
 

Page 1 / 45 

Supplementary Material 
For “Genetic Analysis of Right Heart Structure and Function in 40,000 People”. 
 
Supplementary Note 3 

Supplementary Results 3 
Deep learning quality assessment and inter-rater reliability 3 
Measurement of right heart structures 4 
Comparison of right atrial area and volume measurements 4 
Comparison to previous studies investigating heart size and function 4 
Right heart structures are correlated with their left heart counterparts 5 
Pre-existing cardiovascular diseases associated with abnormal right heart 
measurements 5 
GWAS quality control 6 
Replication of pulmonary artery diameter loci in FHS 6 
TWAS highlights role of WNT signaling in pulmonary root diameter 6 
GWAS loci enriched in uncommon and difficult to phenotype cardiac diseases 7 
Rare variant association analysis 8 
RVEF polygenic score replication in MGB and BioBank Japan 8 
Pulmonary artery polygenic score replication in MGB, FHS, and BioBank Japan 8 
Technical limitations related to MRI acquisition and deep learning 9 

Supplementary Methods 10 
Cardiovascular magnetic resonance imaging protocols 10 
Deep learning model development 10 
Deep learning model output quality control 10 
Right atrial measurements from the four-chamber long axis view 11 
Pulmonary artery measurements from the short axis view 11 
Right ventricular annotation and Poisson surface reconstruction integrating long- and 
short-axis data 12 
Left heart phenotype measurements 13 
Phenotypic characterization of right heart structure and function 13 
Transcriptome-wide association study 14 
OpenTargets gene set enrichment at GWAS loci 14 
Exome sequencing and rare variant association analysis 14 
Analysis of polygenic scores in BBJ, MGB, and FHS 15 

Supplementary References 17 

Supplementary Figures 22 
Supplementary Figure 1: Sample flow diagram 23 
Supplementary Figure 2: Cardiac phenotype distributions 24 
Supplementary Figure 3: Correlation between cardiovascular imaging phenotypes 25 



 

Page 2 / 45 

Supplementary Figure 4: Right ventricular volume curves without adjustment for left 
ventricular volumes 26 
Supplementary Figure 5: Genetic correlation between cardiovascular imaging phenotypes 27 
Supplementary Figure 6: GWAS quantile-quantile plots 28 
Supplementary Figure 7: Right atrium Manhattan plots 30 
Supplementary Figure 8: Right ventricle Manhattan plots 31 
Supplementary Figure 9: Pulmonary artery Manhattan plots 32 
Supplementary Figure 10: Loci significant after indexing on left heart traits 33 
Supplementary Figure 11: BAG3 locus for RVESV and LVESV 34 
Supplementary Figure 12: TTN locus for RVESV and LVESV 35 
Supplementary Figure 13: GATA4 locus for RVESV and LVESV 36 
Supplementary Figure 14: OBSCN locus for RVESV and LVESV 37 
Supplementary Figure 15: ADCY5 locus for RVESV/LVESV 38 
Supplementary Figure 16: Pulmonary artery GWAS locus external replication 39 
Supplementary Figure 17: SNPs near TBX5/TBX3 40 
Supplementary Figure 18: Pulmonary artery TWAS 41 
Supplementary Figure 19: Chamber-specific cell type enrichment 42 
Supplementary Figure 20: Gene sets enriched near GWAS loci 43 
Supplementary Figure 21: JUP locus for RVESV and LVESV 44 
Supplementary Figure 22: Training set sample size 45 

 

  



 

Page 3 / 45 

Supplementary Note 

Supplementary Results 

Deep learning quality assessment and inter-rater reliability 
The four-chamber long axis deep learning model output was compared to a randomly chosen 
held-out test set of 40 additional manually annotated images (by two annotators: JPP and VN) 
that were not used for training or validation. The Dice coefficients for the right atrial and right 
ventricular blood pools between the annotators and the model were uniformly high—above 0.90 
on average with low variance (standard deviation ranging from 0.03-0.04) (Supplementary 
Table 14). 
 
The short axis deep learning model output was first assessed against 57 test set images 
(manually annotated by JPP). The average Dice coefficient of the deep learning model output 
was 0.89 ± 0.21 (representing mean ± standard deviation [SD]) for the right ventricular blood 
pool and 0.96 ± 0.16 for the pulmonary artery blood pool. From those values, we observed that, 
despite similar point estimates, the short axis measurements had greater variance in their Dice 
scores compared to the four-chamber long axis measurements, despite the short axis model 
having more training data.  
 
We then had three experts (JPP, VN, and JC) annotate 50 randomly chosen held-out short axis 
images that were not used to train the deep learning model. Dice scores for the short axis right 
ventricular blood pool among the three raters ranged from 0.80-0.87, those for the pulmonary 
artery ranged from 0.76-0.82, and those for the left ventricular blood pool ranged from 0.75-0.89 
(Supplementary Tables 15-17). The annotators’ agreements with the deep learning model 
output ranged from Dice 0.79-0.90 for the RV, 0.71-0.81 for the PA, and 0.83-0.93 for the LV. 
 
Across all comparisons, we observed the same pattern of high Dice score standard deviation for 
short axis annotations when compared to the same structure being annotated in the four-
chamber view. We looked at properties of all available images on which the deep learning 
models were successfully applied (24,378,930 short axis images and 2,296,549 four-chamber 
long axis images). On average, the short axis images contained 39,600 ± 4,500 pixels, whereas 
the four-chamber long axis images contained 35,200 ± 3,700 pixels. This yielded a larger 
coefficient of variation (standard deviation divided by mean) for the number of pixels in short 
axis images than in four-chamber long axis images (0.114 vs 0.105). In addition, the portion of 
each image occupied by the structures of interest was smaller in the short axis images than in 
the four-chamber long axis images. The right ventricular blood pool was measured in both views 
and offers a direct comparison: 0.68±0.79% of pixels in the short axis and 1.78±0.53% of pixels 
in the four-chamber long axis view were annotated as belonging to the right ventricle. We 
concluded that both (a) the portion of the image occupied by structures of interest (0.68% for 
short axis vs 1.78% for four-chamber long axis), and (b) the variability of how much of the image 
is occupied by those structures (coefficient of variation 1.16 for short axis and 0.30 for four-
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chamber long axis) likely contribute to the greater variation in Dice score for the annotated 
structures of the short axis images. Of note, when the Dice scores were weighted by the total 
number of pixels attributed to the RV (represented by the “Weighted Dice” columns in 
Supplementary Tables 15-17), we found that the variance was lower, consistent with greater 
agreement in the images that ultimately contribute more pixels to the RV estimates in the 
downstream Poisson reconstruction models. 

Measurement of right heart structures 
The right atrium was only consistently visible in one view (the four-chamber long axis view), and 
therefore a 2-dimensional area was computed by summing the pixels and multiplying by their 
width and height. We computed the maximum and minimum area during the cardiac cycle, as 
well as the fractional area change (RA FAC), which is the ratio of the change in area between 
the maximum and minimum area divided by the maximum area. 
 
The right ventricle has a complex 3-dimensional geometry; to estimate right ventricular 
structure, we integrated data from the short axis views and the four-chamber long axis view with 
a Poisson surface reconstruction approach, detailed in the Supplementary Methods. We 
measured the maximum volume (right ventricular end diastolic volume; RVEDV), the minimum 
volume (right ventricular end systolic volume; RVESV), the difference between those two 
volumes (stroke volume), and the ejection fraction (RVEF). 
 
The pulmonary trunk’s elliptical minor axis (diameter) was computed from short axis images1,2. 
For participants whose pulmonary trunk was visible in multiple short-axis slices, we refer to the 
component closest to the right ventricle as the pulmonary root, and the distal-most component 
as the proximal pulmonary artery. The proximal pulmonary artery diameter was computed from 
the same imaging slice during right ventricular systole and diastole. An estimate of pulmonary 
artery strain was computed, but this estimate is subject to significant limitations (see 
Limitations). 

Comparison of right atrial area and volume measurements 
As a sensitivity analysis, we compared the consistency over time of two right atrial 
measurement methods (four-chamber area vs area-length method, described in 
Supplementary Methods) in 2,436 individuals with imaging data at two separate imaging visits. 
The second visit, on average, occurred shortly after the first (mean 2.25 years; standard 
deviation 0.12 years). The maximum area measurement was more tightly correlated over time (r 
= 0.851) than the maximum volume measurement (r = 0.840). Therefore, we used the right atrial 
area-based measurements in our primary analyses. 

Comparison to previous studies investigating heart size and function 
The estimates of right atrial area from the four-chamber view, as reported in Supplementary 
Tables 1-2, are similar to those previously reported3, as are the proximal pulmonary artery 
diameters4. The estimates of right ventricular stroke volume are comparable to prior reports, and 
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both end diastolic and end systolic volumes fall in between what has been previously reported 
for steady-state free precession magnetic resonance imaging5,6. Consequently, our right 
ventricular ejection fraction estimates also fall between those of Foppa, et al, and Bai, et al. 

Right heart structures are correlated with their left heart counterparts 
Our analysis of the cross-correlation between cardiac phenotypes included both right- and left 
heart structures(Supplementary Figure 3). The volumetric measurements of the right and left 
ventricles were well correlated with one another (correlation between ventricular volumes was 
0.86 at end-diastole and 0.74 at end-systole). In contrast, there was weaker correlation between 
right and left ventricular ejection fraction (correlation 0.44). This is consistent with drivers of 
contractility being only partially shared between the two ventricles, as well as multiplicative error 
due to the calculation of ejection fraction from two separately measured volumes. The ventricles 
nevertheless had well correlated stroke volumes (correlation 0.90), which is expected because 
stroke volume at steady-state is nearly equal for both ventricles in the absence of valvular 
regurgitation or shunt.  
 
The proximal pulmonary artery diameter measured in end systole was modestly positively 
correlated with RVESV (correlation 0.48) and showed a weak inverse correlation with right 
ventricular ejection fraction (correlation -0.23), suggesting shared influences on the pulmonary 
artery diameter and right ventricular size and function. In addition, the pulmonary artery 
diameter and that of the ascending aorta—which share an embryological origin—were modestly 
correlated (correlation 0.43). 

Pre-existing cardiovascular diseases associated with abnormal right heart 
measurements 
First, we tested for association with PheCode-based disease definitions, which are derived from 
hospital diagnosis codes7. The right heart phenotypes were strongly correlated with atrial 
arrhythmias. The right atrial phenotypes were also associated with valvular diseases; the right 
ventricular phenotypes with obesity and heart failure; and the pulmonary artery phenotypes with 
obesity, blood pressure, and sleep disorders (Figure 2, Supplementary Table 3). 
 
Next, we focused on three diseases (atrial fibrillation, congestive heart failure, and pulmonary 
hypertension, defined in Supplementary Table 4) that have clinically established chamber-
specific links to the right heart8–10. We identified 1,098 individuals with a diagnosis of atrial 
fibrillation or flutter prior to undergoing MRI; 282 with congestive heart failure; and 21 with 
pulmonary hypertension. In a linear model, the right atrial fractional area change (RA FAC) was 
1.1 standard deviations (SD) lower among those with a history of atrial fibrillation or flutter than 
those without (P=2.2E-309). The right ventricular ejection fraction (RVEF) was 0.51 SD lower 
among those with heart failure (P=6.6E-19). The proximal pulmonary artery diameter was 1.0 
SD larger among those with pulmonary hypertension (P=5.1E-06). These findings confirmed 
expected correlations with prevalent cardiovascular diseases. 
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Finally, for two cardiovascular diseases—pulmonary hypertension and congestive heart 
failure—we modeled right ventricular volume over the course of the cardiac cycle for individuals 
with and without disease (Figure 3). In these models, pulmonary hypertension (present in 21 
participants) was associated with elevated right ventricular volume throughout the cardiac cycle, 
which persisted after adjustment for left ventricular volume. The excess volume that was 
attributable to disease accounted for as much as 21% of the total RV end systolic volume 
(RVESV), yielding a reduced RVEF (two-tailed P = 3.9E-04 against the null hypothesis of no 
effect). Congestive heart failure (present in 282 participants) was also associated with elevated 
RVESV in an analysis that was not adjusted for left ventricular volume (14% elevation; P = 
5.2E-17; Supplementary Figure 4). However, after accounting for left ventricular volume, the 
presence of a heart failure diagnosis was associated with relatively spared right ventricular 
volume (9.6% reduction at end-systole; P = 6.9E-09). As a negative control, 3,949 participants 
with cataract—a disease of the lens of the eye that is not expected to be linked to right 
ventricular size—demonstrated no significant difference in right ventricular volume compared to 
cataract-free individuals. 

GWAS quality control 
Among the right heart traits, the phenotype with the greatest lambda genomic control (GC) was 
1.15 from the RVEDV GWAS; ldsc revealed an intercept of 1.02, consistent with polygenicity 
rather than population stratification (Supplementary Table 18)11. Seven lead SNPs had Hardy-
Weinberg equilibrium (HWE) P < 1E-06; re-analysis of those SNPs in a strictly European subset 
of samples resolved the HWE violations and yielded similar effect estimates (Supplementary 
Table 19). 

Replication of pulmonary artery diameter loci in FHS 
We found good concordance between the pulmonary artery (in systole) GWAS results and the 
effect estimates produced from genetic analysis of participants from the Framingham Heart 
Study (FHS) who had genetic data and pulmonary artery measurements available12,13. 28 of the 
lead SNPs for pulmonary artery diameter were identified in FHS. Of these, 25 had a concordant 
effect direction with the UK Biobank (binomial test two-tailed P = 2.7E-05; Supplementary 
Table 11). At stringent P value thresholds (UK Biobank P < 5E-08 or stronger), there was strong 
correlation between UK Biobank and FHS effect size estimates (r = 0.71 to 0.81; 
Supplementary Figure 16). 

TWAS highlights role of WNT signaling in pulmonary root diameter 
Across all phenotypes, the strongest GWAS association was between the pulmonary root 
diameter and rs17608766 (P = 3.1E-48), near GOSR2. In a transcriptome-wide association 
study (TWAS) based on gene expression data from the aorta from GTEx v714, at that locus we 
observed an association between pulmonary root diameter and WNT9B (all results with TWAS 
P < 0.05 in Supplementary Table 20). Interestingly, WNT9B is expressed in the endocardium 
overlying the heart valves during development, and loss of WNT9B leads to defective valve 
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formation15. In addition to this locus’s associations with aortic valve area noted above16, it was 
also recently shown to be linked with the mitral valve annular diameter17. 
 
The strongest TWAS association for the proximal pulmonary artery diameter was with PDGFD, 
which is also the nearest gene to the lead SNP rs2128739. PDGFD loss-of-function variants 
were recently implicated in pulmonary hypertension in a sequencing-based case-control study18. 
The pulmonary artery and pulmonary root TWAS results are depicted in Supplementary Figure 
18. 
 
We also conducted chamber-specific cell type enrichment analyses, using gene expression at 
the GWAS loci to identify relevant cell types associated with variation in each chamber. We 
performed stratified linkage disequilibrium (LD) score regression analysis that integrated single 
nucleus RNA-sequencing data from Tucker et al19. The strongest enrichment was seen between 
RVEF and right ventricular cardiomyocytes, while the strongest enrichment for the right atrial 
phenotypes was for vascular smooth muscle cell-like nuclei (Supplementary Figure 19). Future 
studies with larger sample sizes will be required to assess genotype-specific expression levels 
within each chamber. 

GWAS loci enriched in uncommon and difficult to phenotype cardiac 
diseases 
We sought to investigate the association between loci identified in this study and diseases that 
are not well represented, such as congenital heart diseases, or difficult to identify due to lack of 
specific diagnostic codes in the electronic health record, such as arrhythmogenic right 
ventricular cardiomyopathy. We performed proximity-based testing to assess enrichment of 
gene sets near the GWAS loci and we identified disease-related gene sets using the 
OpenTargets platform v21.04 (gene lists in Supplementary Table 21)20. We then asked 
whether more of our loci than expected by chance were found within 500kb of the genes from 
each gene set. Note that because the number of permutations generated by SNPSnap in the 
following tests was 10,000, the strongest possible association P value was 1.0E-0421. 
 
Interestingly, the right atrial loci were in proximity to eight atrial septal defect-related genes 
(DMPK, FOXP1, GATA4, MYH6, NKX2-5, NRG1, NSF, RBM45) with one-tailed permutation P = 
2.8E-03. The right ventricular GWAS loci were in proximity to 10 ARVC-related genes (BAG3, 
DSP, JUP, MTO1, OBSCN, PLEC, PPP1R13L, RBM20, TMEM43, TTN) with P = 1.0E-04. And 
the pulmonary artery loci were in proximity to nine conotruncal abnormality-linked genes 
(BAZ1B, CHTOP, DVL2, DYNC2H1, GATA4, KAT6A, MECOM, NKX2-5, SMARCA4) with P = 
4.7E-03 (Supplementary Figure 20). 
 
We also analyzed a previously described panel of 129 cardiomyopathy-linked genes to contrast 
RVESV loci with LVESV loci22. Eleven of these genes were within a 500kb radius of the RVESV 
loci; of these, seven (ALPK3, BAG3, PLEKHM2, RBM20, SHOC2, TMEM43, and TTN) were 
found near genome-wide significant LVESV loci; two (GATA4 and JUP) were unique to the 
RVESV; and two (MTO1 and VCL) were unique to the RVESV/LVESV ratio. The RVESV and 
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LVESV associations at the GATA4 locus have been described above (Supplementary Figure 
13). JUP, the gene that encodes plakoglobin, is a desmosomal protein that has also been 
associated with arrhythmogenic right ventricular cardiomyopathy and palmoplantar 
keratoderma, a syndrome known as Naxos disease (Supplementary Figure 21)23–25. Variants 
in MTO1 are associated with hypertrophic cardiomyopathy26, while variants in VCL are 
associated with pediatric-onset dilated cardiomyopathy27. 

Rare variant association analysis 
Rare variant analyses were conducted in the 11,307 participants with exome data and right 
atrial measurements, 11,586 with right ventricular measurements, and up to 12,277 with 
pulmonary artery measurements. After accounting for multiple testing, no gene-phenotype 
association in the loss-of-function (LoF) collapsing burden test achieved a Bonferroni-corrected 
significance of P < 1.9E-06 (derived from 0.05/[26793 gene-phenotype pairs with >= 10 LoF 
variant carriers]). The strongest association was between LoF variants in AAGAB and 
pulmonary artery diameter (P = 2.6E-06); the full list of association results is provided in 
Supplementary Table 22. 

RVEF polygenic score replication in MGB and BioBank Japan 
We pursued external replication of the association between the RVEF polygenic score and 
dilated cardiomyopathy (DCM) in the Mass General Brigham BioBank (MGB)28, where we found 
the RVEF polygenic score to be associated with DCM (1,414 cases and 21,972 controls; odds 
ratio [OR] 1.12 per SD decrease, P = 3.2E-05). After adjustment for a polygenic score produced 
from the LVESV indexed for body surface area (LVESVi) GWAS using PRScs-auto, this 
association remained significant (OR 1.11 per SD decrease, P = 8.0E-05)29.  
 
We also pursued external replication in BioBank Japan (BBJ), a Japanese-ancestry cohort30,31. 
In BBJ, the RVEF polygenic score was also inversely associated with DCM with a similar effect 
size to that seen in MGB (1,058 cases and 153,392 controls; OR 1.11 per SD decrease, P = 
5.0E-04). After adjustment for the LVESVi score, this association attenuated to OR 1.05 per SD 
decrease (P = 0.08).  

Pulmonary artery polygenic score replication in MGB, FHS, and BioBank 
Japan 
In external validation, the PRScs-auto-derived polygenic score for the pulmonary artery 
diameter in systole remained significantly associated with pulmonary hypertension in MGB (866 
cases and 23,230 controls; OR 1.11 per SD; P = 3.1E-03). However, this association did not 
replicate in BBJ (1,403 cases and 169,427 controls; OR 0.99 per SD; P = 0.77).  
 
We also assessed the association between the pulmonary artery polygenic score and the 
quantitative measurement of the pulmonary artery diameter in an external cohort, the 
Framingham Heart Study (FHS)32. In 3,093 FHS participants with pulmonary artery diameter 
measurements and genetic data, a one SD increase in the polygenic score was associated with 
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a 0.17 SD increase in pulmonary artery diameter (P = 2.1E-21). The R2 of the model attributable 
to the polygenic score was 0.026. Based on our heritability estimate of 0.397, these results are 
consistent with the polygenic score accounting for 6.5% of the heritability of pulmonary artery 
diameter in this external cohort. 

Technical limitations related to MRI acquisition and deep learning 
The individuals who underwent MRI in the UK Biobank tend to be healthier than the remainder 
of the UK Biobank population, which itself is healthier than the general population. Because of 
limited follow-up time after MRI with few events to date, an incident disease analysis accounting 
for measured right heart phenotypes was not conducted in the subgroup of participants with 
MRI data in the UK Biobank. Dedicated right ventricular outflow tract views were not obtained as 
part of the UK Biobank imaging protocol, and therefore we have derived pulmonary artery 
measurements from basal short axis images. The right ventricular infundibulum has not been 
measured separately, but rather has been counted toward the right ventricular blood pool, 
consistent with previous analyses of the UK Biobank33. The short axis cardiovascular magnetic 
resonance images have a coarse 10mm spacing, which leads to partial volume imaging that can 
be particularly difficult to visualize at the apex of the right ventricle. This leads to under- or over-
estimation by human annotators and deep learning models. We have attempted to correct for 
this by incorporating the higher resolution four-chamber long axis data during the surface 
reconstruction process of the right ventricle. Participants’ cardiac rhythm at the time of MRI 
(particularly normal sinus rhythm versus atrial fibrillation) was not adjudicated. 
 
All measurements were derived from deep learning models of short axis or four-chamber long 
axis views from cardiovascular magnetic resonance imaging. The deep learning models have 
imprecision that would be reduced with larger training sets, such as those used by Bai, et al34. 
Like any deep learning model, these models can produce non physiologic measurements when 
presented with images that contain features not seen in the training data. An advantage of the 
semantic segmentation approach in this work is that outliers can be visually inspected and the 
model re-trained as needed. The deep learning models have not been tested outside of the 
specific devices and imaging protocols used by the UK Biobank and are unlikely to generalize to 
other data sets without additional fine-tuning. The right atrial measurements are two-
dimensional estimates of a three-dimensional structure and therefore cannot capture complete 
information about atrial volume. Pulmonary artery pressure measurements were not available, 
and therefore pulmonary artery distensibility was not computed. Pulmonary artery strain 
accuracy is further limited due to the descent of the heart during ventricular systole, causing the 
pulmonary artery diameter in systole and diastole to be measured at different locations along 
the length of the pulmonary artery, which likely causes strain to be underestimated. In future 
work, it would be interesting to assess the value of taking measurements that account for the 
descent of the heart for pulmonary artery measurements, which may improve the precision of 
strain estimates. 
 

  



 

Page 10 / 45 

Supplementary Methods 

Cardiovascular magnetic resonance imaging protocols 
At the time of this study, the UK Biobank had released images in over 45,000 participants of an 
imaging substudy that is ongoing35,36. Cardiovascular magnetic resonance imaging was 
performed with 1.5 Tesla scanners (Syngo MR D13 with MAGNETOM Aera scanners; Siemens 
Healthcare, Erlangen, Germany), and electrocardiographic gating for synchronization36. Several 
cardiac views were obtained. For this study, two views (the long axis four-chamber view and the 
short axis view) were used. In both of these views, balanced steady-state free precession cines, 
consisting of a series of 50 images throughout the cardiac cycle for each view, were acquired 
for each participant36. For the four-chamber images, only one imaging plane was available for 
each participant, with an imaging plane thickness of 6mm and an average pixel width and height 
of 1.83mm. For the short axis view, several imaging planes were acquired. Starting at the base 
of the heart, 8mm-thick imaging planes were acquired with approximately 2mm gaps between 
each plane, forming a stack perpendicular to the longitudinal axis of the left ventricle to capture 
the ventricular volume. For the short axis images, the average pixel width and height was 
1.86mm. 

Deep learning model development 
We had initially developed a deep learning model for annotating the right and left ventricular 
blood pools from short axis images based on 250 randomly chosen images, using similar 
hyperparameters to those described in the Online Methods. When visualizing the output from 
that model, we noted a recurring pattern of errors: the left and right atrium and proximal 
pulmonary artery (which were unlabeled at the time) were occasionally mis-labeled as being a 
part of the right or left ventricular blood pool. This motivated us to annotate those structures in 
the training data. Subsequently, we observed that the accuracy of the right ventricular blood 
pool segmentation was higher after training with 500 images than with 250. Therefore, we 
increased the number of segmented training images by approximately half again (to just over 
750, of which 714 were used for training), at which point we did not observe a substantial 
change in model accuracy. Retrospectively, we re-trained the same segmentation architecture 
with a range of training data sample sizes (from 50 to 714 training samples) using 5-fold cross-
validation in order to demonstrate the change in Dice score as the number of training samples 
increased (Supplementary Figure 22). 

Deep learning model output quality control 
Accuracy of the four-chamber long axis and short axis deep learning models was assessed with 
additional manually annotated images that were not used for model training or validation, with 
each annotation category (such as right ventricular blood pool) evaluated based on the 
Sørensen-Dice coefficient37,38, which scales from 0 (no agreement between manual and 
automated annotations) to 1 (perfect agreement). Images with no pixels assigned to a feature 
by either the truth labels or the deep learning model output were assigned to have a Dice 
coefficient of 1 unless otherwise specified.  
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Right atrial measurements from the four-chamber long axis view 
Three long-axis views were obtained in the UK Biobank (two-chamber, three-chamber, and four-
chamber). Of these, only the four-chamber view reliably captures the right atrium. We therefore 
treated the right atrium as a planar surface, counting the pixels that were labeled by the four 
chamber semantic segmentation model as right atrium, and multiplying that number by the 
height and width of each pixel to obtain a right atrial area (with units of cm2). For each individual, 
we obtained the maximum atrial area, the minimum atrial area, and the fractional area change 
(maximum area minus minimum area, divided by maximum area). 
 
As a sensitivity analysis, we computed right atrial volumes using the area-length formula from 
the four-chamber data. First, we converted the MRI slices into 1-voxel thick structured grids co-
rotated into the patient reference system. Then, we approximated the basal plane (i.e., at the 
level of the tricuspid valve) by fitting a line through the centers of the voxels located along the 
boundary separating the segmented RA and RV. We then took the line segment orthogonal to 
this boundary, on the plane of the four-chamber view, yielding the length (L). The area-length 

estimate for right atrial volume was then calculated as ! !
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the right atrium in the four-chamber view5. An analysis comparing the consistency of the right 
atrial area and volume estimates was conducted in individuals who had undergone imaging at 
two different visits (UK Biobank first and second imaging visits). 

Pulmonary artery measurements from the short axis view 
For many individuals in the UK Biobank, the pulmonary root and proximal pulmonary artery can 
be visualized in the basal-most short axis imaging planes. We refer to the apical-most segment 
that is visible just basal to the right ventricular outflow tract as the “pulmonary root.” We refer to 
the distal-most segment of the main pulmonary artery (visible in the basal-most short axis 
imaging plane) as the “proximal pulmonary artery.” When the pulmonary structures were visible 
in only one short axis plane, we assigned the measurement of this structure to be the pulmonary 
root, and assigned a missing value to the maximum and minimum pulmonary artery diameters 
for that individual. For participants in whom the proximal pulmonary artery was visible, we 
extracted measurements at two times in the cardiac cycle from the same short axis slice: once 
during right ventricular systole, and once during right ventricular diastole, designed to place 
physiological constraints on the timing of the expected maximum and minimum pulmonary 
diameter, respectively, throughout the cardiac cycle. 
 
After visualizing deep learning model output, we developed heuristics for quality control. The 
pulmonary root and proximal pulmonary artery were treated as ellipses. We computed major 
and minor axes using classical image moment algorithms1,2. For both the proximal pulmonary 
artery and the pulmonary root, the length of the minor elliptical axis (i.e., the diameter) was 
computed. We excluded any measurements where the artery was divided into more than one 
connected component39. For the proximal pulmonary artery, we permitted elliptical eccentricity 

values of up to 0.85 (where eccentricity is $1 − &$

'$
, with a being the elliptical major axis and b 
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being the elliptical minor axis). We permitted a liberal eccentricity cutoff for the proximal 
pulmonary artery because a common cause of high eccentricity was out-of-plane curvature of 
the proximal pulmonary artery, which erroneously elongates the major elliptical axis but does 
not significantly affect the minor elliptical axis (which we treated as the diameter). In contrast, for 
the pulmonary artery root, we required an eccentricity below 0.77. We used this more stringent 
cutoff at the root because we observed that a common cause of high eccentricity in these 
images was partial imaging of the right ventricle, which can spuriously foreshorten the minor 
elliptical axis of the pulmonary root. In addition, we excluded images where the cross-sectional 
area of the pulmonary artery was less than 2 cm2. 
 
We calculated a one-dimensional pulmonary artery strain estimate based on the systolic and 
diastolic pulmonary artery diameter, where strain can be represented as ()*)+,-.	0	12')+,-.)

12')+,-.
. 

Because of the descent of the heart during ventricular systole, strain was not always positive; 
we excluded negative strain measurements (discussed more in the Limitations section). 

Right ventricular annotation and Poisson surface reconstruction integrating 
long- and short-axis data 
The right ventricle was visible in two separate views (short axis and four-chamber long axis), 
permitting a reconstruction of its volume through the incorporation of these orthogonal data. 
Stacked together, images from the short axis view provided a complete 3-dimensional 
representation of the right ventricle; however, this stack had a coarse 10mm resolution along 
the length of the right ventricle from base to apex. In contrast, the four-chamber long axis view 
had approximately 2mm resolution along the same axis. To take advantage of the strengths of 
both sources of data, we reconstructed the surface of the right ventricle using a Poisson surface 
reconstruction technique described in detail below. This enabled the computation of right 
ventricular end diastolic volume, end systolic volume, stroke volume, and ejection fraction.  
 
To produce consistent estimates of the RV volumes throughout the cardiac cycle, we integrated 
information from the long- and short-axis segmentations by reconstructing 3-dimensional 
surfaces enclosing the RV cavity. We first used image metadata from the standard Image 
Position (Patient) [0020,0032] and Image Orientation (Patient) [0020,0037] DICOM tags to co-
rotate the 4-chamber and short-axis slices into the same reference system. Then, we 
implemented a custom reconstruction routine based on the Poisson algorithm to generate 
surfaces that fitted through the boundaries of the RV segmentations40. As the Poisson algorithm 
requires local curvature as an input, we specified for the surface normal directions to lie onto the 
plane of the MRI slices and to be locally oriented towards either the pericardium (at the free 
wall) or the left ventricle (at the interventricular septum). The reconstructed RVs were then post-
processed to correct for eventual artifacts in the basal short-axis slices, where the segmentation 
model may occasionally mistake the right atrium for part of the RV. Leveraging the fine 
resolution of the long-axis CMR in the apex-to-base direction, we discarded the portions of the 
reconstructed RVs that overextended above the plane separating the long-axis segmentations 
of the right atrium and of the RV (i.e., approximately co-aligned with the tricuspid valve plane). 
Finally, the RV volumes were estimated from the reconstructed surfaces using a discrete 
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version of the divergence theorem, as implemented in the open-source VTK library (Kitware 
Inc.). 

Left heart phenotype measurements 
To gain a better understanding of the distinction between genetic contributions to right and left 
heart structures, we also conducted analyses of the aortic diameter (paired with the pulmonary 
artery) and the left ventricular blood pool (paired with the right ventricular structures derived 
above). The aortic diameter derivation was previously described2; in brief, we trained a deep 
learning model to perform semantic segmentation of the ascending aorta in the same UK 
Biobank participants using the aortic distensibility view, and applied that model to all participants 
with available images. Left ventricular measurements were extracted from the same deep 
learning model output that was used to measure the right ventricular blood pool from the short 
axis images. The pixels were multiplied by their height, width, and depth to estimate a volume 
for each short axis image, and these per-image volumes were summed across all short axis 
images to produce left ventricular volumes for each participant. This enabled the computation of 
left ventricular end diastolic volume (LVEDV), end systolic volume (LVESV), stroke volume 
(LVSV), and ejection fraction (LVEF). 

Phenotypic characterization of right heart structure and function 
Using R version 3.6, we evaluated the mean and standard deviation of the right heart 
measurements, described them in age- and sex-stratified tables, and created sex-stratified 
kernel density plots with ggplot241. We computed the Pearson correlation between all right heart 
phenotypes and available left heart phenotypes that were previously described2,22. 
 
We tested for association between the right heart phenotypes and PheCode-based disease 
labels derived from ICD-10 codes and OPCS-4 codes7. The model was formulated as a linear 
model with the right heart phenotype as the outcome variable, with independent variables 
including the presence or absence of disease as a binary variable, and clinical covariates that 
included MRI serial number, sex, the first five principal components of ancestry, age at 
enrollment, the cubic natural spline of age at the time of MRI, and the genotyping array. This 
test was repeated for each disease and for each right heart phenotype. Splines were not placed 
on age at enrollment because of its collinearity with age at the time of MRI. 
 
We used three custom disease definitions to focus on chamber-specific disease relationships 
(atrial fibrillation with RA FAC; heart failure with RVESV; and pulmonary hypertension with the 
proximal pulmonary artery diameter; defined in Supplementary Table 4). Association between 
each prevalent disease (as a binary independent variable) and the right heart phenotypes (as 
the dependent variable) was performed using a linear model that also accounted for the MRI 
serial number, sex, the first five principal components of ancestry, age at enrollment, the cubic 
natural spline of age at the time of MRI, and the genotyping array. As above, splines were not 
placed on age at enrollment because of its collinearity with age at the time of MRI. 
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We also modeled the association between three diseases (pulmonary hypertension, heart 
failure, and cataract) and right ventricular volume throughout the cardiac cycle. The magnetic 
resonance images were acquired as a series of 50 images throughout a cardiac cycle, and so 
our Poisson surface reconstruction yielded right ventricular volume for each of these timepoints 
(one-fiftieth of a cardiac cycle). At each of these timepoints, we used a linear model to test the 
association between the right ventricular volume (independent variable) and the presence or 
absence of each of the three diseases, as well as covariates that included weight, height, age at 
enrollment, the cubic natural spline of age at the time of MRI, sex, genotyping array, and the 
first five principal components of ancestry. We repeated this with and without adjustment for left 
ventricular volume. In the results, we report the P value for the linear model regression 
coefficient for the disease. To model the estimated volume for individuals with or without 
disease, we compute the output of the linear model for a 55-year-old woman who enrolled 5 
years previously in the UK Biobank, 162 centimeters tall and weighing 75.6 kilograms. We then 
toggle the presence or absence of disease in the model to obtain volumes with or without 
disease, fixing other covariates. 

Transcriptome-wide association study 
We performed TWAS to identify correlated genes based on imputed cis-regulated gene 
expression42–44. We used FUSION (version: http://gusevlab.org/projects/fusion/ version 
sha1@0ab190e) with eQTL data from GTEx v7. Precomputed transcript expression reference 
weights for the aorta (used for the pulmonary artery traits), left ventricle (used for the right 
ventricular traits), and right atrial appendage (used for the right atrial traits) were obtained from 
the FUSION authors’ URL listed above14,43. FUSION was then run with its default settings. 

OpenTargets gene set enrichment at GWAS loci 
Using the OpenTargets platform version 21.04, we obtained gene sets corresponding to 
arrhythmias, channelopathies, myocardial diseases, and congenital anomalies by fetching all 
genes with an overall association score of 0.05 or greater (Supplementary Table 21)20. Using 
SNPsnap, we generated 10,000 sets of SNPs that matched our lead SNPs based on 
parameters including minor allele frequency, SNPs in linkage disequilibrium, distance from the 
nearest gene, and gene density. We counted the number of loci with lead SNPs from our study 
that fell within 500kb of one or more genes from each OpenTargets gene set. We then repeated 
the same procedure for each of the 10,000 synthetic SNPsnap lead SNP lists, to set a neutral 
expectation for the number of loci near an OpenTargets gene based on chance. This allowed us 
to compute one-tailed permutation P values for each group of disease genes (with the most 
extreme possible P value based on 10,000 randomly chosen sets of SNPs being 1·10-4). This 
procedure was performed with the mendel software, available at 
https://github.com/carbocation/genomisc2. 

Exome sequencing and rare variant association analysis 
We conducted an exome sequencing analysis in the first 50,000 exomes released by the UK 
Biobank. Exome sequencing was performed by Regeneron and reprocessed centrally by the UK 
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Biobank following the Functional Equivalent pipeline45. Exomes were captured with the IDT 
xGen Exome Research Panel v1.0, and sequencing was performed with 75-base paired-end 
reads on the Illumina NovaSeq 6000 platform using S2 flowcells. Alignment to GRCh38 was 
performed centrally with BWA-mem46. Variant calling was performed centrally with GATK 3.047. 
Variants were hard-filtered if the inbreeding coefficient was < -0.03, or if none of the following 
were true: read depth was greater than or equal to 10; genotype quality was greater than or 
equal to 20; or allele balance was greater than or equal to 0.2. Variants were annotated with the 
Ensembl Variant Effect Predictor version 95 using the --pick-allele flag48. LOFTEE 1.0 was used 
to identify high-confidence loss of function variants: stop-gain, splice-site disrupting, and 
frameshift variants49. In total, 49,997 exomes were available, of which a subset overlapped with 
a subset of the participants who had undergone magnetic resonance imaging. We restricted our 
analysis to the European genetic inlier subset of participants (described in Online 
Methods>Polygenic score analysis). We conducted collapsing burden tests with loss-of-
function variants. Variants with MAF >= 0.001 were excluded. We excluded genes with fewer 
than 10 loss-of-function variants passing the above criteria. Based on its importance in 
cardiovascular disease, we additionally evaluated TTN when only accounting for variants found 
within exons that are expressed in more than 85% of TTN transcripts in cardiac tissue 
(“TTN_HIGHPSI”)50. The collapsing burden test models were adjusted for weight (kg), height 
(cm), body mass index (kg/m2), the MRI serial number, age at enrollment, the cubic natural 
spline of age at the time of MRI, sex, the genotyping array, and the first five principal 
components of ancestry. 

Analysis of polygenic scores in BBJ, MGB, and FHS 
We pursued replication of the RV and PA polygenic scores in three external biobanks: BioBank 
Japan (BBJ), the Mass General Brigham Biobank (MGB), and the Framingham Heart Study 
(FHS). 
 
In BBJ, genetic data were available for 1099166 of the 1117425 score weights (98.4%). The 
analyses were modeled with logistic regression, modeling the presence or absence of disease 
using the scaled polygenic score, plus age, sex, and the first five principal components of 
ancestry as covariates. For the dilated cardiomyopathy analysis, this procedure was also 
repeated using a model that additionally accounted for the LVESVi polygenic score. 
 
In MGB, genetic data were available for all score weights. The analyses were modeled as 
logistic regression, modeling the presence of absence of disease using the scaled polygenic 
score, plus sex, cohort, and the first five principal components of ancestry as covariates. For the 
dilated cardiomyopathy analysis, this procedure was also repeated using a model that 
additionally accounted for the LVESVi polygenic score. 
 
In FHS, genetic data were available for 1099807 of the 1117425 score weights (98.4%). The 
analysis was modeled as linear regression, modeling the pulmonary artery diameter 
measurements using the scaled polygenic score, plus age, sex, and the first five principal 
components of ancestry as covariates. This procedure was repeated without the polygenic 
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score to allow for the determination of the additional gain in model R2 attributable to the 
polygenic score. 
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Supplementary Figures 
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Supplementary Figure 1: Sample flow diagram 
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Supplementary Figure 2: Cardiac phenotype distributions 

 
Histograms are shown for each trait in its natural units (x axis) with the number of individuals in 
each bucket on the y axis. Measurements for women are depicted in red and for men in 
turquoise. 
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Supplementary Figure 3: Correlation between cardiovascular 
imaging phenotypes 

 
Plots showing the correlation between cardiovascular phenotypes. Phenotype order within each 
plot was arranged by hierarchical clustering. Plot A: All phenotypes. Plot B: Left and right 
ventricular phenotypes. Plot C: Pulmonary trunk and aortic phenotypes. 
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Supplementary Figure 4: Right ventricular volume curves without 
adjustment for left ventricular volumes 

 
A variant of Figure 3 without accounting for left ventricular volumes. Top: Disease diagnoses 
that occur prior to the date of MRI are linked with distinct changes in the volume of the right 
ventricle throughout the cardiac cycle. The x-axis represents fractions of a cardiac cycle (divided 
evenly into 50 components, starting at end-diastole). The y-axis represents volume in mL. 
Values are generated with a linear model for each time point accounting for clinical covariates; 
the gray line represents the population without disease, while the orange line represents the 
population with disease. In the UK Biobank, participants with pulmonary hypertension have 
elevated right ventricular volumes throughout the cardiac cycle. Those with heart failure 
predominantly have right ventricular volumes that are elevated but relatively spared when 
accounting for left ventricular volumes (see Figure 3 for right ventricular volumes with 
adjustment for left ventricular volumes). Cataract is used as a control to demonstrate little 
association between a non-cardiovascular disease and the volume of the right ventricle. 
Bottom: At each time point, the right ventricular volume of individuals with disease is subtracted 
from the volume without disease and divided by the volume without disease. This represents the 
percentage above or below the disease-free right ventricular volume for those with disease. 
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Supplementary Figure 5: Genetic correlation between 
cardiovascular imaging phenotypes

 
Grids of genetic correlations between cardiac phenotypes are shown. Phenotype order within 
each plot was arranged by hierarchical clustering. Panel A: All phenotypes (left and right 
ventricles, right atrium, pulmonary artery, and ascending aorta). Panel B: Right atrial 
phenotypes. Panel C: Aorta and pulmonary trunk. Panel D: Ventricular phenotypes. The value 
printed at the intersection of two different phenotypes represents the genetic correlation (rg) 
between the traits. 
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Supplementary Figure 6: GWAS quantile-quantile plots 
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QQ-plots are displayed for each trait. SNPs are split between common (MAF >= 0.05) and low-
frequency (MAF >= 0.005). Rare SNPs with MAF < 0.005 were excluded from our analysis.  
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Supplementary Figure 7: Right atrium Manhattan plots 

 
Manhattan plots are depicted for the right atrial traits. Where relevant, the left column contains 
the native trait, and the right column contains the body surface area indexed-trait. The x axes 
represent the chromosome and position. The X-chromosome is represented as “Chromosome 
23.” The y axes represent the -log10(P), where P represents the BOLT-LMM association P 
value. Loci that contain SNPs with P < 5E-08 were labeled with the name of the nearest gene. 
These loci were colored blue if they were also associated with left heart phenotypes with P<5E-
08, and otherwise were colored red. 
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Supplementary Figure 8: Right ventricle Manhattan plots 

 
Manhattan plots are depicted for the ventricular traits. Where relevant, the leftmost column 
contains the native trait, the middle column contains the body surface area indexed-trait, and 
the rightmost column contains the trait indexed to its left heart-equivalent. The x axes represent 
the chromosome and position. The X-chromosome is represented as “Chromosome 23.” The y 
axes represent the -log10(P), where P represents the BOLT-LMM association P value. Loci that 
contain SNPs with P < 5E-08 were labeled with the name of the nearest gene. These loci were 
colored blue if they were also associated with left heart phenotypes with P<5E-08, and 
otherwise were colored red. 

  



 

Page 32 / 45 

Supplementary Figure 9: Pulmonary artery Manhattan plots 

 
Manhattan plots are depicted for the outflow tract traits. Where relevant, the leftmost column 
contains the native trait, the middle column contains the body surface area indexed-trait, and 
the rightmost column contains the trait indexed to its left heart-equivalent. The x axes represent 
the chromosome and position. The X-chromosome is represented as “Chromosome 23.” The y 
axes represent the -log10(P), where P represents the BOLT-LMM association P value. Loci that 
contain SNPs with P < 5E-08 were labeled with the name of the nearest gene. These loci were 
colored blue if they were also associated with left heart phenotypes with P<5E-08, and 
otherwise were colored red. 
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Supplementary Figure 10: Loci significant after indexing on left 
heart traits 

 
Each grid region represents the effect size (Beta) of the minor allele of the SNP (y axis) on the 
trait (x axis). The effect is represented by orange (increase) and blue (decrease). Black boxes 
within a grid region indicate that the association between the SNP and the trait has P < 5E-08; 
those with a gray box indicate P < 5E-06. P represents the BOLT-LMM association P value. 
“PA/Ao” is the ratio of the pulmonary artery diameter to the ascending aortic diameter. Exact P 
values are provided in Supplementary Table 7 for traits with P < 5E-08, and in the summary 
statistics where P >= 5E-08. Panel A: SNPs associated with pulmonary artery phenotypes after 
indexing on aortic diameter. Panel B: SNPs associated with right ventricular phenotypes after 
indexing on their corresponding left ventricular measurement. Loci may be represented multiple 
times if the lead SNP differs between two traits (e.g., TBX3, the lead SNP for which differs 
between the pulmonary artery to aorta ratio in systole and in diastole). 
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Supplementary Figure 11: BAG3 locus for RVESV and LVESV 
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Supplementary Figure 12: TTN locus for RVESV and LVESV 
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Supplementary Figure 13: GATA4 locus for RVESV and LVESV 
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Supplementary Figure 14: OBSCN locus for RVESV and LVESV 

 
  



 

Page 38 / 45 

Supplementary Figure 15: ADCY5 locus for RVESV/LVESV 
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Supplementary Figure 16: Pulmonary artery GWAS locus external 
replication 

 
SNPs from the pulmonary artery diameter in systole GWAS were clumped based on in-sample 
LD within the UK Biobank using a linkage disequilibrium r2 cutoff of 0.001 to identify 
independent signals. A lookup of the effect size of each SNP on pulmonary artery diameter in 
Framingham (FHS) was then conducted. Top left panel: Relationship between UK Biobank 
effect size (x axis) and FHS effect size (y axis). Top right panel: Same relationship, limiting 
SNPs to those with UK Biobank association P < 5E-08 (where P represents the BOLT-LMM 
association P value). Exact P values are available in Supplementary Table 11. Bottom panel: 
Correlation coefficient (y axis) between the FHS and UK Biobank SNP effect sizes for SNPs 
below the UK Biobank BOLT-LMM P value cutoff shown on the x axis. 
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Supplementary Figure 17: SNPs near TBX5/TBX3 

SNPs near TBX5/TBX3. Positioning on the y axis is based on genomic order. Color is based on 
effect direction. Black boxes indicate GWAS P value < 5E-08 from BOLT-LMM. Gray boxes 
indicate GWAS P value < 5E-06 from BOLT-LMM. Exact P values are provided in 
Supplementary Table 7 for traits with P < 5E-08, and in the summary statistics where P >= 5E-
08.  
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Supplementary Figure 18: Pulmonary artery TWAS 

 
TWAS results for the pulmonary artery phenotypes (systole, left; diastole, middle; and the root, 
right), using the aorta as the derivation tissue for gene expression. 
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Supplementary Figure 19: Chamber-specific cell type enrichment 

 
For the three primary right atrial phenotypes and four primary right ventricular phenotypes, 
stratified LD-score regression was performed. For the right atrial phenotypes, right atrial 
expression data was used, and for the right ventricular phenotypes, right ventricular expression 
data was used. The blue dashed line represents nominal significance while the red dashed line 
represents trait-wise significance.  
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Supplementary Figure 20: Gene sets enriched near GWAS loci 

 
One-tailed permutation P values based on overlap between GWAS loci and OpenTargets gene 
sets for arrhythmias and channelopathies (left panel), myocardial diseases (middle panel), and 
conotruncal or atrioventricular canal abnormalities (right panel). RA: right atrium. RV: right 
ventricle. PA: pulmonary artery or root. 
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Supplementary Figure 21: JUP locus for RVESV and LVESV 
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Supplementary Figure 22: Training set sample size 

 
The short axis segmentation model was re-trained with between 50 and the full 714 training 
samples (x axis) to demonstrate the dependence of the Dice score (y axis) for the blood pools 
of the left ventricle (LV), the pulmonary artery (PA) and right ventricle (RV) on the number of 
training samples. The center point represents the mean Dice score, based on 5 replicates for 
each number of training samples, and the error bars represent one standard error above and 
below that value. The Dice score for the pulmonary artery blood pool with 50 training samples 
was below 0.5 and is not displayed. 
 


