)
— Fo(ZEB) — Fol ZIBo)y? |zt T)
< E|I(My < Z{ B) — I(My < Z{ )
< B|Fy2(Z] B) — Foi(Z Bo).
By Markov’s inequality, A,(8) — An(Bo) -5 0.

Together with (2) and (4), Slutsky’s theorem yields the result. O

Proof of Theorem 2. Start with the cases, and write

U (B,p) =ny 'Y Zu{I(My; > Z1,8) — p},

i=1
V(B,p) = E[Z{I(My > Z] B) — p}].

It is known that {I(M; > ZlT,@) : B € RP} is Donsker (e.g. Kosorok 2007, lemma 9.12). Furthermore, A

is bounded by Condition 2. By permanence property of the Donsker class, {Z1I(M1 > ZlT ): B €RP}is

Donsker. Since Donsker implies Glivenko-Cantelli, it follows that, almost surely

B,pElp1,p2]



Thus, |[¥{8(p), p}I| < ||¥n{B(p), p}I| + [|¥4{B(p), p} — ¥{B(p), p}|| leads to, almost surely,
sup || T{B(p), p}|| = o(1).
pE[p1,p2]

It remains to be shown that, for any € > 0, there exists § > 0 such that if sup ||[¥{B(p),p}]| <
PE[p1,p2]
, then sup ||B(p) — Bo(p)|| < e. Suppose that this is not true. Thus, for each § > 0, there exists
PElp1,p2]
(¢,v) such that ||[¥(¢,v) — U{Bo(v),v}|| < d§ and ||¢ — Bo(v)|| > ¢ for some constant ¢ > 0. Then, there

exists a subsequence of (¢,v) that converges to, say, ((o,V0), which implies that (5 # Bo(v0) also solves
U(B,1v0). This contradicts the fact that Bo(p) is the unique solution of (3, p) for all p € [p1,p2] , as
guaranteed by Condition 3 and 4a. Therefore,
sup {1B(p) — Bo(p)l| = o(1)
pE[p1,p2]
almost surely.

In light of the above Donsker result, for given p, ni/z{‘l/n (B,p)—T (8, p)} converges weakly to a Gaussian
process. Under Conditions 2 and 4b, n}/ 2{\I!n (B,p)— (8, p)} is asymptotically uniformly equicontinuous in
probability using arguments similar to Huang (2017), appendix. Thus, for any positive sequence d,, = o(1),

~swp %[00 (B,p) = Va8, p) — W(B.p) + ¥ (B p)| = 0p(1);
[1B=B"[|<dn, pElp1,p2]
note that the above expression does not actually involve p. Therefore,
sup [ W, {Bo(p), p} + ¥{B(p). p}I| = 0p(n ).
pElp1,p2]

Under Condition 4b, by component-wise Taylor expansion, one can show that, almost surely,

wp  NEB(): P} + BIZP 12T Bol0)ZHB(p) = Bol] _ .
pPE(p1,p2] ||ﬁ(p) - ﬂO(P)H

Thus,
2 {B(p) — Bo(p)} = /> (BIZF 11{Z] Bo(p) Z1})) " WalBo(p). p} + 0p(1),
uniformly in p € [p1, p2]. Therefore, nl/Q{,B( =80} over [p1, p2] converges weakly to a Gaussian process.
Now, we turn to the controls. Write T',(8) = ng* Z I(My; < Zg;ﬂ) and I'(B) = Pr(My < Zg,@)
Similar arguments as above give

Sup ITn(B8) = L(B)| = o(1).

Thus,
sup  [(p) — do(p)| < sup  [T{B(p)} — T{Bo(p)}| + o(1) = 0(1)

pPE[p1,p2] pE[p1,p2]
almost surely, given the strong consistency of ,@() and the continuity of T'(3). To establish the weak

convergence of (E(p), one can show that, for any positive sequence d,, = o(1),

sup  ng/*|Ta(8) — Tu(8) — T(B) + T(8))] = 0,(1),
[1B—8'||<dyn

using similar arguments as for the cases. Therefore
ng*{8(p) — do(p)} = n*[Ta{B(p)} — T{Bo(p)}]
=12 [T {Bo(p)} — T{Bo(p)}] + ng* [T{B(p)} — T{Bo(p)}] + 0p(1)
=y [Ta{Bo(p)} — T{Bo(p)}] + ny/* T {Bo(p) HB(p) — Bolp)} + 0p(1)

uniformly in p € [p1, p2]. Then, the weak convergence of ¢?(p) follows. [

(p)
(p)

—

p



S3. Details about two monotonization methods

To recover the monotonicity of the constructed ROC curves, we applied two monotonization methods based
on Huang (2017). Using the notations in the main manuscript Section 2, for linear dynamic regression model

with covariate z and coefficient 3, the quantile regression model is
Fyl(t;2) = 27 B(1),

where z = (1, z). Denote the estimator of 3(t) by B(t) and the estimator for specificity by (E() Note that
both B(t) and ¢(-) are piece-wise constant and thus we can identify a countable set of breakpoints. Given a
starting quantile point 7, let

max [t : 1 < T, sup {fz/T,a(t) - ZTB(T)} < 0]
zEZ,

be the left nearest monotonicity-respecting neighbor and
min [t : ¢ > 7, inf {(Z7B(t) — 27B(r)} > 0]
zEZ,

be the right nearest monotonicity respecting neighbor. We denote the collection of all these points, including
the starting point 7, by M. Huang (2017) proposed to adopt an adaptive interpolation method to connect the
original estimator B( -) linearly between adjacent points in the break point set M. Denote the monotonicity-
respecting estimator by ﬁ( ). For any ¢ between two adjacent points in M, say 71 < t < 7o, ,B(t) is constructed
by

~ To—1 = t—1 o

B(t) = B(m1) + B(72).

T2 —T1 T2 —T1

For t < min(M) we set B(t) = B(minM), and for t > max(M) we set 3(t) = B(mazM). The regression-
based monotonization method directly applies the above approach on the coefficient estimator ,@ of our

quantile regression model. The ROC-based monotonization method uses regular quantile regression estimator
,8( ) to obtain the estimated specificities ¢( ), and then applies the adaptive interpolation approach on ¢( )
to obtain (b()
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Figure S1: Summarization of the computation time using two inference methods with different sample sizes.
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