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REVIEWER COMMENTS 

 

 

Reviewer #1 (Remarks to the Author): 

 

The authors have developed an iterative approach for robust prediction and design of peptide 

hydrogels that involves the mutual exchange between experiment and prediction. In the first step, 

they chemically synthesized more than 160 natural tertrapeptides and identified their ability to form 

hydrogen. They then employed experimental iterative loops to improve the accuracy of the gelation 

prediction. Finally, peptides derived from the prediction are selected as immune adjuvants to enhance 

immune recognition of SARA-Cov2. This work is interdisciplinary research and have the potential to be 

published in this publication. The following comments need to be addressed: 

 

In order to develop machine learning models, the authors used one-hot encoding as an input feature. 

The logic behind it is understandable since it is a tetrapeptide. However, it would be better if the 

authors developed the model using amino acid and dipeptide composition encoding, and compared its 

performance with one-hot encoding. They can also experiment with hybrid features and see whether 

they improve prediction accuracy. 

 

For training the machine, the authors used the entire dataset. The authors should use 80% of the data 

for training and 20% for independent validation. The comparison of performance between training and 

independent validation will provide insight into the generalization ability of the model. Afterwards, the 

authors can make a blind prediction. 

 

In the introduction, it would be better to discuss why terapeptide has greater importance than other 

peptide compositions. I believe that this information will be useful for a general audience. 

 

Parameter optimization is one of the most important aspects of machine learning. They did not 

provide any information regarding the parameter search range and employed cross-validation 

techniques to optimize the parameter. In the supplementary information, please provide the optimal 

parameters for each algorithm. 

 

The SVM performance in Figure S3 is missing from the supplementary information. Please fix it. 

 

 

Reviewer #2 (Remarks to the Author): 

 

The manuscript by Xu and colleagues details approaches to improve the predictability of the behaviour 

of self-assembling peptide hydrogels. I limit my review to the immunological aspects of the paper. 

Here the authors tested the ability of tetrapeptide hydrogels to augment immunogenicity of the SARS-

CoV-2 RBD, demonstrating improvements in humoral and potentially cellular immunity compared to 

no adjuvant or alum. Overall, the case that the YAWF hydrogel is acting as an immune adjuvant has 

been made. I was unclear how this data dovetails with the rest of the paper, since there was no 

prediction of adjuvant activity nor deployment of algorithmic approaches to improve this activity. 

 

Major Comments: 

 

1 There is limited explanation of the immunisation model selected. Why subcutaneous dosing, why 3 

doses so quickly together, why 15ug? For comparison, human COVID vaccines were given 

intramuscularly 3-4 weeks apart, with immunogenicity generally assessed 2weeks after final dose. 

 

2 The ELISA data appear inconsistent. The alum and hydrogel groups appear to elicit comparable 

levels of total IgG, but alum elicited markedly less of each IgG subclass. Where is the total IgG signal 

for the alum animals coming from then? 



 

3 Line 303 – “aluminum could enhance the generation of IgG by 20.7-fold. The hydrogel formed by 

YAWF remarkably increased the generation of IgG by 41.6-fold”. Where are these numbers coming 

from, how were they derived? I assume these are endpoint titres? 

 

4 Line 316 - “Thus, the YAWF stimulated intense T cell dependent adaptive immune response.” This is 

not supported by the data and the language should be moderated. The authors measured cytokines in 

bulk splenocyte cultures. As such, the source of the cytokines cannot be automatically assigned to T 

cells. 

 

5 Line 319 – “The DCs treated with YAWF vaccine showed promising activation as the percentage of 

CD83, CD80, CD86 expressing cell augmented to 72.0%, 71.1% and 50.5% (Fig. 5e).“ – The DC 

cultures treated with RBD protein alone showed significant activation too, as well as robust TNF and 

IL-6 production. Why is this the case in presumably unvaccinated animals, where addition of a simple 

protein should be relatively inert in culture. Gating for the medium only controls should be provided 

for comparison. 

 

6 – Groups were compared using parametric t tests, which are not appropriate for small animal 

studies (N=6) or tissue culture experiments (N=3) where normalcy of the data cannot be established. 

 

 

Reviewer #3 (Remarks to the Author): 

 

The manuscript by Wang et al. demonstrated an integrated approach to building a score function for 

predicting and discovering tetrapeptide hydrogels. The approach combined coarse-grained molecular 

dynamics, machine learning and experiments, which built a reliable score function APHC through 

mutual information exchange between machine learning and experimental gelation feasibility. A 

remarkable gelation hit rate of 87.1% was achieved. Furthermore, as an application of the 

hydrogelation laws discovered, a tetrapeptide hydrogel successfully boosted the immune response of 

the RBD of SARS-CoV-2 in a mice model as a COVID-19 vaccine adjuvant. This work reveals may lead 

to further understanding self-assembly induced hydrogelation. The combine of simulation and 

experiments to formulate a design principle for hydrogel would greatly accelerate the biomedical 

applications of peptide hydrogels. Therefore, I recommend acceptance of this manuscript to Nature 

Communications after addressing the following issues. 

1. It would be more comprehensive if the authors explain why the gelation hit rate within the top 8000 

APHC rank was selected as a crucial parameter when evaluating the performance of the score 

function. 

2. In Figure 4c, S is more common at positions 1, 2 and 4, while the authors claimed that it is 

beneficial for gelation when S is located at positions 1, 2 and 3. Please explain this. 

3. The authors are encouraged to discuss the advantages of investigating tetrapeptides for 

hydrogelation. How about tripeptides or pentapeptides or even polypeptides? 

4. If the C- and N- terminals are covered with functional groups or motifs, could the hydrogelation 

performance be possible to be predicted? 

5. I found the title could be more precise. What is the meaning of “human-in-the-loop”, experiment 

data or supervised learning? 

6. How does APHC correlate with the properties of tetrapeptides, for example, isoelectric points? 

7. What are the pH values of the hydrogels formed? I would suggest the authors add that information 

in the captions of proper figures. 

8. Is it surprising that both QQQQ and EEEE form suspension at 120 mM? Any explanation from either 

ML perspective or thermodynamic prospective? 

 



 

The following are our responses to the comments (in Italics) of the reviewer and the changes 
(underlined) in the manuscripts. 
 
A) Reviewer 1  
[The authors have developed an iterative approach for robust prediction and design of peptide hydrogels 
that involves the mutual exchange between experiment and prediction. In the first step, they chemically 
synthesized more than 160 natural tertrapeptides and identified their ability to form hydrogen. They then 
employed experimental iterative loops to improve the accuracy of the gelation prediction. Finally, peptides 
derived from the prediction are selected as immune adjuvants to enhance immune recognition of SARA-
Cov2. This work is interdisciplinary research and have the potential to be published in this publication.] 
We are grateful for the insightful comments of the reviewer, and we have addressed all of the 
concerns of the reviewer. 
 

The following comments need to be addressed: 

[1. In order to develop machine learning models, the authors used one-hot encoding as an input feature. 
The logic behind it is understandable since it is a tetrapeptide. However, it would be better if the authors 
developed the model using amino acid and dipeptide composition encoding, and compared its performance 
with one-hot encoding. They can also experiment with hybrid features and see whether they improve 
prediction accuracy.] 
We thank the reviewer for the suggestion. We discerned possible discrepancy between the 
reviewer’s understanding of the “one-hot” representation and our actual encoding approach. In 
fact, the one-hot encoding in our original manuscript precisely captures the amino-acid 
composition in a tetrapeptides. Specifically, an amino acid is represented by 20 bits within only 
one “1” bit (there are 20 types of amino acids) A tetrapeptide, having four amino-acid units, is then 
represented by 80 (= 20 × 4) bits (i.e., features), as illustrated in Table S3. The 80-bit feature and 
label (i.e., AP) is then fed to different algorithms for training ML models. In our original work, a 
tetrapeptide is also attempted to be represented by 4 decimal integers, each varying from 1 to 20. 
However, since this approach introduces discretization and hierarchies, the model generally 
exhibits poorer performance than that of the one-hot representation. Thus, the 4-integer 
representation is not adopted for model training. 
As suggested by the reviewer, we have also trained ML models using dipeptide composition and 
compared its performance with that of amino acid composition. It should be noted that the 
dipeptide composition is also presented with one-hot approach using 1,200 (= 400 × 3) bits. A 
tetrapeptide can be taken as a “tripeptide” with each “position” represented by one of the 400 
possible dipeptide sequences, namely, a tetrapeptide can have 1200 possible bits (i.e., feature) with 
3 of them to be 1. We tested three datasets with 1,000, 5,000, and 10,000 data, respectively, with 
two algorithms of random forest (RF) and support vector machine (SVM). In the training process, 
80% of the data are used for training and remaining 20% are used for validation. After obtaining 
the ML model, we also employed another 5,000 data for testing the performance of the model, and 
the MAE and R2 shown here are thus obtained both on training and testing, as shown in Table S4. 
It can be observed that the performance of one-hot presentation using dipeptide composition are 
generally poorer than the counterpart of that using amino acid composition (as shown in Table 



 

S1). This can be attributed to that, for high-dimensional input data space distributing over a more 
complex manifold, more training data was required for maintaining or improving the performance 
of the models. Therefore, it was foreseeable that using hybrid feature would further increasing the 
dimensionality of input data space and thus decreasing the model performance with the same 
number of datasets. 
 
Revisions in the Supplementary Information: 
Tab. S3 Representation of amino acid sequence of a tetrapeptide (taking EHNT as an example) by 
two approaches. First row is the single-letter representation of 20 amino acids, second row is the 
corresponding integer for each amino acid, and fourth row is the 4-integer representation of 
tetrapeptide EHNT, while the fifth row is the 80-bit representation of EHNT with amino acid 
composition encoding.  
 
A C D E F G H I K L M N P Q R S T V W Y 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Position 1 Position 2 Position 3 Position 4 
4 7 12 19 

000100000…00000000 

Forth bit 

000000100…00000000 

Seventh bit 

000000000001…0000 

Twelfth bit 

0000…0000000000010 

Nineteenth bit 

 
Tab. S4 Training and testing performance of four algorithms with three different number of 
training data and four algorithms. The training data is represented with one-hot approach using 
1200-bit converted from dipeptide composition. 
 

Peptide 
Representation 

# Training 
data Algorithm MAEtr R2tr MAEte R2te 

1200-bit 
representation 

(one-hot 
representation) 

1,000 

LR >100 < 0 - - 
NN 0.318 0.216 0.280 0.374 
RF 0.280 0.384 0.275 0.380 

SVM 0.296 0.362 0.282 0.400 

5,000 

LR 0.147 0.819 0.140 0.832 
NN 0.258 0.470 0.250 0.487 
RF 0.193 0.689 0.185 0.704 

SVM 0.184 0.742 0.176 0.764 

10,000 

LR 0.132 0.855 0.129 0.858 
NN 0.250 0.501 0.242 0.522 
RF 0.168 0.756 0.161 0.769 

SVM 0.147 0.832 0.140 0.846 
 
 
Revisions in the main text: 
We tested various training conditions, including training algorithms, feature representation 
approaches, and the size of training datasets, to obtain an optimal AI model (Fig. S1-S3 and Tab. 
S1-S4). Using the algorithm of support vector machine (SVM)38 with 10,000 training data 



 

represented by 80-bit one-hot approach with amino acid sequence (Tab. S3), we obtained a reliable 
SVM model with training/testing performance of 0.095/0.092 in mean absolute difference 
(MAEtr/MAEte) and 0.928/0.933 in coefficient of determination (R2tr/R2te)39 (Fig. 2a and b). 
Further analysis of the prediction performance of SVM model revealed that the error between the 
predicted AP (APprd) and simulated AP (APsim) was smaller than 2.5% as APsim was larger than 
1.5 (Fig. 2c), proving the reliability and capability of the selected model on predicting peptide 
aggregates and further formation of hydrogels. 
 
Revisions in Method of “Machine Learning”: 
Before training of the ML model, we converted the amino acid sequence into numerical data with 
two approaches (shown in Tab. S3, taking Glu-His-Asn-Thr, i.e., EHNT, as an example), aiming 
for enhanced model performance with optimal data presentation approach. In the first approach, 
termed as 4-integer representation, we labeled the 20 amino acids as integers from 1 to 20, and a 
tetrapeptide sequence will then be a sequence of four integers. In the second approach termed as 
80-bit one-hot representation, we turned the four positions of a tetrapeptide into binaries with 80 
bits, with each position containing 20 bits, while only one bit being 1 denoting a specific amino 
acid in the position, while the resting 19 bits being 0, aiming to eliminate the bias introduced due 
to the hierarchy of integers from 1 to 20. In addition, a tetrapeptide can be taken as a “tripeptide” 
with each “position” represented by one of the 400 possible dipeptide sequences, namely, a 
tetrapeptide can have 1200 possible bits with 3 of them to be 1. Therefore, we also trained models 
with 1200-bit one-hot representation converted from dipeptide sequence composition. 
 
[2. For training the machine, the authors used the entire dataset. The authors should use 80% of the data 
for training and 20% for independent validation. The comparison of performance between training and 
independent validation will provide insight into the generalization ability of the model. Afterwards, the 
authors can make a blind prediction.] 
We thank the reviewer for this insightful comment. In a routine machine training process, 
validation dataset is normally unavoidable as a part of training for tuning parameters, and in our 
training process, we did divide each training dataset as 80% for training, and 20% for validation 
(as shown in original Figure 1b: ML-classification, although it is for ML classification, the 
regression process is the same). If that is the meaning of “independent validation”, then the original 
work has fulfilled the requirements of machine training. Here, we would prefer to interpret the 
“independent validation” as “independent testing”. In the original work, after obtaining the ML 
model, we employ another 4,997 (now we have added another 3 data for testing task, making the 
testing data 5,000 in total) data for independent testing, and a similar even better MAEte and R2te 
performance are achieved. To clearer show the performance of MEA and R2 in both training and 
prediction, we have appended those results to Table S1 in Supplementary Information. It should 
be noted that the testing performance is dependent on the number of testing datasets, and normally 
larger number of testing data yields better performance. The performance comparison between the 
training and testing can well justify the generalization of our ML model. Based on the SVM model 
with optimal training performance (MAEtr = 0.095, and R2tr = 0.928), we make blind predictions 
of AP within the complete sequence space of tetrapeptides (i.e., totally 160,000 peptides).   
 
Revisions in the Supplementary Information: 



 

We have added both the training and testing MAE and R2 to Fig. S1-S3 and updated the caption 
of Fig. S1-S3 accordingly. 

 
Fig. S1 Training (MAEtr, R2tr) and testing (MAEte, R2te) performance with 1,000 training datasets 
with 80-bit representation, tested by 5,000 data. 

 
Fig. S2 Training (MAEtr, R2tr) and testing (MAEte, R2te) performance with 5,000 training datasets 



 

with 80-bit representation, tested by 5,000 data. 
 

 
Fig. S3 Training (MAEtr, R2tr) and testing (MAEte, R2te) performance with 10,000 training datasets 
with 80-bit representation, tested by 5,000 data. It should be noted that, since the SVM model is 
the optimal one chosen for predicting the AP values of 160,000 tetrapeptides, the model 
performance is thus presented in main text as Fig. 2b, while not here for avoiding repeatability. 
 
We deleted original Fig. S4-S6 since the 4-integer representation was redundant for this 
manuscript.  
 
We have added the MAEte and R2te in the Tab. S1 in supplementary materials. The caption of 
Tab. S1 is also changed accordingly. 
Tab. S1 Training (MAEtr and R2tr) and testing (MAEte and R2te) performance of different ML 
algorithms and number of training data, with 80-bit data representation with amino acid 
composition and 4-integer representation of peptides. Since the 4-integer representation yields 
much worse training performance than the 80-bit approach, it was abandoned immediately and 
thus was not proceeded with testing. The training performance of MAEtr and R2tr with 80-bit 
representation are averaged results over ten parallel ML experiment, shown in Tab. S2. 

Peptide 
Representation 

# 
Training 

data 
Algorithm MAEtr R2tr MAEte R2te 

80-bit 
representation 1,000 LR 0.155 0.804 0.154 0.800 

NN 0.255 0.513 0.242 0.543 



 

 
Since the MAEtr and R2tr are averaged results over ten parallel ML experiments, we have added 
the MAE and R2 in each ML experiment as Tab. S2 in supplementary materials and cited in main 
text at appropriate position.   
Tab. S2 Training performance (MAEtr and R2tr) of ten parallel ML experiments, trained based on 
three different number of datasets and four algorithms with 80-bit one-hot representation. 
 
# Datasets Algorithm Index MAEtr R2tr 

1,000 
 

LR 

1 0.155 0.801 
2 0.160 0.786 
3 0.154 0.809 
4 0.153 0.809 
5 0.152 0.811 
6 0.153 0.810 
7 0.157 0.801 
8 0.154 0.805 
9 0.154 0.806 
10 0.155 0.806 

NN 1 0.258 0.502 
2 0.257 0.510 

(one-hot 
representation) 

RF 0.186 0.728 0.173 0.755 
SVM 0.158 0.804 0.152 0.819 

5,000 

LR 0.146 0.823 0.150 0.813 
NN 0.227 0.579 0.219 0.597 
RF 0.140 0.834 0.133 0.840 

SVM 0.112 0.899 0.109 0.905 

10,000 

LR 0.147 0.821 0.150 0.813 
NN 0.196 0.693 0.184 0.721 
RF 0.119 0.871 0.113 0.881 

SVM 0.095 0.928 0.092 0.933 

 
4-integer 

representation 

1,000 

LR 0.332 0.142 - - 
NN 0.319 0.186 - - 
RF 0.229 0.564 - - 

SVM 0.306 0.240 - - 

5,000 

LR 0.339 0.147 - - 
NN 0.280 0.380 - - 
RF 0.192 0.701 - - 

SVM 0.290 0.357 - - 

10,000 

LR 0.336 0.147 - - 
NN 0.263 0.434 - - 
RF 0.168 0.764 - - 

SVM 0.281 0.382 - - 



 

3 0.253 0.522 
4 0.256 0.517 
5 0.255 0.519 
6 0.262 0.484 
7 0.255 0.524 
8 0.252 0.517 
9 0.251 0.530 
10 0.255 0.505 

RF 

1 0.184 0.737 
2 0.187 0.726 
3 0.181 0.743 
4 0.183 0.737 
5 0.191 0.711 
6 0.189 0.721 
7 0.189 0.716 
8 0.186 0.729 
9 0.187 0.730 
10 0.186 0.726 

SVM 

1 0.158 0.803 
2 0.159 0.802 
3 0.158 0.806 
4 0.160 0.800 
5 0.159 0.804 
6 0.159 0.804 
7 0.159 0.802 
8 0.158 0.805 
9 0.156 0.807 
10 0.157 0.804 

5,000 
 

LR 

1 0.145 0.824 
2 0.146 0.822 
3 0.147 0.819 
4 0.146 0.823 
5 0.145 0.823 
6 0.145 0.823 
7 0.145 0.822 
8 0.145 0.823 
9 0.146 0.823 
10 0.145 0.823 

NN 
1 0.226 0.583 
2 0.227 0.579 



 

3 0.228 0.573 
4 0.226 0.581 
5 0.228 0.573 
6 0.225 0.585 
7 0.228 0.573 
8 0.226 0.583 
9 0.226 0.582 
10 0.227 0.576 

RF 

1 0.141 0.832 
2 0.141 0.833 
3 0.140 0.837 
4 0.140 0.835 
5 0.140 0.836 
6 0.140 0.833 
7 0.141 0.833 
8 0.139 0.838 
9 0.142 0.832 
10 0.141 0.834 

SVM 

1 0.112 0.899 
2 0.112 0.898 
3 0.112 0.898 
4 0.112 0.898 
5 0.112 0.899 
6 0.112 0.899 
7 0.112 0.898 
8 0.112 0.900 
9 0.112 0.898 
10 0.112 0.898 

10,000 LR 

1 0.147 0.821 
2 0.147 0.820 
3 0.146 0.821 
4 0.147 0.821 
5 0.147 0.821 
6 0.146 0.821 
7 0.147 0.819 
8 0.147 0.821 
9 0.147 0.821 



 

10 0.146 0.821 

NN 

1 0.195 0.696 
2 0.197 0.690 
3 0.197 0.692 
4 0.197 0.688 
5 0.196 0.694 
6 0.195 0.696 
7 0.195 0.696 
8 0.195 0.696 
9 0.198 0.689 
10 0.197 0.692 

RF 

1 0.119 0.872 
2 0.118 0.874 
3 0.119 0.871 
4 0.119 0.871 
5 0.119 0.871 
6 0.119 0.871 
7 0.119 0.872 
8 0.120 0.869 
9 0.119 0.871 
10 0.120 0.870 

SVM 

1 0.095 0.928 
2 0.096 0.927 
3 0.095 0.928 
4 0.095 0.928 
5 0.095 0.929 
6 0.095 0.928 
7 0.096 0.928 
8 0.096 0.927 
9 0.095 0.928 
10 0.095 0.928 

 
Revisions in the main text: 
We have updated the Fig. 1b: Replaced “test” with “validate”. 



 

 
 
We have added MAEte and R2te to Fig. 2b and updated the caption of Fig. 2b accordingly. 



 

 
Fig. 2 “Human-in-the-loop” for obtaining corrected score APHC. a) Performance of different 
algorithms (i.e., LR: linear regression; NN: Nearest Neighbor; RF: random forest; SVM: Support 
vector machine) with different number of training datasets (i.e., 1,000, 5,000, and 10,000). b) 
Training and testing performance of ML model trained with support vector machine and 10,000 
data using one-hot representation. Color scale indicates the density of data points. 
 
Revisions in Method of “Machine learning”: 
Four different ML algorithms were deployed, they were Random Forest (RF)58, Linear Regression 
(LR)59, Nearest Neighbor (NN)60, and Support Vector Machine (SVM)61, respectively. Mean 
absolute error (MAE) and determination coefficient (R2)62 were calculated to assess the 
performance of each ML model. Different number of training data sets (i.e., 1,000, 5,000, and 
10,000) were used to train ML model for investigating the effect on performance. In each training, 
80% of the training data were used for training, while the remaining 20% were used for validation 
(Fig. 1b). After obtaining each model, another 5,000 data were employed for independent testing. 
 



 

[3. In the introduction, it would be better to discuss why terapeptide has greater importance than other 
peptide compositions. I believe that this information will be useful for a general audience.] 
We thank the reviewer for the comment. In order to systematically design short peptide hydrogels, 
we use natural tetrapeptides as the basic material. Compared with natural dipeptides (400 peptides) 
and tripeptides (80,000 peptides), 160,000 natural tetrapeptides have sufficient structural and 
sequence diversity to develop a peptide hydrogel library with ample candidates, which has been 
widely studied in the field of biomedicine1-4. In addition, their modest number of sequences also 
indicates reasonable computational power. Although pentapeptides (3,200,000 peptides) and even 
longer peptides have more diverse structures and sequence quantities, their computational 
simulations require much greater computing power for generating training data. To explore the 
self-assembling or hydrogelation of polypeptides or even proteins, more advanced ML or 
simulation technique should be employed/developed, which falls out of the scope of this research, 
aiming for developing a “Human-in-the-loop” scheme for enhancing the gelation hit rate.  
 
Revisions in main text: 
This work provides an integrated computation, experiment, and ML approach to build a score 
function for discovering tetrapeptides for hydrogelation with an improved hit rate. Tetrapeptides 
have sufficient structural and sequence diversity for developing a peptide hydrogel library with 
ample candidates, while requiring a moderate workload of simulation for generating training data. 
This approach proceeds as follows, firstly, the computation adopts CGMD and ML-trained 
regression model to provide an estimation of AP (Fig. 1a). 
 
[4. Parameter optimization is one of the most important aspects of machine learning. They did not provide 
any information regarding the parameter search range and employed cross-validation techniques to 
optimize the parameter. In the supplementary information, please provide the optimal parameters for each 
algorithm.] 
We thank the reviewer for the comment. In the training process, we used the default 
hyperparameters for training the model. The default hyperparameters for each algorithm are shown 
in Table S5, providing the necessary information for possible reproduction of any readers using 
ASCENDS5. Based on the default hyperparameters, we have achieved a SVM model with 
desirable training performance (MAEtr = 0.095, and R2tr = 0.928 and the testing counterparts are 
MAEte = 0.092, R2te = 0.933, as shown in Table S1). However, as the reviewer suggested, the 
default hyperparameters used probably are not the optimal ones, hence, we here investigated the 
effect of the hyperparameters on training performance with SVM algorithms using the 80-bit one-
hot representation with 10,000 training data. In total, there are five types of kernels (“linear”, 
“poly”, “rbf”, “sigmoid”, and “precomputed”) in ASCENDS, among them, we chose three kernels 
(“linear”, “poly”, “rbf”) that are mostly used. For SVM, different hyperparameters and their range 
should be tuned according to the kernel and we only selected the most important parameters for 
tuning6 (shown as Table S6). The training performance with each kernel is shown in Fig. S4. The 
achieved greatest training performance of MAEtr is 0.090 and R2tr is 0.934, as kernel = rbf, C = 
100, and gamma = 0.001, however, it is only slightly increased compared with the generated 
training performance (MAEtr = 0.095, R2tr = 0.928, as shown in Table S1) of default 
hyperparameters (kernel = rbf, C = 1, and gamma = auto, equaling to 1/n_features = 1/80 = 0.0125). 
The slightly increased training performance will have minimal effect on the prediction, and we 



 

thus conclude that the default hyperparameters are good enough for achieving reliable prediction 
results. 
 
Revisions in the Supplementary Information: 
Tab. S5 Default hyperparameter values for each algorithm. 
 
Algorithm Hyperparameters Values 

LR 

fit_intercept  True 
positive False 
copy_X True 
n_jobs None 

RF 

scaler_option  StandardScaler 
n_estimators 100 
max_features Auto 
max_depth None 
min_samples_split 2 
min_samples_leaf  1 
bootstrap True 
criterion Mse 
min_weight_fraction_leaf 0 
max_leaf_nodes None 
min_impurity_decrease 0 

NN 

n_neighbors 5 
weights Uniform 
algorithm Auto 
leaf_size 30 
p  2 
metric Minkowski 
metric_params None 

SVM 

kernel rbf 
degree 3 
coef0 0.0 
tol 1e-3 
C 1.0 
epsilon 0.1 



 

shrinking True 
gamma auto 

 
Tab. S6 Kernels and associated parameters and their tuning range for SVM. 
 

Kernel Parameter and range 

linear C (0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000) 

poly C (0.001, 0.01, 0.1, 1, 10, 100, 1000); degree (1, 2, 3, 4) 

rbf C (0.001, 0.01, 0.1, 1, 10, 100, 1000); gamma (0.001, 0.01, 0.1, 1) 
 

 
Fig. S4 Performance of SVM model with different kernels and hyperparameters, trained with 
10,000 data represented by 80-bit one-hot representation. 
 
Revisions in Method of “Machine learning”: 
All the model training and prediction were conducted via ASCENDS code63, which employs a 
Python-based open-source data analytic toolkit, scikit-learn64. The training was initially performed 
based on the default hyperparameters setting in ASCENDS (Tab. S5). To investigate the effect of 
hyperparameters on training performance, we selected three kernels and different parameters and 
ranges for tuning (Tab. S6)65. The performance of the SVM model with varying hyperparameters 
were illustrated in Fig. S4. The achieved greatest training performance of MAEtr was 0.090 and 



 

R2tr was 0.934, as kernel = rbf, C = 100, and gamma = 0.001. However, it was only slightly 
increased compared with the generated training performance (MAEtr = 0.095, R2tr = 0.928, as 
shown in Fig. 2b) with default hyperparameters (kernel = rbf, C = 1, and gamma = auto, equaling 
to 1/n_features = 1/80 = 0.0125). The slightly increased training performance would have minimal 
effect on the prediction, and we thus concluded that the default hyperparameters were good enough 
for achieving reliable prediction results. 
 
[5. The SVM performance in Figure S3 is missing from the supplementary information. Please fix it.] 
We thank the reviewer for the comment. The SVM performance was shown as Fig. 2b, since it 
was the optimal model that we have trained and used in the prediction of AP. To avoid redundancy, 
we did not show it in Figure S3. Following the suggestion of the reviewer, we have added a notion 
in the caption of Fig. S3. 
 
Revisions in the Supplementary Information: 
Fig. S3 Training (MAEtr, R2tr) and testing (MAEte, R2te) performance with 10,000 training datasets 
with 80-bit representation, tested by 5,000 data. It should be noted that, since the SVM model is 
the optimal one chosen for predicting the AP values of 160,000 tetrapeptides, the model 
performance is thus presented in main text as Fig. 2b, while not here for avoiding repeatability. 
 

B) Reviewer 2 
[The manuscript by Xu and colleagues details approaches to improve the predictability of the behaviour of 
self-assembling peptide hydrogels. I limit my review to the immunological aspects of the paper. Here the 
authors tested the ability of tetrapeptide hydrogels to augment immunogenicity of the SARS-CoV-2 RBD, 
demonstrating improvements in humoral and potentially cellular immunity compared to no adjuvant or 
alum. Overall, the case that the YAWF hydrogel is acting as an immune adjuvant has been made. I was 
unclear how this data dovetails with the rest of the paper, since there was no prediction of adjuvant activity 
nor deployment of algorithmic approaches to improve this activity.]  
We thank the reviewer for the comments and the suggestions to improve our work!  
As the reviewer has mentioned that our manuscript details approach to improve the predictability 
of the behavior of self-assembling peptide hydrogels. In this work, we focus on predicting and 
discovering tetrapeptides for hydrogelation with an improved hit rate. Self-assembling peptides 
have been used as immune adjuvants due to their good biocompatibility and multivalency, so it is 
reasonable to believe that some tetrapeptide hydrogels we discovered could also be used to 
augment immunogenicity of the SARS-CoV-2 RBD, with a view to broad the biomedical 
applications of the natural tetrapeptide hydrogels we explored. 
The reviewer considered that no algorithmic approaches has been developed to predict immune 
adjuvant activity in immunology experiments. To the best of our knowledge, self-assembled short 
peptide materials can form various nanostructures (not just nanofibers), and the adjuvant activity 
is tightly associated with the nanostructure and active site of the peptide, thus it may require more 
short peptide sequences and animal experiment data to develop the proper algorithms. Here, we 
chose YAWF as our model peptide to demonstrate that this type of natural tetrapeptide could be 
utilized as immune adjuvant. For sure, we agree with the reviewer's suggestion, and we also believe 



 

that the uncovering of certain function between amino acid sequence and related immunogenicity 
would provide more convinced inspiration for further vaccine design. Therefore, our future work 
will focus on developing new algorithms approaches for predicting the activity of immune 
adjuvants based on the score function APHC. Following the suggestion of the reviewer, we revised 
this manuscript accordingly. 
 
Major Comments: 

[1 There is limited explanation of the immunisation model selected. Why subcutaneous dosing, why 3 doses 
so quickly together, why 15 ug? For comparison, human COVID vaccines were given intramuscularly 3-
4 weeks apart, with immunogenicity generally assessed 2 weeks after final dose.] 
We thank the reviewer for the comment. We injected the prepared vaccine subcutaneously in the 
groin of the mice, because the nearby lymph nodes can recognize the antigen more efficiently. 
The structure of tissues and organs related to the immune system between humans and mice shows 
functional differences, such as skin, spleen and thymus7. We know that memory B cells are 
produced after the initial immunization, and the antibodies produced after the initial immunization 
are mostly the unstable IgM. In the second immunization, more memory B cells were produced, 
while in the third immunization, the antibodies produced by B cells were mostly other relatively 
stable subclasses. The immunization interval of mice is generally 2-3 weeks. However, we used 
the monomeric RBD antigen in this work, considering that its biodegradability and epitope 
conformation stability were different from that of the dimeric RBD8,9, so we added another 
injection after the first week10-12. 
The molecular weight of the RBD protein used in this work was 50 kDa, which was determined to 
be 15 μg per mouse after considering the method of inoculation, the literature, and the weight of 
the mice13-15. 
 
 
[2 The ELISA data appear inconsistent. The alum and hydrogel groups appear to elicit comparable levels of 
total IgG, but alum elicited markedly less of each IgG subclass. Where is the total IgG signal for the alum 
animals coming from then?] 
We thank the reviewer for the comment. The endpoint titres of Alum and YAWF have similar 
titers for IgG1, while for IgG2b and 2c, the titers of Alum group are significantly lower than 
YAWF (as shown in Fig. S27). Among the various IgG subclasses, IgG1 accounted for the largest 
proportion, and the remaining subclasses existed in small amounts. This also leads to the difference 
in optical density caused by different chromogenic sensitivities when we use ELISA to detect the 
endpoint titers of diverse IgG subclasses. We did not test the remaining IgG subclasses (such as 
IgG2a, IgG3, etc.), because the current data can already illustrate the general trend of YAWF 
promoting IgG secretion. 
 
[3 Line 303 – “aluminum could enhance the generation of IgG by 20.7-fold. The hydrogel formed by YAWF 
remarkably increased the generation of IgG by 41.6-fold”. Where are these numbers coming from, how were 
they derived? I assume these are endpoint titres?] 



 

We thank the reviewer for the comment. The titer of RBD-specific IgG antibodies in serum were 
shown in the Figure S27, the endpoint titres of RBD, aluminum and YAWF were 1407.7, 29117.5 
and 58615.2, respectively. Compared with RBD group, aluminum could enhance the generation 
of IgG by 20.7-fold, YAWF increased the generation of IgG by 41.6-fold. Following the 
suggestion of the reviewer, we have added the description at Line 303 and 310 of this main text. 
 
Revision: 
Compared with RBD group, the results (Fig. 5b) showed that FDA (U.S. Food and Drug 
Administration) approved adjuvant aluminum could enhance the generation of IgG by 20.7-fold, 
and the hydrogel formed by YAWF remarkably increased the generation of IgG by 41.6-fold (the 
endpoint titres of RBD, aluminum and YAWF were shown in Fig. S27), suggesting that the 
tetrapeptide hydrogel could boost the immune response in vivo. 
 
As for IgG2c, the hydrogel formed by YAWF maintained high IgG2c titers, surpassing the ones 
in aluminum group or control group (Fig. 5b and S27). 
 
 [4 Line 316 - “Thus, the YAWF stimulated intense T cell dependent adaptive immune response.” This is 
not supported by the data and the language should be moderated. The authors measured cytokines in bulk 
splenocyte cultures. As such, the source of the cytokines cannot be automatically assigned to T cells.] 
We thank the reviewer for the comment. We did not actually perform T-cell sorting on splenocytes 
extracted from mice, Following the suggestion of the reviewer, we corrected the description in 
Line 316 of this main text. 
 
Revision: 
Compared with aluminum adjuvant group, the mice received YAWF based vaccine showed a 
higher IL-5 level in their splenocytes culture, and IFN-γ secretion was also obviously evoked (Fig. 
5c). Thus, the YAWF stimulated an obvious cell-dependent adaptive immune response. To further 
confirm the capability of tetrapeptide vaccine to regulate related cell immunity, the upstream 
dendritic cells (DCs) activation enhanced by tetrapeptide hydrogel was evaluated. 
 
[5 Line 319 – “The DCs treated with YAWF vaccine showed promising activation as the percentage of 
CD83, CD80, CD86 expressing cell augmented to 72.0%, 71.1% and 50.5% (Fig. 5e).“ – The DC cultures 
treated with RBD protein alone showed significant activation too, as well as robust TNF and IL-6 
production. Why is this the case in presumably unvaccinated animals, where addition of a simple protein 
should be relatively inert in culture. Gating for the medium only controls should be provided for 
comparison.] 
We thank the reviewer for the comment. Since the RBD protein itself is active against immune 
cells in some references16,17, in vitro cell culture, RBD protein is directly in contact with DCs. At 
this time, the concentration of RBD in cell culture medium is different from that of RBD exposed 
to immune cells after vaccination into mice, which can effectively interact with DC. However, 
Free RBD is unstable in vivo and cannot activate the immune response effectively. Moreover, the 



 

nanostructure formed by the tetrapeptide-based hydrogel vaccine and its slow-release effect can 
increase the total uptake of RBD protein by antigen-presenting cells (APCs) in lymph nodes.  
Before the gating, we have analyzed the BMDCs treated with blank medium or cytokines-added 
medium (containing GM-CSF, IL-4) by flow cytometry, and used them as negative controls. 
Regardless of the cytokine addition, all the negative groups showed no significant expression of 
targeted CD molecules. As suggested by the reviewer, we have added the flow cytometry analysis 
of BMDCs in the control medium group in Fig. S28. 
 
Revision in main text: 
The DCs treated with YAWF vaccine showed promising activation as the percentage of CD83, 
CD80 and CD86 expressing cell augmented to 72.0%, 71.1% and 50.5% (Fig. 5e and S28). Such 
intense activation could also be proved by the clustering of DCs (Fig. 5d) producing raised levels 
of Th-1 cytokines (Fig. 5f). 
 
Addition in Supplementary Information: 

 
Fig. S28 Flow cytometry analysis of BMDCs of medium group expressing CD83, CD80, and 
CD86. 
 
 [6 – Groups were compared using parametric t tests, which are not appropriate for small animal studies 
(N=6) or tissue culture experiments (N=3) where normalcy of the data cannot be established.] 
We thank the reviewer for pointing out this mistake. We have modified all statistical analysis 
method using one-way ANOVA test in Fig. 5b, 5c, 5f, and S27. 
 
Revision: 



 

 
Fig. 5 Response to tetrapeptide-based hydrogel nano vaccination. a) 6–8 weeks C57BL/6 mice 
were immunized thrice at day 0, 7, and 14 with 15 μg RBD (RBD group), 12.5 μL aluminum 
adjuvant and 15 μg RBD (Alum + RBD group), 60 mM tetrapeptide hydrogel and 15 μg RBD 
(YAWF+ RBD group). Serum and splenocytes were collected at day 21. b) ELISA responses to 
serum samples (RBD-specific) at different dilutions. SARS-CoV-2 RBD-specific IgG antibodies 
(IgG, IgG1, IgG2b, and IgG2c) were analyzed by endpoint dilution ELISA and measured as 
absorbance at 450 nm. The data were shown as the mean ± SEM (n=6), and differences between 
RBD and other treatments were determined using one-way ANOVA test. c) 7 days after the last 
immunization, splenocytes were collected and re-stimulated with RBD protein. Bars shown were 
mean ± SEM (n=6), and differences between RBD and other treatments are determined using one-
way ANOVA test. The secretion of IL-5 and IFN-γ in the splenocytes supernatants were detected 
using ELISA. d) Optical images of bone marrow derived dendritic cells (BMDCs) treated with 
RBD loaded tetrapeptide hydrogel (scale bar = 100 μm). e) Flow cytometry analysis of BMDCs 
expressing CD83, CD80 and CD86. f) The level of IL-6 and TNF-α in BMDCs culture 
supernatants were analyzed using ELISA. The data were shown as the mean ± SEM (n=3), and 
differences between RBD and other treatments were determined using one-way ANOVA test. 



 

 

 
Fig. S27 The titer of RBD-specific IgG, IgG1, IgG2b, and IgG2c antibodies in serum samples on 
day 21 were quantified by enzyme-linked immunosorbent assay (ELISA). The data were shown 
as the mean ± SEM (n=6), and differences between RBD and other treatments were determined 
using one-way ANOVA test. 
 
C) Reviewer 3 
[The manuscript by Wang et al. demonstrated an integrated approach to building a score function for 
predicting and discovering tetrapeptide hydrogels. The approach combined coarse-grained molecular 
dynamics, machine learning and experiments, which built a reliable score function APHC through mutual 
information exchange between machine learning and experimental gelation feasibility. A remarkable 
gelation hit rate of 87.1% was achieved. Furthermore, as an application of the hydrogelation laws 
discovered, a tetrapeptide hydrogel successfully boosted the immune response of the RBD of SARS-CoV-2 
in a mice model as a COVID-19 vaccine adjuvant. This work reveals may lead to further understanding 
self-assembly induced hydrogelation. The combine of simulation and experiments to formulate a design 
principle for hydrogel would greatly accelerate the biomedical applications of peptide hydrogels. Therefore, 
I recommend acceptance of this manuscript to Nature Communications after addressing the following 
issues.]  
We are grateful for the comprehensive comments of the reviewer. Following the suggestion of the 
reviewer, we revised this manuscript accordingly. 
 



 

[1. It would be more comprehensive if the authors explain why the gelation hit rate within the top 8000 
APHC rank was selected as a crucial parameter when evaluating the performance of the score function.] 
We thank the reviewer for the comment. The goal of this research is to develop a library within 
which the peptide sequences are able to form hydrogels. Therefore, we try to minimize the number 
of peptide candidates within the complete sequence space of tetrapeptides (# 160,000) and select 
8,000 (5%) as a criterion for assessing the gelation hit rate. As a matter of fact, the exact number 
of hydrogel-forming peptides within the 160,000-sequence pool is unknown. However, though our 
“human-in-the-loop” approach, we are able to successfully classify the hydrogel-forming peptides 
to the 8,000 candidates pool with gelation hit rate of 87.1%. The selection of the assessing pool 
can be 10,000, or even 20,000, and we test the gelation hit rate within top 10,000 and top 20,000 
APHC, which are 86% and 82.9% respectively. These numbers provide strong evidence that the 
10,000 and 20,000 pools have “relatively more” non-hydrogel-forming peptides than that in the 
8,000 pools. Since the 8,000-sequence pool is already quite large in size, we think selection of top 
8,000 APHC scores for assessing the gelation hit rate is appropriate, representing a good balance 
between the size of hydrogel-forming peptide library and prediction accuracy. As suggested by the 
reviewer, we have added more discussion in Line 119-120 of this main text. 
 
Revision: 
Distinctive from all available score functions focusing on the prediction of peptide self-assembly33, 
we constructed a corrected score function APHC within three loops (Fig. 2d-f) for improving the 
gelation hit rate. Since the final goal was to develop a hydrogel-forming peptide library with 
minimum candidate numbers and highest gelation possibility, we constrained our gelation hit rate 
assessment within the top 8,000 assessing scores (APH and APHC). We calculated APH (Fig. 1b) in 
the first loop and randomly selected 55 peptides (26 peptides that were among the top 8,000 in the 
APH ranking), which were possibly to form hydrogel according to human expertise. 
 
[2. In Figure 4c, S is more common at positions 1, 2 and 4, while the authors claimed that it is beneficial 
for gelation when S is located at positions 1, 2 and 3. Please explain this.] 
We thank the reviewer for pointing out this mistake. Following the suggestion of the reviewer, we 
corrected this mistake in Line 256 of this main text. 
 
Revision: 
S and T with moderate polarity were beneficial for gelation when S was located at positions 1, 2, 
and 4 and T at 1, 2. 
 
[3. The authors are encouraged to discuss the advantages of investigating tetrapeptides for hydrogelation. 
How about tripeptides or pentapeptides or even polypeptides?] 
We thank the reviewer for the comment. In order to systematically design short peptide hydrogels, 
we use natural tetrapeptides as the basic material. Compared with natural dipeptides (400 peptides) 
and tripeptides (80,000 peptides), 160,000 natural tetrapeptides have structural and sequence 
diversity to avoid traditional peptide sequence design, and their modest number of sequences also 
saves time for computational simulations. Although pentapeptides (320,000 peptides) and even 
polypeptides have more diverse structures and quantities, their computational simulations require 



 

greater computing power for generating training data. To explore the self-assembling or 
hydrogelation of polypeptides or even proteins, more advanced ML or simulation technique need 
to be employed/developed, which falls out of the scope of this research, aiming for developing a 
“Human-in-the-loop” scheme for enhancing the gelation hit rate. Following the suggestion of the 
reviewer, we have added more discussion of tetrapeptides in Lines 63-65 of this main text. 
 
Addition: 
This work provides an integrated computation, experiment, and ML approach to build a score 
function for discovering tetrapeptides for hydrogelation with an improved hit rate. Tetrapeptides 
have sufficient structural and sequence diversity for developing a peptide hydrogel library with 
ample candidates, while requiring a moderate workload of simulation for generating training data. 
This approach proceeds as follows, firstly, the computation adopts CGMD and ML-trained 
regression model to provide an estimation of AP (Fig. 1a). 
 

 [4. If the C- and N- terminals are covered with functional groups or motifs, could the hydrogelation 
performance be possible to be predicted?] 
We thank the reviewer for pointing out one possible direction of this research. Since the training 
data used in this work are based on non-covered peptides, the hydrogelation performance of 
peptides with covered C- and N-termini thus cannot be predicted using the existing models 
developed in this work. To perform this prediction, one has to train a new model with terminal-
covered peptides, which can be a promising research direction in the future. The procedure 
established in this paper can be a useful guide for this work: one can first perform self-assembling 
simulations with different peptides covered by functional groups or motifs, train ML models, and 
predict the self-assembling peptides. The predicted results can then be passed to experimentalists 
for verification, train classification models, and predict hydrogelation performance of new 
terminal-covered peptide sequences. As suggested by the reviewer, we have added more 
discussion in Line 358 of this main text. 
 
Addition: 
The framework described here can also be extended to efficient design of other functional 
materials/devices, including the terminal-covered peptide hydrogels, peptide batteries, peptide 
fluorescence probes, and peptide semiconductors, contributing to modern organic nanotechnology 
employing short peptide building blocks as key structural and functional elements. 
 
[5. I found the title could be more precise. What is the meaning of “human-in-the-loop”, experiment data 
or supervised learning?] 
We thank the reviewer for the comment.  “Human-in-the-loop” has been adopted in the field of 
Artificial Intelligence (AI), denoting AI systems in which human and machine jointly contribute 
to improving the accuracy of overall results and accelerate the learning process. Such AI systems 
usually involve a continuous interaction between the human and the machine in order to train a 
model and then monitor and update it once its deployed. In our case, we iteratively update the 
classification model using experimental data of gelation results, to improve the performance of 



 

classification model in prediction of gelation or not. “Human-in-the-loop” in the title is denoting 
a methodology that we adopt in this research.  
 

 [6. How does APHC correlate with the properties of tetrapeptides, for example, isoelectric points?] 
We thank the reviewer for the comment.  To find the relation between the APHC and the isoelectric 
points (IP), we randomly select 20,000 tetrapeptides from the complete sequence space and 
calculate the IP through the online tool18: Isoelectric Point Calculator 2.0 (IPC 2.0 - Isoelectric 
point and pKa prediction for proteins and peptides using deep learning (mimuw.edu.pl)). The 
relation between the APHC and the IP is shown in Fig. S5c. There is no strong relation can be 
observed, however, the peptides with IP in the range of 4.5 to 6 (in pH scale) seem to have the 
highest APHC, indicating that peptides deprotonated (i.e., negatively charged) are prone to form 
hydrogels. This could be explained by that, more formation of hydrogen bonds and Columbic 
interaction between water and peptides induce the formation of water-containing networks, if 
negatively charged peptides are dissolved in water solvent. In view of the factors that determine 
the hydrogelation of tetrapeptides, we tend to think that APHC is not only related to one factor such 
as hydrophilicity or isoelectric point, but a function of plenty of thermodynamic and kinetic factors. 
In addition, since the APHC is calculated based on AP, hydrophilicity (logP), and gelation 
correction (Cg), we also exhibit the relation of each pair (APHC-AP and APHC-Cg) in Fig. S5a and 
b. The APHC-logP relation is already shown as Fig. 2i in original manuscript.  
According to the reviewer's suggestion, we have added Fig. S5 to the Supplementary Information 
and added a supplementary description in lines 149-151 of this main text. 
 
Addition: 

 
Fig. S5 Correlation between a) APHC and AP, b) APHC and Cg, c) APHC and isoelectric points (IP). 
The IP is calculated by the online tool: Isoelectric Point Calculator 2.0 (IPC 2.0 - Isoelectric point 
and pKa prediction for proteins and peptides using deep learning (mimuw.edu.pl)).  
 
Revision:  
To further differentiate between APHC and APH in predicting peptide hydrogels, we next compared 
the relationship between APHC and logP’ (Fig. 2i) as well as APH and logP’ (Fig. 2j) of 
experimental synthesized 165 peptides that are marked with blue (gelation: yes) or red (gelation: 
no) dots, and those of total tetrapeptides (grey dots). Here, logP’ indicated normalized 
hydrophilicity between 0 and 1. In addition to the APHC and logP’ relation, the relation of APHC-
AP and APHC-Cg were also investigated (Fig. S5a and b). No linear correlation for APHC and logP’ 
(also APHC and AP) can be observed, demonstrating that hydrophobicity and aggregation 



 

propensity were not the only two contributors to gelation, for instance, lower isoelectric points 
(i.e., 4.5 ~ 6 in pH scale) could improve the gelation performance (Fig. S5c) due to the Columbic 
interaction and hydrogen bonds, inducing the formation of water-containing networks between 
deprotonated peptides and water solvent. These results indicated the significance of cooperating 
experimental input (i.e., Cg) into prediction of hydrogel-forming sequences. Furthermore, it was 
conducive for hydrogelation when logP’ was within the range of 0.05 to 0.4, as evidenced that the 
logP’ of all gelating peptides were within this range (Fig. 2i). 
 
[7. What are the pH values of the hydrogels formed? I would suggest the authors add that information in 
the captions of proper figures.] 
We thank the reviewer for the comment. Following the suggestion of the reviewer, we have added 
the information of pH values of tetrapeptide hydrogels/solutions in the captions of Fig. 3a and d. 
 
Addition: 
Fig. 3 Experimental investigations on self-assembly behavior of 165 synthetic tetrapeptides. 
a) TEM images of 6 representative hydrogels of synthetic tetrapeptides, respectively. Inserts: 
optical images of the corresponding hydrogel (pH between 7.0 to 7.5). MD simulation results 
(1,250 ns) and APHC ranking were shown in the right column. b) Dynamic frequency sweep of 
tetrapeptide hydrogels at the strain value of 0.5%. c) FTIR spectra in the amide I region of 
tetrapeptide hydrogels. d) TEM images of 6 representative non-hydrogels of tetrapeptide. Insets: 
optical images of corresponding solution/suspension (pH=7.5). MD simulation results (1,250 ns) 
and APHC ranking were shown in the right column. e) Statistics and classification of morphologies 
obtained by TEM for hydrogel-forming tetrapeptides (100 peptides). f) Statistics and classification 
of morphologies obtained by TEM for non-hydrogel-forming tetrapeptides (65 peptides). 
 

 [8. Is it surprising that both QQQQ and EEEE form suspension at 120 mM? Any explanation from either 
ML perspective or thermodynamic prospective?] 
We thank the reviewer for the comment. From the ML or simulation perspective, both QQQQ and 
EEEE cannot form suspension, suggested by that the predicted AP of QQQQ and EEEE 
approximately equals to 1 (i.e., do not aggregate), which can be attributed to the strong 
hydrophilicity and lack of sufficient directional hydrogen bonds captured in simulation and 
prediction. However, the formation of suspension in real experiments indicate the formation of 
aggregates, and we attribute this to the thermodynamic factor of concentration.  
Actually, we also found this phenomenon on RRRR (also contains four charged amino acids), and 
the MD simulation results showed that it could not aggregate, but in the actual experiments, we 
found the formation of aggregates of RRRR at a concentration of 120 mM (as shown in Fig. 3d). 
We compared the optical images of QQQQ and EEEE at four concentrations (30, 60, 90, and 120 
mM, pH = 7.5) and found that QQQQ was a clear solution at 30 mM, while the solution 
transparency decreased (60, 90, and 120 mM) due to the formation of aggregates. As for EEEE, at 
30, 60, and 90 mM, it formed uniform and clear solutions, while at 120 mM, it formed an opaque 
suspension. We tend to think that as the concentration of charged tetrapeptides increases, the 
hydrogen bond between peptide molecules and water is strengthened, resulting in the formation of 



 

aggregates at high concentrations. According to the reviewer's suggestion, we have modified the 
description in Lines 214-216 of this main text. 

 
Fig. R1 The optical images of QQQQ and EEEE aqueous solutions at four concentrations (30, 60, 
90, and 120 mM, pH = 7.5). 
 
Revision: 
TEM images (Fig. 3d and Extended Data Fig. 5) showed that these six peptides formed aggregates 
with different sizes in an aqueous solution, qualitatively consistent with the morphologies obtained 
in MD simulations except for RRRR (Fig. 3d, right column), showing different levels of 
aggregation. Taking the TEM result of RRRR together, we attributed this to the thermodynamic 
factor of concentration. Finally, we presented a summary of the assembled morphologies of all 
synthesized tetrapeptides (Fig. 3e, 3f and Extended Data Fig. 5), indicating that hydrogel-forming 
tetrapeptides tended to form fibers, sheets, or hybrid morphology (70%) in an aqueous solution. 
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REVIEWER COMMENTS 

 

Reviewer #1 (Remarks to the Author): 

 

The authors have done a great job to address my concerns. I recommend this paper for acceptance. 

 

 

Reviewer #3 (Remarks to the Author): 

 

The authors have addressed my previous concerns, and I support the acceptance of this topical work. 

 

 

Reviewer #4 (Remarks to the Author): 

 

In this paper, the authors study how tetrapeptides can form hydrogels. The authors combine MD 

simulations, machine learning and experimental testing in a novel way. Each component might not be 

novel, but the combination improves the paper. 

 

I did not review the first version of the paper, so I base my review on the revised version and the 

comments to the reviewers of the original version. 

 

The machine learning part is relatively standardized and might benefit from shortening. The main 

manuscript does not need to include detailed descriptions of one-hot encoding and other coding 

schemes. I do not see much-added value in comparing the different machine learning methods (it is 

clear that the SVMs are best). However, as pointed out by reviewer #1, the comparison with simpler 

encoding (dipeptide or amino acid frequencies) is of interest. Here, I think the authors have 

misunderstood the meaning of these comparisons. They are not primarily aimed at examining the best 

possible way to predict the properties of the peptides, but to understand position-specific rules. 

Unfortunately, using the 1200-bit version does not enable such a comparison (as this is just a 

cumbersome way to encode the 80-bit one-hot encoding. Instead, a 400 bit dipeptide and a 20-bit 

AAfrequency encoding should be tried and discussed. However, I think there might be easier ways to 

extract the relevant information by simple statistics on the dipeptides. Some simple log-odds plots on 

AAfrequency (and secondary features such as pi-stacking potential) of the experimentally verified (or 

predicted) hydrogel forming peptides should provide the sought after information. 

 



 

The following are our responses to the comments (in italics) of the reviewer 4 and the changes 
(underlined) in the manuscripts. 
 
Reviewer 4 
[In this paper, the authors study how tetrapeptides can form hydrogels. The authors combine MD 
simulations, machine learning and experimental testing in a novel way. Each component might not be 
novel, but the combination improves the paper.  

I did not review the first version of the paper, so I base my review on the revised version and the comments 
to the reviewers of the original version.] 
We thank the reviewer for the positive comments, and we have addressed all the points raised by 
the reviewer 4 accordingly.  
 
[1. The machine learning part is relatively standardized and might benefit from shortening. The main 
manuscript does not need to include detailed descriptions of one-hot encoding and other coding schemes.] 
We thank the reviewer for the comments to improve the clarity of the manuscript. For the machine 
learning part, the details of the training and testing under different conditions, including the 
training algorithms, hyperparameters, feature representation approaches, and the size of the 
training datasets, have been relegated to the supplementary file. In the main manuscript, we only 
present the necessary information on model training and performance in a single sentence [i.e., 
Using the algorithm of support vector machine (SVM) 38 with 10,000 training data represented by 80-bit one-
hot approach with amino acid sequence (Tab. S3), we obtained a reliable SVM model with training/testing 
performance of 0.095/0.092 in mean absolute difference (MAEtr/MAEte) and 0.928/0.933 in coefficient of 
determination (R2tr/R2te)39 (Fig. 2a and b)], for the interested readers to reproduce the results. We have 
also revised the Methods section of machine learning to improve the conciseness while 
maintaining the necessary training, validation, and testing information. We have also shortened 
the description of one-hot and other coding schemes in the Methods section.  
 
Revisions in the Methods section of “Machine learning”: 
Four different ML algorithms were deployed: Random Forest (RF)58, Linear Regression (LR)59, 
Nearest Neighbor (NN)60, and Support Vector Machine (SVM)61. Mean absolute error (MAE) and 
coefficient of determination (R2)62 were calculated to assess the performance of each ML model. 
Different numbers of training data sets (i.e., 1,000, 5,000, and 10,000) were used to train the ML 
models. In each training, 80% of the training data was used for training, while the remaining 20% 
was used for validation (Fig. 1b). After obtaining each model, another 5,000 data were employed 
for independent testing. 
Before training of the ML model, we converted the amino acid sequence into numerical data with 
4-integer and 80 bit one-hot representation approaches (shown in Tab S3, taking Glu-His-Asn-
Thr, i.e., EHNT, as an example), aiming for enhanced model performance with optimal data 
presentation approach. Moreover, a tetrapeptide can be considered as a “tripeptide” with each 
“position” represented by one of the 400 possible dipeptide sequences, namely, a tetrapeptide can 
have 1200 possible bits with 3 of them to be 1. Therefore, we also trained models with a 1200-bit 
one-hot representation converted from the dipeptide sequence composition. 



 

 
[2. I do not see much-added value in comparing the different machine learning methods (it is clear that the 
SVMs are best).]  
We thank the reviewer for the comments. Based on the authors’ experience with machine learning, 
other algorithms such as linear regression (LR) can perform even better than the SVM, since the 
SVM can sometimes fail and cannot be adopted for prediction, due to different training conditions 
[1) Wang, Jiaqi, et al. "Machine learning for thermal transport analysis of aluminum alloys with precipitate 
morphology." Advanced Theory and Simulations 2.4 (2019): 1800196; 2) Wang, Jiaqi, et al. "Interatomic 
Potential Model Development: Finite-Temperature Dynamics Machine Learning." Advanced Theory and 
Simulations 3.2 (2020): 1900210]. Therefore, we tested four different algorithms in this research. It can 
be observed that, in Fig. S1 with 1,000 training datasets, the LR can achieve a comparable 
performance to SVM, and as the number of training datasets increases, the training and testing 
performance of random forest also increases, close to that of SVM (Fig. S3). Therefore, we believe 
that different algorithms should be tested under various conditions to find the optimal one.   
 
3. However, as pointed out by reviewer #1, the comparison with simpler encoding (dipeptide or amino acid 
frequencies) is of interest. Here, I think the authors have misunderstood the meaning of these comparisons. 
They are not primarily aimed at examining the best possible way to predict the properties of the peptides, 
but to understand position-specific rules. Unfortunately, using the 1200-bit version does not enable such a 
comparison (as this is just a cumbersome way to encode the 80-bit one-hot encoding. Instead, a 400 bit 
dipeptide and a 20-bit AAfrequency encoding should be tried and discussed. However, I think there might 
be easier ways to extract the relevant information by simple statistics on the dipeptides. Some simple log-
odds plots on AAfrequency (and secondary features such as pi-stacking potential) of the experimentally 
verified (or predicted) hydrogel forming peptides should provide the sought after information. 
We are grateful for the reviewer’s comments for improving the understanding in position-specific 
rules of peptide hydrogelation. As pointed out by the reviewer 1: “if would be better if the authors 
developed the model using amino acid and dipeptide composition encoding, …. see whether they 
improve the prediction accuracy”, we then employed 4-integer encoding, 80-bit one-hot encoding 
with amino acid composition, and 1200-bit one-hot encoding with dipeptide composition to 
compare the prediction accuracy of the trained models. However, as pointed by reviewer 4, we did 
not try to generate the position-specific rules by different encoding approaches.   
 
In terms of position-specific rules, we have generated the position-specific hydrogelation laws 
in Fig.4c in the original manuscript, by comparing the percentage of the amino acids in each 
position (i.e., this can be taken as a statistical approach), for both experimentally verified and 
computationally predicted hydrogel-forming peptides, and a satisfactory agreement has been 
reached. To extend the hydrogelation laws with respect to dipeptide and tripeptide compositions, 
we plotted 20 figures (Fig. 4d and Fig. S7-S25) and in each figure, one amino acid is fixed at C-
terminus, while the x-axis indicates an amino acid in position 1 (N-terminus), y-axis indicates an 
amino acid in position 2, and third position is as shown in the rectangular box (Fig. 4d). These 
hydrogelation laws have been detailed in the section of “Hydrogelation laws from experiment and 
simulation results”. 
 



 

Following the reviewers’ comments, we also tried the encoding of the tetrapeptides with 400-bit 
dipeptide sequence with 100 experimental data and 8,000 top APHC values, and explored the 
position-specific rules, as a supplementary to the hydrogelation rules with respect to dipeptide 
composition, as shown in Figure S26. 
 
Revisions in the Supplementary Information: 

 
Figure S26: Percentage of amino acid pairs (i.e., dipeptide) of 100 hydrogel-forming peptides 
and 8,000 peptides with top APHC score in simulations.  
 
We added the following sentences in the section “Hydrogelation laws from experiment and 
simulation results” of the revised manuscript: 
 
Revisions in the main text: 
In addition, aromatic amino acids bonded with P and K exhibited similar positive performance. 
These rules can also be applied to the triplets. In addition, we analyzed the position-type percentage 
with respect to adjacent amino acids, based on the 100 hydrogel-forming peptides in the 
experiment and 8,000 peptides with the highest APHC score in the simulation (Fig. S26). It can also 
be deduced that aromatic-aromatic and aromatic-hydrophobic doublets have the most significant 
contribution to hydrogelation, and position-specific rules regarding other amino acids are also 
congruent with those deduced from Fig. 4c and d. For example, amino acid A is barely found in 
the fourth position, except that when F or Y is located in the third position. In summary, we have 
presented a complete picture of the relationship between the gelation ability and position & type 
of 20 natural amino acids, providing a schematic guidance for experimentalists to design 
tetrapeptide hydrogels and possibly functional applications associated. 



REVIEWERS' COMMENTS 

 

Reviewer #4 (Remarks to the Author): 

 

The authors have satisfactory answered all my concerned 
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