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SUMMARY
Dysregulated host-microbial interactions play critical roles in initiation and perpetuation of gut inflammation
in Crohn’s disease (CD). However, the spatial distribution and interaction network across the intestine and its
accessory tissues are still elusive. Here, we profile the host proteins and tissuemicrobes in 540 samples from
the intestinal mucosa, submucosa-muscularis-serosa, mesenteric adipose tissues, mesentery, and mesen-
teric lymph nodes of 30 CD patients and spatially decipher the host-microbial interactions. We observe aber-
rant antimicrobial immunity andmetabolic processes acrossmulti-tissues during CD and determine bacterial
transmission along with altered microbial communities and ecological patterns. Moreover, we identify
several candidate interaction pairs between host proteins and microbes associated with perpetuation of
gut inflammation and bacterial transmigration across multi-tissues in CD. Signature alterations in host pro-
teins (e.g., SAA2 andGOLM1) andmicrobes (e.g.,Alistipes and Streptococcus) are further imprinted in serum
and fecal samples as potential diagnostic biomarkers, thus providing a rationale for precision diagnosis.
INTRODUCTION

Crohn disease (CD), a type of inflammatory bowel disease (IBD),

is a chronic intestinal disorder involving any part of the gastroin-

testinal tract and is characterized by transmural inflammation,1

globally afflicting more than 3.5 million individuals.2 Multiple fac-

tors, including genetic susceptibility, immune dysregulation, and

microbiota disturbance, have been considered to be drivers of

CD.3,4 However, the etiology and pathophysiology of CD are still

not fully understood.

It is generally considered that inflammatory lesions are initially

induced in the intestinal mucosa (MUC) and that transmural

inflammation enables to involve in the submucosa-muscularis-

serosa (SMS) of CD patients. Accumulated evidence reveals

that intestinal accessory tissues, such asmesenteric adipose tis-

sue (MAT), mesentery (MES), and mesenteric lymph nodes

(MLNs), are closely associated with the clinical course and

pathophysiology of CD.5,6 Under steady-state conditions, MES
Cell R
This is an open access article under the CC BY-N
comprises various cells, including adipocytes, fibrocytes, im-

mune cells, and a vast network of blood vessels and lymphatic

vessels.7 However, CD MES is characterized by mesenteric

hypervascularity and edema, increased fat density, fibrofatty

proliferation, mesenteric lymphadenopathy, connective tissue

thickening, and densely infiltrating inflammatory cells and hyper-

plastic adipocytes. Chronic inflammation in the adjacent intes-

tine significantly correlates with fat wrapping.7,8 Inflamed MAT

(iMAT) wrapping the involved intestinal segments and encroach-

ing into the adjacent intestine is also called ‘‘creeping fat’’ (CrF), a

macroscopical phenomenon of CD and an important source of

proinflammatory cytokines.8,9 Consistently, postoperative recur-

rence and reoperation incidence is significantly lower in CD

patients who undergo partial MES resection concurrently.7 How-

ever, a recent study has illustrated that the specific translocation

of the bacterial consortium in MAT promotes formation of

CrF, which prevents systemic bacterial translocation and

limits the perpetuation of gut inflammation.10 Collectively, the
eports Medicine 4, 101050, June 20, 2023 ª 2023 The Author(s). 1
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Figure 1. The strategy for collecting multi-tissues and the general design of this study

(A) An overview of the experimental design and sample collection of the proteome and microbiome. The schematic presents the sample collection strategy of

inflamed and adjacent uninflamed tissues from CD patients. iMUC, inflamed mucosa (H&E, 3100); uMUC, adjacent uninflamed MUC (H&E, 3100); iSMS, in-

flamed submucosa-muscularis-serosa (H&E,3100); uSMS, adjacent uninflamed SMS (H&E,3100); iMAT, inflamedmesenteric adipose tissue (i.e., CrF) (H&E,3

200); uMAT, adjacent uninflamed MAT (H&E, 3200); iMES, inflamed mesentery (H&E, 3200); uMES, adjacent uninflamed MES (H&E, 3200); MLN, mesenteric

lymph node (H&E, 3100).

(B) Quantified and dysregulated proteins across multiple tissues. The outermost labels represent the different types of tissues (i.e., MUC, SMS, MAT, MES, and

MLN). The number of samples from specific tissue is indicated in the outmost or first sector (gray). The second sector (green) refers to undetected proteins in a

specific tissue. The third sector (light red) refers to upregulated proteins in a specific tissue. The fourth sector (light blue) refers to downregulated proteins in a

(legend continued on next page)
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dichotomous roles of intestinal accessory tissues appear in the

development of CD beneficially11 or harmfully.8 Therefore, it is

crucial to elucidate the exact roles of the intestine and its acces-

sory tissues in treating and managing CD.

The gut microbiome is classically an appreciated factor

involved in the pathogenesis of CD.10,12 Hazardous conditions,

such as intestinal inflammation, transmural inflammation,13 and

an impaired gut vascular barrier,14,15 facilitate bacterial transmis-

sion into the intestine and extraintestinal tissues and further pro-

mote the initiation and perpetuation of intestinal inflammation,

but the underlyingmechanisms regulating bacterial transmission

aswell as intestinal inflammation remain elusive. Recently, large-

scale genome-wide association studies (GWASs) have identified

more than 240 IBD susceptibility alleles implicated in bacterial

sensing and innate immunity, especially for CD-specific suscep-

tibility genes.16,17Multi-omics analysis, including single-cell RNA

sequencing and metagenomics, also reveals important roles of

the gut microbiota in the pathogenesis of CD.18,19 However, the

transcriptome cannot fully dissect the functional interactions be-

tween the host and gut microbiota during CD.20 Hence, attention

has shifted mainly toward proteomics profiling, and several

studies have provided protein-level insights into the pathogen-

esis of CD21,22 and identified a variety of protein biomarkers in

serum, stool, andmucosal biopsies from IBD patients.23,24 How-

ever, it is still largely unknown how the host proteome interacts

with the gut microbiome across the intestine and extraintestinal

tissues; shedding light on this would allow us to better under-

stand the underlying mechanisms involved in bacterial transmis-

sion during CD.25,26

Here, we collected 540 tissue samples from 30 CD patients

and 50 tissue samples from 5 non-CD controls (NCs) for paired

tissue proteome and microbiome, including MUC, SMS, MAT,

MES, and MLN specimens. We mapped the spatial distribution

of proteins and gut microbiota and deciphered the interactions

between the host proteome and gut microbiome across different

tissues involved in the pathogenesis of the disease. Additionally,

we also observed that a distinct alteration in the host proteome

(e.g., SAA2, GOLM1, IGFBP2, GBP1, and DPP4) and gut micro-

biome (e.g., Alistipes, Dialister, and Streptococcus) could be

imprinted in serum and fecal samples from another cohort of

30 patients with active CD, thus providing a rationale of omics

datasets for precision diagnosis and an in-depth understanding

of the pathogenesis.

RESULTS

To investigate the characteristics of the host proteins and gut

microbes in multi-tissues from CD patients, we collected 540

surgical resection samples from 30 CD patients for paired prote-

ome and microbiome, respectively, including inflamed terminal

ileal MUC (iMUC) and adjacent uninflamed terminal ileal MUC

(uMUC), inflamed ileal SMS (iSMS) and adjacent uninflamed ileal

SMS (uSMS), iMAT and adjacent uninflamed MAT (uMAT), in-

flamed MES (iMES) and adjacent uninflamed MES (uMES), as
specific tissue (B-H-adjusted p < 0.05; |log2[FC of CD versus non-CD]| > log2[1.2]

specific tissue.

See also Figure S1 and Tables S1 and S2.
well as MLN (Figure 1A; STAR Methods). Additionally, 50 normal

tissue samples analogous to the corresponding sites (including

MUC, SMS, MAT, MES, and MLN) were collected from five

NCs for paired proteome and microbiome, respectively, as

described above. Details regarding tissue sample collection

and information of patients, including age, gender, clinical char-

acteristics, and medications, are shown in STAR Methods and

Table S1. Paired tissue proteomes and microbiomes were per-

formed on multi-regional tissue samples from 30 CD patients

and 5 NCs (Figure 1A). A total of 10,135 unique proteins were

quantified with a false discovery rate (FDR) of less than 1% (Fig-

ure S1A; Table S2), and the microbiome compositions were

mapped across our cohort by 16S rRNA gene amplicon

sequencing, yielding 32,330 ± 17,916 reads (Figure 1A).

To investigate whether the distinct signature alterations in the

proteome and microbiome obtained from multi-tissues of CD pa-

tients could be imprinted in serum and feces from CD patients,

wecollectedpairedserumand fecal samples froman independent

cohort of 30 activeCDpatients and 30 healthy donors for TMTpro-

based untargetedproteomics and 16S rRNAsequencing analysis,

respectively (Figure 1A; STAR Methods).

The landscape of spatial protein characteristics across
different tissues of CD patients
To obtain a global view of spatial profiles of host proteins during

CD, we leveraged proteomics analysis on multi-tissues from CD

patients, including inflamed and adjacent uninflamed ileal MUC,

SMS, MAT, MES, and MLN. T-distributed stochastic neighbor

embedding (t-SNE) analysis found no apparent technical bias

from different batches or mass spectrometry equipment

(Figure S1B), showing the high quality of the proteomic data. t-

SNE analysis also revealed similar proteomes between inflamed

and adjacent uninflamed tissues of CD patients (Figure S1B). In

addition, the differential analysis also observed no significant dif-

ferences in proteomes between inflamed and corresponding un-

inflamed MUC, SMS, MAT, and MES of CD patients, in which

proteins with log2(fold change [FC]) beyond 0.25 or below

�0.25 as well as an adjusted p value of 0.05 or less were consid-

ered to be significantly differentially expressed (Figure S1C).

Hence, the comparisons were assessed between inflamed tis-

sues from CD patients and normal tissues from NCs after that.

A total of 2,817 dysregulated proteins were identified from five

types of tissues (i.e., MUC, SMS, MAT, MES, and MLN) between

CD patients and NCs (Figure 1B and Table S2). Of them, only

seven proteins were observed to be altered in all five types of in-

flamed tissues with different expression patterns, including

serum amyloid A2 (SAA2), arginase 2 (ARG2), D-aminoacyl-

tRNA deacylase 1 (DTD1), Fas apoptotic inhibitory molecule

1 (FAIM), heterogeneous nuclear ribonucleoprotein A2/B1

(HNRNPA2B1), keratin 15 (KRT15), and POTE ankyrin domain

family member K, pseudogene (POTEKP) (Figure S2B).

According to the knownpathophysiology ofCD,1wemappedall

differentially expressed proteins (Figure S2A) into eight functional

clusters, including IBD susceptibility gene-encoded proteins,
), and the fifth or innermost sector (dark blue) refers to unregulated proteins in a
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Figure 2. Functional clusters of dysregulated proteins related to the pathogenesis of CD across multi-tissues

(A) The landscape of dysregulated proteins inmultiple tissues of CD patients. Counts of dysregulated proteins in 8 clusters of protein molecules are shown in a bar

chart, including IBD and other autoimmune disease-associated susceptibility gene-encoded proteins, antimicrobial immunity-associated proteins, innate im-

munity-associated proteins, adaptive immunity-associated proteins, immune exhaustion-associated proteins, cytokines, metabolism-associated proteins, and

fibrosis-associated proteins. The horizontal columns represent the number of proteins in different functional clusters. The dysregulated proteins in 8 clusters are

indicated as circles (red spots, upregulated proteins; blue spots, downregulated proteins). The size of the spots indicates absolute log2(FC).

(legend continued on next page)
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antimicrobial immunity-associated proteins, innate immunity-

associated proteins, adaptive immunity-associated proteins,

immuneexhaustion-associated proteins, cytokines, cellularmeta-

bolism-associated proteins, and fibrosis-associated proteins (Fig-

ure2A).Moredetailsofeight cluster-relatedproteinsaredescribed

in Table S3.

Because genetic susceptibility is indispensable for develop-

ment of CD, we first identified 40 proteins associated with IBD

susceptibility and 62 proteins related to other autoimmune dis-

eases, such as systemic lupus erythematosus and rheumatoid

arthritis (Figure 2B). Among them, eight IBD susceptibility

gene-encoded proteins were differentially expressed in at least

two types of inflamed tissues from CD patients (Figure 2B).

ATG16L1, a canonical autophagy-regulating protein, was down-

regulated in iMUC, iMAT, iMES, and MLN of CD patients (Fig-

ure 2C), suggesting an impairment of autophagy-mediated mi-

crobial clearance.27 The pore-forming cytolysin gasdermin B

(GSDMB), an executioner of inflammatory cell death programs

that restricts intracellular bacterial growth mediated by natural

killer (NK) cells,28 was upregulated in iSMS but downregulated

in MLN of CD patients (Figure 2C). These results suggest

that dysregulated host defense exists across the intestine and

its accessory tissues during CD and is related to genetic

susceptibility.

To gain an in-depth understanding of the functional changes in

the host proteome, we took advantage of ingenuity pathway anal-

ysis (IPA) to illustrate dysregulated proteins in each tissue site. We

found that the urea cycle pathway was enriched in all five types of

inflamed tissues (Figure S2C) and that several pathways associ-

ated with tryptophan metabolism were enriched in different in-

flamed tissues,29 such as xenobiotic metabolism signaling and

aryl hydrocarbon receptor (AHR) signaling (FigureS2C).Moreover,

we also observed an enrichment of immunity-associated path-

ways in different inflamed tissues with distinct functional alter-

ations. For example, B cell receptor signaling was suppressed in

iMUC but significantly activated in iSMS of CD patients

(Figure S2C).

Compromised antimicrobial immunity across different
tissues of CD patients
Given the fundamental importance of antimicrobial immunity in

the maintenance of intestinal homeostasis, we identified 100

signature dysregulated proteins related to antimicrobial immu-

nity based on the ImmPort database,30 25 of which were shared

in at least two types of inflamed tissues from CD patients (Fig-

ure S3A). Multiple immune response processes related to antimi-

crobial immunity were particularly compromised during CD,

including pathogen invasion, immune cell migration, antigen

recognition and presentation, and pathogen-killing function (Fig-

ure 3A). A large number of proteins related to host antimicrobial
(B) The chord diagram shows dysregulated proteins encoded by IBD and autoim

patients and NCs. The length of the outermost brick representing each protein co

the outermost brick representing each type of tissue corresponds to the sum of

(C) Protein expression of ATG16L1 and GSDMB across different tissues. The y axi

inflamed tissues of CD patients and normal tissues of NCs was performed using a

***p < 0.001, ****p < 0.0001.

See also Figure S2 and Tables S2 and S3.
immunity were found to be downregulated in different types of

tissues during CD (Figure 3A). For example, C-X-C motif chemo-

kine ligand 12 (CXCL12), an essential chemokine related to

leukocyte trafficking,31,32 was downregulated in iMUC, iSMS,

and iMES of CD patients (Figures 3A and 3C). High-mobility

group box 1 (HMGB1), synergistic with CXCL12 to induce

lymphocyte activation,33 was also reduced in iMUC of CD pa-

tients (Figures 3A and S3B). Arrestin beta 1 (ARRB1), which is

involved in the autoimmune pathology of experimental autoim-

mune encephalomyelitis (EAE),34 was downregulated in iMUC

and iMES of CD patients (Figure 3A), whereas growth differenti-

ation factor 15 (GDF15), a secreted ligand that interacts with

ARRB1,35 was significantly upregulated in iSMS and MLN of

CD patients (Figure 3A). Moreover, we also identified several

well-known antimicrobial peptides, as exemplified by upregu-

lated lysozyme (LYZ), s100 calcium-binding proteins A8 and

A9 (S100A8 and S100A9, respectively), and defensins alpha 5

and 6 (DEFA5 and DEFA6, respectively), in iMUC of CD patients

(Figure 3A), suggesting a greatly enhanced bactericidal capacity

of myeloid cells and Paneth cells.

Dysregulated metabolic processes across different
tissues in CD
Because aberrant metabolic pathways have been reported to be

involved in development of CD,36,37 we did observe that multifar-

ious metabolic processes, including amino acid and glucose

metabolism as well as nucleotide and fatty acid synthesis,

were disturbed in different types of tissues fromCDpatients (Fig-

ure S3C). Of note, a total of 164 dysregulated proteins involved in

metabolic processes were identified across different inflamed

tissues, 25 of which were differentially expressed in at least

two types of inflamed tissues from CD patients (Figure S3C).

In recent years, accumulatingevidencehas shown that aberrant

amino acid metabolism exacerbates intestinal mucosal inflam-

mation, particularly in IBD.38,39 We sought to investigate the

alterations in protein metabolism during CD and observed 39 dys-

regulated proteins associated with metabolic pathways of amino

acids in different types of tissues, including methionine, tyrosine,

tryptophan, and arginine (Figures 3B and S3C). A series of en-

zymes in the urea cycle is involved in the metabolism of various

amino acids.40 ARG2, which facilitates oxidative phosphorylation

of inflammatory macrophages,41 was generally upregulated in all

five types of inflamed tissues (Figure 3B), and other urea cycle-

related proteins, including ASS1, OAT, and OTC, were dysregu-

lated inmulti-tissuesduringCD(Figure3B).Carbamoyl-phosphate

synthase 1 (CPS1), an initial enzyme of glutamine metabolism,42

was upregulated in iMUC and iMES of CD patients (Figures 3B

and 3C). In addition, we identified that a number of proteinsmodu-

lating glucose metabolism were dysregulated across different

tissues duringCD (Figure 3B). For example, superoxidedismutase
mune disease-associated susceptibility genes in different tissues between CD

rresponds to the sum of |log2(FC)| in different types of tissues, and the length of

|log2(FC)| in one or more proteins.

s indicates protein abundance. A pairwise comparison of each protein between

two-sided unpairedWelch’s t test. B-H-adjusted p values: *p < 0.05, **p < 0.01,
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Figure 3. Antimicrobial immunity- and metabolism-associated proteins are dysregulated in different types of tissues

(A) The diagram summarizes protein signatures and different pathways involved in host antimicrobial immunity during CD. Pathways are displayed in pink boxes.

Dysregulated proteins are displayed in yellow boxes, and alterations of these proteins are labeled in the boxes below the protein-labeled boxes, which represent

the proteins derived from 5 different types of tissues (MUC, SMS, MAT, MES, and MLN, respectively) (red, upregulation; blue, downregulation).

(B) The diagram summarizes the crucial characteristics and pathways involved in metabolism during CD. Pathways are displayed in light green boxes. Dysre-

gulated proteins are displayed in yellow boxes, and alterations of these proteins are labeled in the neighboring boxes, which represent the proteins derived from 5

different types of tissues (MUC, SMS, MAT, MES, and MLN, respectively) (red, upregulation; blue, downregulation). Crucial metabolites in the different metabolic

processes are labeled in gray boxes.

(legend continued on next page)
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2 (SOD2), a mitochondrion-specific antioxidant enzyme,43 was

significantly upregulated in iSMS of CD patients (Figure 3B). Pyru-

vate dehydrogenase kinase 4 (PDK4), a crucial regulator of glycol-

ysis and oxidative phosphorylation,44was downregulated in iMUC

and iSMS of CD patients (Figure 3B), which parallels our recent

report.45 Enolase 3 (ENO3), a key upstream regulator of glycol-

ysis,46 was significantly upregulated in iMES of CD patients and

correlated with lactate dehydrogenase A (LDHA) (Figures 3B and

S3D), an enzyme that was significantly decreased in iMES and is

responsible for conversion of pyruvate into lactate in glycolysis

(Figure 3B). Moreover, we also observed that dysregulated pro-

teins predominantly participated in fatty acid synthesis in iMAT

and iMES of CD patients (Figure S3C). Enoyl-coenzyme A hydra-

tase and 3-hydroxyacyl CoA dehydrogenase (EHHADH), a key

enzyme of the fatty acid b-oxidation pathway,47 was downregu-

lated in iMES of CD patients (Figures 3B and S3D). Acetyl-CoA

catalyzed by acetyl-CoA carboxylase alpha (ACACA), a rate-limit-

ing enzyme of de novo fatty acid synthesis,48 was downregulated

and correlated with EHHADH in iMES of CD patients (Figures 3B

and S3D). NAD(P)H:quinone oxidoreductase 1 (NQO1) was also

decreased in iMAT and iMES of CD patients (Figures 3B and

3C), suggesting that cellular protection against oxidative damage

is compromised in the intestinal accessory tissues of CD pa-

tients.49 Collectively, these findings suggest that metabolic re-

programming occurs during CD.

Global views of microbial characteristics across
different tissues in CD
We then characterized the spatial landscape of the microbiota

across different tissues from CD patients (Figure 4A). No signifi-

cant difference in microbial composition was seen among the in-

testine and extraintestinal tissues (Figures S4A and S4B), in line

with a previous study demonstrating a comparable alteration in

the microbiome between MUC, SMS, and MAT.10,12 In addition,

similar microbial compositions were also observed between the

inflamed and adjacent uninflamed tissues regardless of regional

sites in alpha diversity (Figure S4C) and beta diversity (Fig-

ure S4D), consistent with the scenarios in the proteome as

described above (Figure S1C).

To clarify the characteristics of the spatial microbial commu-

nities in CD patients, we thoroughly investigated the microbiome

across different tissues frommultiple dimensions. We found that

microbial alpha diversity was decreased in inflamed tissues (i.e.,

MUC, SMS, MAT, MES, andMLN) of CD patients compared with

that in normal tissues of NCs (Figures S5A and S5B). At the

phylum level, the microbiota was mainly composed of Bacteroi-

dota, Firmicutes, Actinobacteria, and Proteobacteria (Figure

S5C). More alterations were observed in the iMUC of CD pa-

tients, including an increase in the relative abundance of the

dominant Bacteroidota but a decrease in the relative abundance

of Firmicutes and Proteobacteria (Figure S5C). We then profiled

the spatial characteristics of the microbiota at the genus level in

different types of tissues from CD patients (Figure 4A), and sur-
(C) Proteins associatedwith antimicrobial immunity andmetabolism acrossmulti-

protein between the inflamed tissues of CD patients and normal tissues of NCs wa

*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

See also Figure S3 and Tables S3 and S4.
prisingly, a reduction in the relative abundance of short chain

fatty acid (SCFA) producers was observed in all five types of in-

flamed tissues from CD patients (Figure 4A). Notably, the SCFA-

producing Granulicatella and Eubacterium were significantly

decreased in all inflamed tissues from CD patients, while dis-

tinctive SCFA-producing genera were also observed in different

tissues, such as Coprococcus in iMUC and iMES; Blautia, Clos-

tridium, Dorea, and Faecalibacterium in iSMS; Faecalibacterium

in iMAT; and Bulleidia in MLN (Figure 4A). Moreover, Strepto-

coccus, one of the dominant microbes involved in intestinal

inflammation,50 was remarkably reduced in all inflamed tissues

of CD patients except iSMS (Figure 4A). Conversely, a significant

increase in Lactobacillus, which enables metabolism of trypto-

phan into AHR ligands,51 was present in iSMS (Figure 4A).

Intriguingly, the proteome data displayed increased expression

of IDO1, a regulator of AHR responses, in the iMUC of CD pa-

tients (Figure 3B), suggesting a potential association between

microbiome and host proteome during CD.

Consistent with microbial taxonomical compositions, we also

found that the predicted microbial functions at the Kyoto Ency-

clopedia of Genes and Genomes (KEGG) Orthology (KO) gene

level were altered in inflamed tissues of CD patients and that

distinct microbial KO genes with differential relative abundance

were identified between CD patients and NCs across multi-tis-

sues. Particularly, significant microbial dysbiosis was observed

in the iMUC of CD patients, including 359 genes with increased

abundance and 737geneswith decreased abundance compared

with normal MUC from NCs (Figure 4B), while fewer differential

microbial genes were identified in iSMS, iMAT, iMES, and MLN

of CD patients (Figure 4B) compared with controls. Moreover,

only a few genes were altered across all five types of inflamed tis-

sues from CD patients (Figure 4C). For instance, murM, encoding

a protein essential for high-level penicillin resistance to Strepto-

coccus,52 decreased across all five types of inflamed tissues

from CD patients (Figure S5D). The phenylacetate degradation-

related genepaaDdecreased in all inflamed tissues but increased

in iMAT (Figure S5D). Moreover, an enrichment analysis revealed

that the two-component system and peptidoglycan biosynthesis

were the dominantly enriched microbial pathways across all five

types of inflamed tissues (Table S5), suggesting essential roles

in microbial growth and development during CD.

We further observed that bacterial co-abundance associa-

tions appeared to be positive among themajority of thesemicro-

bial communities, showing tight competition among taxa. Of

note, the microbial community in iMES of CD patients included

56 genera and 84 correlations, which was much denser than

that in other tissues (Figure 5A). However, the co-abundance

network in iSMS of CD patients was the smallest and sparsest,

with several isolated subnetworks, indicating a less stablemicro-

bial community (Figure 5A). Besides, relatively complex and con-

nected communities were observed in iMUC, iMAT, and MLN of

CD patients (Figure 5A). We also found that SCFA producers

were common keystone species in each tissue site, with different
tissues. The y axis indicates protein abundance. A pairwise comparison of each

s performed using a two-sided unpairedWelch’s t test. B-H-adjusted p values:
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B C

Figure 4. The distinctive patterns of spatial microbial compositions and functional genes across different tissues of CD patients

(A) A phylogenetic tree shows the union of the differential genera (38 in total), mainly grouped by the phyla Firmicutes, Bacteroidota, Proteobacteria, and Ac-

tinobacteria. Significantly different genera (p < 0.05, two-tailedWilcoxon test) in each tissue site are labeled in the outer circles. Each outer circle track represents

(legend continued on next page)
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participants, such as Enterobacteriaceae in iMUC, Oscillospira,

Parabacteroides and Eubacterium in iSMS and iMAT, Aggregati-

bacter in iMES, and Ruminococcus in MLN (Figure 5A). In addi-

tion, tissue-specific keystone species were identified, such as

Blautia and Alistipes in iSMS; Sutterella, Bilophila, and Rumino-

coccus in iMAT; Parvimonas and Mogibacterium in iMES; and

Deinococcus in MLN (Figure 5A). Taken together, these results

demonstrate the spatial distinctiveness of the microbial

ecosystem at multiple levels and identify the important roles of

SCFA producers in multi-tissues of CD patients.

The trajectory of microbial community across different
tissues in CD
Thesimilarity ofmicrobiota has indicatednonovelmicrobial com-

munities in the intestinal accessory tissues (i.e., MAT, MES, and

MLN) but rather a translocation from the gut,10 which prompted

us to further explore the source of residential microorganisms

in different types of tissues from CD patients via fast expectation

maximization for microbial source tracking (FEAST) at the com-

munity level. Considering the shared ecological niches in in-

flamed and adjacent uninflamed tissues, we also considered

adjacent uninflamed tissues as potential sources. We found

that 60%–70% of the microbiota of each inflamed tissue site

could be tracked by its source from other tissue sites indepen-

dent of inflammatory status (Figure 5B). For example, the micro-

biota in iMUC was mainly derived from uMUC (12.60% on

average), iMAT (8.16%), uMAT (8.87%), and iMES (13.36%),

and around 38.67% was derived from an unknown source envi-

ronment (Figure 5B). As expected, a mutual contribution pattern

of source compositions was observed between adjacent tissue

sites. In detail, the microbiota of MAT contributed over 20% of

sources (11.72% from iMAT and 10.69% from uMAT) to the mi-

crobiota of SMS, and nearly 30% of the microbiota of iMAT

was sourced from SMS (17.06% from iSMS and 13.03% from

uSMS) (Figure 5B). Unexpectedly, relatively fewer bidirectional

contributionswere shownbetweenMUCandSMS,where themi-

crobiota of MUC traced only 9% of sources from SMS and, vice

versa, only 7% of the microbiota of SMS from MUC (Figure 5B).

Moreover, frequent microbial transmission was also observed

among non-adjacent tissue sites, such as MUC and MES. Near

20% of the MUC microbiota was tracked from MES, and nearly

30% of the MES microbiota was tracked from MUC (Figure 5B),

suggesting that specific microbes have potent movement ability

to continuously transmit across different tissues and display a

colonization preference because of gut vascular barrier impair-

ment.14,15 We also observed that nearly 30% of the microbiota

was tracked fromunknownsources, probably tissue-residentmi-

croorganisms (Figure 5B). Our data reveal that the microbiota

spatially transmits across different tissues during CD.
one type of tissue site (i.e., MUC, SMS, MAT, MES, and MLN). The outer bar p

differential genus between the inflamed tissues of CD patients (red) and normal

(B) The bar plots show the number of KO genes with differential relative abund

numbers of increased and decreased KO genes in inflamed tissues of CD patien

(C) Venn diagrams of the differential KO genes across five tissue sites. The num

abundance between the inflamed tissues of CD patients and normal tissues of NC

different types of tissues, and nonoverlapping numbers specify the KO genes un

See also Figures S4 and S5 and Table S5.
The host-microbiota interactions across different
tissues in CD
Given the essential role of host-microbiota interactions in the

pathogenesis of CD, we sought to explore the relationships

between microbes and host proteins in different tissues of CD

patients. We first utilized Fuzzy C-means (FCM) clustering to

characterize the spatial dynamics of the significantly altered pro-

teins in different tissues from CD patients and identified seven

clusters (protein clusters [P.Cs]) (Figures 6A and S6A) that dis-

played dominant expression patterns with diverse functions

(Table S6). The differential microbial genes were then grouped

into five clusters with distinct expression patterns (microbial

clusters (M.Cs]). The specific species in different tissues domi-

nated different clusters (Figure 6A and S6A). Themicrobial genes

in M.Cs were commonly enriched in the two-component system

(Table S6), suggesting adaption to the microenvironment among

different types of tissues.53

To investigate the potential host-gut microbiota interactions,

we quantified the associations between P.Cs and M.Cs and re-

vealed a significantly positive association between P.C1 and

M.C1 (Figure S6B). The functional annotations of M.C1 were

enriched in several categories associatedwith bacterial nutrients

and energy metabolism as well as basic biosynthesis (i.e., prop-

anoate), suggesting a significant association with intestinal ho-

meostasis and immunology (Table S6). Propionate is one of the

most abundant SCFAs produced by the gut microbiota.54,55

Consistent with this, we also found alterations in SCFA pro-

ducers in microbial abundance (Figure 4A) and critical roles of

SCFA producers in microbial communities (Figure 5A). More-

over, KEGG pathway enrichment analysis revealed that manifold

metabolism- and immune-related pathways associated with CD

pathogenesis were enriched in P.C1, including nitrogen meta-

bolism and extracellular matrix (ECM)-receptor interaction

(Table S6).

Additionally, we identified several key candidate proteins and

microbial genes likely associated (throughSpearman correlation)

with perpetuation and deterioration of gut inflammation and bac-

terial transmigration across different types of tissues during CD,

which were accompanied by impaired barrier function and

reduced bactericidal capacity (Figures 6B and S6D). For

example, dysregulated expression of cell adhesion molecules,

mucus-associated proteins (e.g., CEACAM1 and MUC5B), and

antimicrobial peptides (e.g., LYZ and REG4) contributed to

restricted microbial growth and reduced defense and healing

functions (Figure 6B), which allows unrestrained flux of bacteria

into the adjacent SMS layer. Moreover, looking through the com-

ponents in M.C1 and P.C1, we identified several interactions be-

tweenmicrobial genes and host proteins across the intestine and

its accessory tissues (Figure 6B). A fewbacterial core geneswere
lots on the tracks represent the normalized relative abundance (log2) of each

tissues of NCs (blue).

ance (p < 0.05 identified by two-tailed Wilcoxon test) in each tissue site. The

ts are labeled in orange and green, respectively.

ber in each circle represents the amount of KO genes with differential relative

s. The overlapping numbers indicate the mutual differential KO genes between

ique to each tissue site.
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Figure 5. The spatial heterogeneity of microbial ecosystems and distributions of potential microbial transmission sources across different

tissues

(A) The co-abundance networks involve prevalent genera in different inflamed tissues (MUC, SMS, MAT, and MES) and MLNs of CD patients and their keystone

distributions. The colors of nodes indicate the phylum to which each node belongs. Only significant absolute correlations above 0.4 are shown (FDR <0.01, 1,000

permutations). The orange lines indicate positive species interactions, and the gray lines indicate negative species interactions. Genera identified as keystones by

hyperlink-induced topic search (HIST) algorithms are labeled with their genus name.

(B) Potential microbial transmission sources in each tissue site of CD patients via FEAST analysis. The percentage represents the contribution from the indicated

tissue site and unknown sources.
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observed to be involved in bacterial migration, including liaS and

phoB, belonging to the two-component system of bacteria (Fig-

ure S6D). The migration of bacteria into the SMS provoked an

adaptive immune response magnified by SAA2, a significant

contributor to Th17 cell-mediated immunopathology.56 In addi-

tion,metabolic reprogramming and certain types of programmed

cell death pathways, such as pyroptosis, as evidenced by aber-

rant expression of GSDMB and CPB1 (Figure S6D), appeared

to enable bacteria to preferentially cross the SMS into the MAT

in synergy with associated bacterial genes (e.g., ompC and

zapD). Bacterial translocation into the MAT might direct an influx

of immune cells that gather in MAT and elicit ECM destruction.

For example, MMP7, a protease to cleave ECM proteins,57 and

ECE1 were strongly correlated with bacterial energy meta-

bolism-associated genes, including thrH and SPP. The ineffi-

ciency of confining bacterial growth and motility in MAT allowed

bacteria to translocate into MES, where bacterial encroachment

drove immune responses and destroyed host cell morphology

and ECM organization (Figure 6B). Correspondingly, the altered

genes of bacterial virulence and metabolism were closely corre-

lated with several essential host proteins, such as ZG16, which

limits bacterial translocation,58 and ITGA8, which is likely to

attenuate fibrosis formation.59 In MLN, several proteins involved

in immune responses, such as GSDMB and SAA2, were highly

correlated with bacterial genes belonging to the two-component
10 Cell Reports Medicine 4, 101050, June 20, 2023
systemand energymetabolism, characterized byPropionibacte-

rium, Enterobacteriaceae, Acinetobacter, and Bacteroides. Alto-

gether, our data suggest that dysfunction of host physiological

processes, especially barrier function andhost immune response

in the intestine and its accessory tissues, is associated with

bacterial transmission and that host-microbiota interactions

contribute to initiation andperpetuation of intestinal inflammation

during CD.

Signature proteins and microbes in serum and feces of
active CD patients as potential diagnostic biomarkers
To investigate whether the unique host-microbiota interaction

pairs scattered across various tissues could converge in the

serum and feces of CD patients and could be used for potential

diagnostic biomarkers (namely, liquid biopsies), we performed

paired TMTpro-based untargeted proteomics of serum samples

and 16S rRNA sequencing of fecal samples from an independent

cohort of 30 patients with active CD and 30 healthy donors. We

identified 2,477 proteins in serum samples (Figure 1A and

Table S2), and 247 of them were differentially expressed

(adjusted p < 0.05; Table S2). Pathway enrichment analysis of

differentially expressed proteins in the serum of these active

CD patients appeared to have significant similarities to those

present in tissue samples, as described above (Figure S7A).

Importantly, 60 differentially expressed proteins in serum
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Figure 6. The interaction networks between host proteome and gut microbiome in CD patients

(A) mfuzz clustering of differential host proteins and gut microbial genes across different tissue sites of CD patients. Membership scores indicate the degree to

which the microbial gene or host protein belongs in each cluster. M.C, microbial cluster; P.C, protein cluster.

(legend continued on next page)
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between active CD patients and healthy donors overlapped with

those derived from different types of tissues (Table S7). Further

comparisons of candidate proteins in P.C1 were performed,

and 5 common signature proteins (i.e., IGFBP2, DPP4, SAA2,

GOLM1, and GBP1) were screened out (Figures 7A and 7B).

As for the microbiome, the alpha diversity of the fecal samples

from these active CD patients was significantly decreased (Fig-

ure S7B), and microbial compositions were also significantly

altered between active CD patients and healthy donors

(p < 0.001; Figure S7C). We identified 19 differential genera,

including Alistipes,Dialister, and Fusobacterium, and SCFA-pro-

ducing bacteria (e.g., Butyricimonas and Dorea), commonly pre-

sent in different types of tissue (Figures 7C and 7D; Table S7). In

addition, we observed 28 decreased microbial genes and 967

increased microbial genes in the fecal samples of these active

CD patients (Figure S7D). Enrichment of these elevated genes

in feces was consistent with the microbial functions identified

in the tissue samples, including enrichment of the two-compo-

nent system and biosynthesis of amino acids (Figure S7E).

Intriguingly, the circulating proteins correlated with microbial

functional genes and microbial genera (Table S7) in these CD pa-

tients. Particularly, the circulating protein SAA2 was positively

associated with the microbial transporters ugpE and ugpC but

negatively associated with microbial gerKC and flaG (Table S7).

SAA2 was also positively associated with the abundance

of SCFA-producing genera, such as Dorea and Butyricicoccus

(Table S7). Furthermore, five overlapped signature proteins

(AUC = 0.91) and 19 key genera of microbiota (AUC = 0.91) dis-

played powerful diagnostic capability in distinguishing active CD

patients from healthy controls, and the combination of these pro-

tein and bacterial biomarkers significantly improved the classifica-

tion accuracy (AUC = 0.96), which was higher than that of

C-reactive protein (CRP) (Figure 7E). Taken together, these

findings unequivocally confirm the tight interactions between

host proteome and microbiome across different types of tissues

during CD and, more importantly, provide a rationale for omics

datasets for precision diagnosis.

DISCUSSION

Accumulating evidence demonstrates that intestinal inflamma-

tion initiates in the mucosal area and transmits to intestinal

accessory tissues, including MAT, MES, and MLN, in the pro-

gression of CD, with ensuing translocation of the gut microbiota.

However, little is known about the substantial spatial changes in

host proteins and microbiota among these tissues and the po-

tential mechanisms underlying the host-gut microbiota cross-

talk. Here, for the first time, we utilized high-throughput omics

of different types of tissues from CD patients, including MUC,

SMS, MAT, MES, and MLN, and systematically identified the

spatial characteristics of microbiota and host proteins spanning

multiple tissues. Importantly, we unraveled the complex interac-

tions between the host proteins and microbial genes in different
(B) A concept map of the host-microbiota interaction patterns involved in the pa

mucosal area and gradually involves extraintestinal tissues, including the SMS,

immune response in these areas, which contribute to transmission of the gut mic

See also Figure S6 and Table S6.
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tissues and clarified the underlying mechanisms involved in

impaired barrier function and dysregulated immune response

that cause progressive intrusion of bacteria into different tissue

layers in CD. Unexpectedly, our study revealed that there was

no significant difference in proteome between inflamed and

adjacent uninflamed tissue sites from CD patients, suggesting

that the translational signatures of CD might precede intestinal

inflammation. Adjacent uninflamed tissues of CD patients are

probably in a vulnerable state and become preferentially in-

flamedwhen exposed to harmful external factors such as oppor-

tunistic pathogens or dietary antigens. Moreover, we also found

that the microbial community was similar between the inflamed

and adjacent uninflamed regions but differed markedly from

the microbiomes of NCs at the phylum level, which was consis-

tent with a previous study.12 Currently, many studies have

demonstrated the landscape of transcriptional profiles of tissues

from IBD patients and have shown similar single-cell profiles and

cell subtypes between inflamed and adjacent uninflamed mu-

cosa samples of IBD patients.60,61 Our data were consistent

with previous studies at translational levels. Collectively, these

results provide spatial insight into the pathophysiology of CD

and, more importantly, help us to implement precision medicine

in disease management.

Through detailed proteome analysis onmulti-tissues of CDpa-

tients, we unraveled the translational levels of IBD susceptibility

genes in different types of tissues and identified 40 dysregulated

IBD susceptibility gene-encoded proteins, suggesting preferen-

tial expression of susceptibility gene-encoded proteins in

different tissues during CD. Particularly ATG16L1 and GSDMB,

the two key proteins associated with IBD susceptibility genes,

were dysregulated in different types of tissues, suggesting that

aberrant antimicrobial immunity exists across multi-tissues

during disease and is related to IBD genetic susceptibility. In

addition, we also observed that a large number of proteins,

especially those related to antimicrobial immunity and metabolic

processes, were differentially expressed in at least two types of

tissue layers, suggesting that the expression patterns and inter-

play networks of the same protein molecule appear differently in

different microenvironments across multi-tissues.

Another highlight of our study is the multi-site sampling, which

allows us to gain access to microbial profiles in different types of

tissues from CD patients. Although a previous study has shown

that bacteria could translocate from the MUC into the MAT,10 we

observed the existence of microbes across multi-tissues, dis-

playing a comprehensive profile of bacterial transmission across

different tissue layers in the presence of CD. Through FEAST, we

observed that the majority of microbiota could transmit across

different tissue sites, with cross-sectional exchanges between

the inflamed and adjacent uninflamed sites and longitudinal

translocations among different tissues. However, we could not

further identify specific taxa of microbiota translocating

across different tissues because of the limitation of FEAST. We

observed frequent microbial transmission among non-adjacent
thogenesis of CD. During CD, the intestinal inflammation initially occurs in the

MAT, MES, and MLN, leading to impaired host defense and dysregulation of

robiota from the intestinal lumen into the intestinal accessory tissues.
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Figure 7. The signature host proteins and microbes in serum and fecal samples of CD patients and diagnostic potential

(A) The top plot shows the number of differentially expressed proteins shared in tissue samples and serum of CDpatients through integrative analysis. The number

on top of each column represents the size of differentially expressed proteins. The bar plot at the bottom right represents the number of differentially expressed

proteins (set size) in each tissue site, and the connected dot plot at the bottom left represents the common dysregulated proteins across connected tissue sites.

(legend continued on next page)
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tissue sites, such as MUC and MES. We presume that some

bacteria preferentially colonize among different tissue sites and

then enter the bloodstream because of gut vascular barrier

impairment, migrating into non-adjacent tissues, as reported

by previous studies.14,15 Regardless of the distinctive character-

istics of microbial composition, SCFA-producing bacteria, such

as Granulicatella and Eubacterium, decreased in all five types of

tissues from CD patients, indicating dysbiosis with microbiota-

associated inflammation. Taken together, our data reveal that

SCFA-producing bacteria play crucial roles in the microbial

community across intestinal and extraintestinal tissues and

that bacterial transmission exists across different tissues

during CD.

Because interactions between the bacterial community and

host proteins are integral for maintaining and regulating intestinal

homeostasis, we investigated correlative expression patterns of

host proteins and bacteria within different tissue sites in the

context of CD. Interestingly, some signature proteins were

closely associated with specific bacterial genes and functions

within distinct tissues. For example, olfactomedin 4 (OLFM4), a

proteinmolecule expressed in intestinal epithelia and neutrophils

that is associated with bacterial clearance,62 was correlated with

the bacterial genes liaS, thrH, and citXG, which belong to the

two-component system and are mainly attributed to Entero-

coccus, Clostridium, and Enterobacteriaceae. Another notable

example is that SAA2 was differentially expressed across all

five types of tissues. It is ubiquitously correlated with diverse

bacterial genes ranging fromMUC toMLN, suggesting its exten-

sive interaction with various bacteria and effects on the patho-

genesis of CD. SAA2 is expressed in different immune cells,

such as macrophages and T cells, and plays a crucial role in

the development of inflammation.63,64 Our findings demon-

strated and underscored the diversity of the interactions

between host SAA2 and a variety of bacteria across multiple

tissues, suggesting SAA2 as a comprehensive marker mirroring

inflammatory injury in the intestine. Therefore, our study revealed

that the interaction pairs between host proteins and microbial

genes are responsible for barrier function and immune re-

sponses, preventing transmission of microbes across the intes-

tine and its accessory tissues.

Increasing sensitivity and accuracy prompted us to take

advantage of clinical applications of liquid biopsy based on reli-

able markers in blood and stool. Thus, we considered whether

unique interaction pairs detected in tissues bymulti-omics could

converge in blood and stool in light of their collective and circu-
(B) The intensity (log2) of representative differential proteins in sera. All panels repr

a thick line in the middle of the box. The whiskers indicate the range of 1.5-fold in

test.

(C) The top plot shows the number of differential microbial genera shared in tissue

top of each column represents the size of the differential genera. The bar plot at t

tissue site, and the connected dot plot at the bottom left represents the common

(D) The relative abundance (percent) of representative differential genera in fece

median is shown as a thick line in the middle of the box. The whiskers indicate the

test.

(E) The AUC plot shows the diagnostic efficacy of identified signature proteins a

interval for AUC values. The colors represent combinations of biomarkers, includin

of proteins and genera (P+M). AUC: area under the curve.

See also Figure S7 and Tables S1, S2, and S7.
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lating properties. A new cohort of serum and fecal samples from

active CD patients and healthy donors was set up, and, more

importantly, we identified 60 differentially expressed proteins

and 19 differential genera in serum and feces of active CD pa-

tients, respectively, which overlapped with those detected in

the intestine and its accessory tissues. Moreover, the circulating

proteins were found to be correlated with microbial genera in

feces, and a panel of key circulating proteins (e.g., SAA2,

GOLM1, DPP4, IGFBP2, andGBP1) and fecal bacteria (e.g.,Alis-

tipes, Dialister, Fusobacterium, and Streptococcus) illustrated

powerful diagnostic efficiency, suggesting that dysregulation of

molecular and bacterial signatures in multi-tissues accumulates

in serum and feces, highlighting the non-invasive diagnostic po-

tential in CD.

Limitations of the study
First we performed a microbial analysis of the bacterial genome

by 16S rRNA gene sequencing but not in combination with meta-

genomes within different tissues, especially in SMS, MAT,

MES, andMLN. However, considering the relatively low biomass

of the microbiota and a high proportion of host DNA in tissue

samples, especially in intestinal accessory tissues, 16S rRNA

gene sequencing is more suitable for primary exploration of tis-

sue microbiotas. Second, host-microbiota interactions were

only preliminarily explored bymulti-omics, and the specific func-

tions and underlying mechanisms of key interaction pairs in the

pathophysiology of CD are still elusive. Further study is war-

ranted to define the functions and underlying mechanisms of

critical interaction pairs from different tissues of the intestine

and its accessory tissues in CD by shotgun metagenomics and

advanced technologies.
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(2022). Spatially resolved clonal copy number alterations in benign and

malignant tissue. Nature 608, 360–367. https://doi.org/10.1038/s41586-

022-05023-2.
62. Alder, M.N., Opoka, A.M., Lahni, P., Hildeman, D.A., and Wong, H.R.

(2017). Olfactomedin 4 is a candidate marker for a pathogenic neutrophil

subset in septic shock. Crit. Care Med. 45, e426–e432.

63. De Buck, M., Gouwy, M., Wang, J.M., Van Snick, J., Opdenakker, G.,

Struyf, S., and Van Damme, J. (2016). Structure and expression of different

serum amyloid A (SAA) variants and their concentration-dependent func-

tions during host insults. Curr. Med. Chem. 23, 1725–1755.

64. Ye, R.D., and Sun, L. (2015). Emerging functions of serum amyloid A in

inflammation. J. Leukoc. Biol. 98, 923–929. https://doi.org/10.1189/jlb.

3VMR0315-080R.

65. Bolyen, E., Rideout, J.R., Dillon, M.R., Bokulich, N.A., Abnet, C.C., Al-Gha-

lith, G.A., Alexander, H., Alm, E.J., Arumugam,M., Asnicar, F., et al. (2019).

Reproducible, interactive, scalable and extensible microbiome data sci-

ence using QIIME 2. Nat. Biotechnol. 37, 852–857.

66. Douglas, G.M., Maffei, V.J., Zaneveld, J.R., Yurgel, S.N., Brown, J.R., Tay-

lor, C.M., Huttenhower, C., and Langille, M.G.I. (2020). PICRUSt2 for pre-

diction of metagenome functions. Nat. Biotechnol. 38, 685–688. https://

doi.org/10.1038/s41587-020-0548-6.

67. Friedman, J., and Alm, E.J. (2012). Inferring correlation networks from

genomic survey data. PLoS Comput. Biol. 8, e1002687. https://doi.org/

10.1371/journal.pcbi.1002687.

68. Shenhav, L., Thompson, M., Joseph, T.A., Briscoe, L., Furman, O., Bogu-

mil, D., Mizrahi, I., Pe’er, I., and Halperin, E. (2019). FEAST: fast expecta-

tion-maximization for microbial source tracking. Nat. Methods 16,

627–632. https://doi.org/10.1038/s41592-019-0431-x.

69. Wu, T., Hu, E., Xu, S., Chen, M., Guo, P., Dai, Z., Feng, T., Zhou, L., Tang,

W., Zhan, L., et al. (2021). clusterProfiler 4.0: a universal enrichment tool for

interpreting omics data. Innovation 2, 100141. https://doi.org/10.1016/j.

xinn.2021.100141.

70. Davis, N.M., Proctor, D.M., Holmes, S.P., Relman, D.A., and Callahan, B.J.

(2018). Simple statistical identification and removal of contaminant se-

quences in marker-gene and metagenomics data. Microbiome 6, 226.

https://doi.org/10.1186/s40168-018-0605-2.

71. McMurdie, P.J., and Holmes, S. (2013). phyloseq: an R package for repro-

ducible interactive analysis and graphics of microbiome census data.

PLoS One 8, e61217. https://doi.org/10.1371/journal.pone.0061217.

72. Futschik, M.E., and Carlisle, B. (2005). Noise-robust soft clustering of gene

expression time-course data. J. Bioinform. Comput. Biol. 3, 965–988.

https://doi.org/10.1142/s0219720005001375.

73. Dixon, P. (2003). VEGAN, a package of R functions for community ecology.

J. Veg. Sci. 14, 927–930.

74. Szklarczyk, D., Gable, A.L., Nastou, K.C., Lyon, D., Kirsch, R., Pyysalo, S.,

Doncheva, N.T., Legeay, M., Fang, T., Bork, P., et al. (2021). The STRING

database in 2021: customizable protein-protein networks, and functional

characterization of user-uploaded gene/measurement sets. Nucleic Acids

Res. 49, D605–D612. https://doi.org/10.1093/nar/gkaa1074.

75. Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D.,

Amin, N., Schwikowski, B., and Ideker, T. (2003). Cytoscape: a software

environment for integrated models of biomolecular interaction networks.

Genome Res. 13, 2498–2504. https://doi.org/10.1101/gr.1239303.

76. Krämer, A., Green, J., Pollard, J., Jr., and Tugendreich, S. (2014). Causal

analysis approaches in ingenuity pathway analysis. Bioinformatics 30,

523–530. https://doi.org/10.1093/bioinformatics/btt703.

77. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,

O., Blondel, M., Prettenhofer, P., Weiss, R., and Dubourg, V. (2011). Scikit-

learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830.

78. Sturm, A., Maaser, C., Calabrese, E., Annese, V., Fiorino, G., Kucharzik, T.,

Vavricka, S.R., Verstockt, B., van Rheenen, P., Tolan, D., et al. (2019).

ECCO-ESGAR Guideline for Diagnostic Assessment in IBD Part 2: IBD

scores and general principles and technical aspects. J. Crohns Colitis

13, 273–284. https://doi.org/10.1093/ecco-jcc/jjy114.

79. Maaser, C., Sturm, A., Vavricka, S.R., Kucharzik, T., Fiorino, G., Annese,

V., Calabrese, E., Baumgart, D.C., Bettenworth, D., Borralho Nunes, P.,
Cell Reports Medicine 4, 101050, June 20, 2023 17

http://refhub.elsevier.com/S2666-3791(23)00164-7/sref47
http://refhub.elsevier.com/S2666-3791(23)00164-7/sref47
http://refhub.elsevier.com/S2666-3791(23)00164-7/sref47
http://refhub.elsevier.com/S2666-3791(23)00164-7/sref47
https://doi.org/10.1016/j.cmet.2018.08.020
https://doi.org/10.1084/jem.20172024
https://doi.org/10.1084/jem.20172024
https://doi.org/10.1371/journal.pone.0114277
https://doi.org/10.1016/j.immuni.2020.07.015
https://doi.org/10.1016/j.immuni.2020.07.015
http://refhub.elsevier.com/S2666-3791(23)00164-7/sref52
http://refhub.elsevier.com/S2666-3791(23)00164-7/sref52
http://refhub.elsevier.com/S2666-3791(23)00164-7/sref52
http://refhub.elsevier.com/S2666-3791(23)00164-7/sref52
http://refhub.elsevier.com/S2666-3791(23)00164-7/sref52
https://doi.org/10.2217/fmb-2019-0002
https://doi.org/10.2217/fmb-2019-0002
https://doi.org/10.1038/nature12721
https://doi.org/10.1053/j.gastro.2013.04.056
https://doi.org/10.1016/j.cell.2020.12.008
https://doi.org/10.1002/ibd.21443
http://refhub.elsevier.com/S2666-3791(23)00164-7/sref58
http://refhub.elsevier.com/S2666-3791(23)00164-7/sref58
http://refhub.elsevier.com/S2666-3791(23)00164-7/sref58
http://refhub.elsevier.com/S2666-3791(23)00164-7/sref58
http://refhub.elsevier.com/S2666-3791(23)00164-7/sref58
http://refhub.elsevier.com/S2666-3791(23)00164-7/sref59
http://refhub.elsevier.com/S2666-3791(23)00164-7/sref59
http://refhub.elsevier.com/S2666-3791(23)00164-7/sref59
http://refhub.elsevier.com/S2666-3791(23)00164-7/sref59
http://refhub.elsevier.com/S2666-3791(23)00164-7/sref59
https://doi.org/10.1016/j.cell.2019.06.029
https://doi.org/10.1016/j.cell.2019.06.029
https://doi.org/10.1038/s41586-022-05023-2
https://doi.org/10.1038/s41586-022-05023-2
http://refhub.elsevier.com/S2666-3791(23)00164-7/sref62
http://refhub.elsevier.com/S2666-3791(23)00164-7/sref62
http://refhub.elsevier.com/S2666-3791(23)00164-7/sref62
http://refhub.elsevier.com/S2666-3791(23)00164-7/sref63
http://refhub.elsevier.com/S2666-3791(23)00164-7/sref63
http://refhub.elsevier.com/S2666-3791(23)00164-7/sref63
http://refhub.elsevier.com/S2666-3791(23)00164-7/sref63
https://doi.org/10.1189/jlb.3VMR0315-080R
https://doi.org/10.1189/jlb.3VMR0315-080R
http://refhub.elsevier.com/S2666-3791(23)00164-7/sref65
http://refhub.elsevier.com/S2666-3791(23)00164-7/sref65
http://refhub.elsevier.com/S2666-3791(23)00164-7/sref65
http://refhub.elsevier.com/S2666-3791(23)00164-7/sref65
https://doi.org/10.1038/s41587-020-0548-6
https://doi.org/10.1038/s41587-020-0548-6
https://doi.org/10.1371/journal.pcbi.1002687
https://doi.org/10.1371/journal.pcbi.1002687
https://doi.org/10.1038/s41592-019-0431-x
https://doi.org/10.1016/j.xinn.2021.100141
https://doi.org/10.1016/j.xinn.2021.100141
https://doi.org/10.1186/s40168-018-0605-2
https://doi.org/10.1371/journal.pone.0061217
https://doi.org/10.1142/s0219720005001375
http://refhub.elsevier.com/S2666-3791(23)00164-7/sref73
http://refhub.elsevier.com/S2666-3791(23)00164-7/sref73
https://doi.org/10.1093/nar/gkaa1074
https://doi.org/10.1101/gr.1239303
https://doi.org/10.1093/bioinformatics/btt703
http://refhub.elsevier.com/S2666-3791(23)00164-7/sref77
http://refhub.elsevier.com/S2666-3791(23)00164-7/sref77
http://refhub.elsevier.com/S2666-3791(23)00164-7/sref77
https://doi.org/10.1093/ecco-jcc/jjy114


Article
ll

OPEN ACCESS
et al. (2019). ECCO-ESGAR Guideline for Diagnostic Assessment in IBD

Part 1: initial diagnosis, monitoring of known IBD, detection of complica-

tions. J. Crohns Colitis 13, 144–164. https://doi.org/10.1093/ecco-jcc/

jjy113.

80. Gao, H., Zhang, F., Liang, S., Zhang, Q., Lyu, M., Qian, L., Liu, W., Ge, W.,

Chen, C., Yi, X., et al. (2020). Accelerated lysis and proteolytic digestion of

biopsy-level fresh-frozen and FFPE tissue samples using pressure cycling

technology. J. Proteome Res. 19, 1982–1990. https://doi.org/10.1021/

acs.jproteome.9b00790.

81. Meier, F., Brunner, A.D., Frank, M., Ha, A., Bludau, I., Voytik, E., Kaspar-

Schoenefeld, S., Lubeck, M., Raether, O., Bache, N., et al. (2020).

diaPASEF: parallel accumulation-serial fragmentation combined with

data-independent acquisition. Nat. Methods 17, 1229–1236. https://doi.

org/10.1038/s41592-020-00998-0.

82. Cai, X., Ge, W., Yi, X., Sun, R., Zhu, J., Lu, C., Sun, P., Zhu, T., Ruan, G.,

Yuan, C., et al. (2021). PulseDIA: data-independent acquisition mass

spectrometry using multi-injection pulsed gas-phase fractionation.

J. Proteome Res. 20, 279–288. https://doi.org/10.1021/acs.jproteome.

0c00381.

83. Meier, F., Brunner, A.D., Koch, S., Koch, H., Lubeck, M., Krause, M., Goe-

decke, N., Decker, J., Kosinski, T., Park, M.A., et al. (2018). Online parallel

accumulation-serial fragmentation (PASEF) with a novel trapped ion

mobility mass spectrometer. Mol. Cell. Proteomics 17, 2534–2545.

https://doi.org/10.1074/mcp.TIR118.000900.

84. Zhu, T., Chen, H., Yan, X.,Wu, Z., Zhou, X., Xiao, Q., Ge,W., Zhang, Q., Xu,

C., Xu, L., et al. (2021). ProteomeExpert: a docker image based

web-server for exploring, modeling, visualizing, and mining quantitative

proteomic data sets. Bioinformatics 37, 273–275. https://doi.org/10.

1093/bioinformatics/btaa1088.

85. Bolyen, E., Rideout, J.R., Dillon, M.R., Bokulich, N.A., Abnet, C.C., Al-Gha-

lith, G.A., Alexander, H., Alm, E.J., Arumugam,M., Asnicar, F., et al. (2019).

Reproducible, interactive, scalable and extensible microbiome data sci-

ence using QIIME 2. Nat. Biotechnol. 37, 852–857. https://doi.org/10.

1038/s41587-019-0209-9.
18 Cell Reports Medicine 4, 101050, June 20, 2023
86. Martin, M. (2011). Cutadapt removes adapter sequences from high-

throughput sequencing reads. EMBnet.journal 17, 3. https://doi.org/10.

14806/ej.17.1.200.

87. Katoh, K., and Standley, D.M. (2013). MAFFTmultiple sequence alignment

software version 7: improvements in performance and usability. Mol. Biol.

Evol. 30, 772–780. https://doi.org/10.1093/molbev/mst010.

88. Price, M.N., Dehal, P.S., and Arkin, A.P. (2010). FastTree 2--approximately

maximum-likelihood trees for large alignments. PLoS One 5, e9490.

https://doi.org/10.1371/journal.pone.0009490.

89. Bokulich, N.A., Kaehler, B.D., Rideout, J.R., Dillon, M., Bolyen, E., Knight,

R., Huttley, G.A., and Gregory Caporaso, J. (2018). Optimizing taxonomic

classification of marker-gene amplicon sequences with QIIME 2’s q2-

feature-classifier plugin. Microbiome 6, 90. https://doi.org/10.1186/

s40168-018-0470-z.

90. Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Pe-
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REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

Surgical tissue samples from 30 CD

patients and 5 non-CD controls

Shanghai 10th People’s Hospital This paper (Table S1)

Serum and fecal samples from 30 active CD

patients and 30 healthy donors

Shanghai 10th People’s Hospital This paper (Table S1)

Chemicals, peptides, and recombinant proteins

Triethylammonium bicarbonate buffer

(TEAB)

Sigma-Aldrich Cat #T7408

Urea Sigma-Aldrich Cat #U1250

Thiourea Sigma-Aldrich Cat #T8656

Tris (2-carboxyethyl) phosphine (TCEP) Adamas-beta Cat # 61820E

Iodoacetamide (IAA) Sigma-Aldrich Cat #I6125

Trypsin Hualishi Tech Cat # HLS TRY001C

Trifluoroacetic acid (TFA) Thermo Fisher Scientific Cat # 85183

Water Thermo Fisher Scientific Cat #W6-4

Acetonitrile Thermo Fisher Scientific Cat # A955-4

Formic acid (FA) Thermo Fisher Scientific Cat # A117-50

Ammonium hydroxide solution Sigma-Aldrich Cat # 221228

Methanol Sigma-Aldrich Cat # 3486

E.Z.N.A.� stool kit Omega Bio-tek Cat #D4015-02

TransStart FastPfu DNA Polymerase TransGen Cat # AP221-03

Miseq Reagent Kit V3 Illumina Cat # MS-102-3003

Critical commercial assays

Ultracel-3 regenerated cellulose membrane Millipore Cat # UFC500324

XBridge Peptide BEH C18 column Waters Cat # 186003570

High SelectTM Top-14 Abundant Protein

Depletion Mini Spin Columns

Thermo Fisher Scientific Cat # A36370

96-well SOLAmTM SPE plate Thermo Fisher Scientific Cat # 60209-001

m-PrecolumnTM Catridge Thermo Fisher Scientific Cat # DX163593

PierceTM C18 Spin Column Thermo Fisher Scientific Cat # 89870

TMTpro 16plex reagents Thermo Fisher Scientific Cat # A44520

Emitter column, 15 cm 3 75 mm New Objective N/A

C18 resin, 1.9 mm Fresh Biosciences N/A

Deposited data

Mass spectrometry data This paper https://www.iprox.org

16S amplicon sequencing (tissue) NODE: OEP003464 https://www.biosino.org/node/

16S amplicon sequencing (feces) NODE: OEP003463 https://www.biosino.org/node/

Software and algorithms

QIIME2 v2019.07 Bolyen et al., 2019a65 https://qiime2.org

PICRUSt v2.0 Douglas et al., 2020b66 https://github.com/picrust/picrust2

Sparcc Friedman and Alm, 2012a67 https://bitbucket.org/yonatanf/sparcc

FEAST Shenhav et al., 201968 https://github.com/cozygene/FEAST

R package ClusterProfile v4.0 Wu et al., 2021a69 https://bioconductor.org/packages/

clusterProfiler/

R package decontam Davis et al., 201870 https://github.com/benjjneb/decontam

R package phyloseq v1.22.3 McMurdie and Holmes, 201371 https://github.com/joey711/phyloseq
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R package mfuzz v2.50.0 Futschik and Carlisle, 200572 http://mfuzz.sysbiolab.eu

R package vegan v2.5-7 Dixon, 200373 https://github.com/vegandevs/vegan

Proteome Discoverer (Version 2.4.0.305) Thermo Fisher Scientific N/A

Spectronaut (Version 14.6.201001.47784) Biognosys N/A

R v4.0.2 R project https://www.r-project.org/

String Szklarczyk et al., 202174 https://string-db.org/

Cytoscape (version 3.6.1) Shannon et al., 200375 NA

Ingenuine pathway analysis (version

51963813)

Kramer et al., 201476 https://www.qiagen.com/cn/

R v3.6.3 R project https://www.r-project.org/

Python package scikit-learn v0.21 Pedregosa et al., 201177 https://scikit-learn.org/0.21/

Other

timsTOF Pro mass spectrometer Bruker Daltonics N/A

nanoElute liquid chromatographer Bruker Daltonics N/A

DIONEX UltiMate 3000 RSLCnano liquid

chromatographer

Thermo Fisher Scientific N/A

Q Exactive HF-Orbitrap Thermo Fisher Scientific N/A

NanoDrop Eight Thermo Fisher Scientific N/A

QuantiFluorTM-ST Promega N/A

MiSeq System Illumina N/A
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Lead contact
Further information should be directed to and will be fulfilled by the lead contact, Zhanju Liu (zhanjuliu@tongji.edu.cn).

Materials availability
This study did not generate new unique reagents.

Data and code availability
All data are available in this paper. The proteomics data reported in this paper have been deposited in ProteomeXchange Consortium

with accession iProX: IPX0004848000. The 16S rRNA sequencing data reported in this paper have been deposited in The National

Omics Data Encyclopedia (NODE) with accession ID OEP003464 (intestine-associated tissue samples) and OEP003463 (fecal sam-

ples), respectively. Any additional information required to reanalyze the data reported in this work is available from the lead contact

upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Patient collection and sampling strategy
This study was approved by theMedical Ethics Committee of the Shanghai 10th Hospital affiliated to Tongji University (No. 20KT863)

and Chinese Clinical Trial Registry (ChiCTR2000036115).

Surgical specimens were collected from the terminal ileum of CD patients and adjacent normal terminal ileum of non-CD controls

who underwent ileocolectomy. All CD patients were diagnosed according to the ECCO-ESGARGuideline for Diagnostic Assessment

in IBD78,79 and accepted surgical therapy due to severe complications (e.g., stenosis, perforation, andmassive bleeding) or failure of

medical treatment. Exclusion criteria included patients under 18 years old, inability or unwillingness to provide informed consent,

antibiotics or antifungal use within one month prior to surgery, or individuals with other diseases affecting the intestines. Non-CD

controls were diagnosed with early-stage colon cancer (involved in the cecum and/or ascending colon) according to their clinical

symptoms, serological tests, and imaging examinations. Patients provided informed consent before the operation. To prevent

contamination of parenteral tissues with the luminal contents, the specimens were obtained under sterile conditions in the operating

room by professional surgeons within 20 min post-operation. Intestinal accessory tissues, including mesenteric adipose tissues,

mesentery, and mesenteric lymph nodes, were also obtained during the operation. We gently washed specimens with sterile PBS

until all surface blood and luminal contents were removed. The specimens were transported immediately in liquid nitrogen and stored
e2 Cell Reports Medicine 4, 101050, June 20, 2023
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at �80�C freezers for later use. We collected tissue samples from the inflamed areas (including inflamed mucosa, submucosa-mus-

cularis-serosa, mesenteric adipose tissue, and mesentery; 4 tissue regions) and the adjacent uninflamed areas (including adjacent

uninflamed mucosa, submucosa-muscularis-serosa, mesenteric adipose tissue, and mesentery; 4 tissue regions) of each CD

patient. In addition, mesenteric lymph nodes were also collected, and 9 tissue samples were collected from each CD patient. We

recruited 30 CD patients in our study and collected a total of 270 tissue samples, including the inflamed mucosa (iMUC) (n = 30; n

represents the number of samples), adjacent uninflamed mucosa (uMUC) (n = 30), inflamed submucosa-muscularis-serosa

(iSMS) (n = 30), adjacent uninflamed submucosa-muscularis-serosa (uSMS) (n = 30), inflamed mesenteric adipose tissues (iMAT)

(n = 30), adjacent uninflamedmesenteric adipose tissues (uMAT) (n = 30), inflamedmesentery (iMES) (n = 30), uninflamed mesentery

(uMES) (n = 30), and mesenteric lymph nodes (MLN) (n = 30). We then divided each tissue sample into two parts for paired host pro-

teome and tissuemicrobiome, respectively, under sterile conditions. In addition, 5 adjacent normal specimens (includingMUC, SMS,

MAT, MES, and MLN; 5 tissue samples) were collected from each NC. We recruited 5 NCs in our study and collected 25 tissue sam-

ples, including mucosa (n = 5), submucosa-muscularis-serosa (n = 5), mesenteric adipose tissue (n = 5), mesentery (n = 5), and

mesenteric lymph nodes (n = 5). We then divided each tissue sample into two parts for paired host proteome and tissue microbiome,

respectively, under sterile conditions. All NCs’ specimens were histologically stained, and at least two professional pathologists veri-

fied them as relatively normal tissues without tumor invasion. More details of the clinical characteristics of these patients are detailed

in Table S1.

60 pairs of serum samples and fecal samples were collected from 30 active CD patients and 30 healthy donors from the Shanghai

10th People’s Hospital. In the pre-sample interview, informed consent was obtained from CD patients. Disease severity was

evaluated based on their clinical CDAI scores, SES-CD scores, serological results, and radiological findings. Individuals with other

intestinal diseases or those under 18 years old were excluded, and those who refused to provide informed consent or had taken

antibiotics within one month of sampling were also excluded. Additionally, 30 age- and gender-matched healthy volunteers were re-

cruited in our study. More details of the clinical characteristics of these patients are detailed in Table S1.

METHOD DETAILS

Proteomic analyses of tissue specimens
Sample preparation and data acquisition

295 tissue specimens and 23 mouse liver (ML) QC samples were collected. 1 mg of tissue block from each sample was taken for

peptide extraction using an accelerated pressure cycling technology (PCT) method as described previously.80 The derived peptides

were desalted using 96-well SOLAm SPE plates (Cat. No. 60209-001, Thermo Fisher Scientific; Waltham, MA, USA) and quantitated

using NanoDrop Eight (Cat. No. 912A1100, Thermo Fisher Scientific) according to the manufacturer’s protocols. 300 ng of the pep-

tides from 20 randomly selected specimens covering all types of samples were taken and mixed to generate a pooled sample.

23 batches were designed, including 295 tissue samples, and 19 samples were randomly selected as technical replicates. A

pooled sample and an ML sample were added to each batch as technical and biological replicates, respectively.

For the LC-MS/MS data acquisition, the tryptic peptides were analyzed by a nanoElute (Bruker Daltonics Inc.; Blerika, MA, USA)

liquid chromatography coupled to a timsTOF Pro (Bruker Daltonics Inc.) mass spectrometer. HPLC separation was carried out by

gradient elution using a two-column system, wherein the trap column adopts m-Precolumn Cartridge (Thermo Fisher Scientific),

and the analytical column adopts an in-house emitter column (15 cm 3 75 mm, New Objective; Littleton, MA, USA) home-packed

with C18 resin (1.9 mm, Fresh Biosciences; Shanghai, China). Mobile phase A was 0.1% formic acid in the water, and mobile phase

Bwas 0.1% formic acid in acetonitrile. LC separationwas achieved at a flow of 300 nL/min using a 70min gradient (5%–27%of phase

B at 0�50 min, 27%–40% of phase B at 50�60 min, 40%–80% of phase B at 60�61 min, 80% of phase B from 61 to 70 min). Mass-

spectrometric measurements for pool samples were carried out using a data-independent acquisition parallel accumulation serial

fragmentation (diaPASEF) acquisition method.81 The electrospray ionization (ESI) source settings were as follows: 4500 V capillary

voltage, 500 V endplate offset, and 3.0 L/min of dry gas at the temperature of 180�C. Themeasurements were carried out over them/z

range from 100 to 1700 Th. The range of ionmobilities included values from 0.70 to 1.30 V s/cm2 (1/k0). The number of PASEFMS/MS

scans was set to 14 m/z. Mass-spectrometric measurements for clinical specimens were carried out using a pulseDIA scheme82

based on the diaPASEF acquisition method (pulse-diaPASEF), which uses gas-phase fractionation (GPF) to segregate the m/z

and ion mobility acquisition range into two injections. The other parameters in the pulse-diaPASEF method were the same as those

in the diaPASEF method. Mass-spectrometric measurements for clinical specimens were carried out using a data-dependent

acquisition PASEF (ddaPASEF) method.83 The range of ion mobilities included values from 0.60 to 1.60 V s/cm2 (1/k0), and the

m/z inclusion windows were unspecified. Other parameters were the same as those in the diaPASEF method.

Spectral library generation
Two spectral libraries were generated for this study, namely libraries A and B respectively. For library A, 10 mg of peptides was ex-

tracted from 30 randomly selected samples, including 10 MUC samples, 10 SMS samples, and 10 MLN samples, and combined to

generate peptide pools. For library B, 10 mg of peptides was extracted from 30 randomly selected samples, including 15 MAT sam-

ples and 15 MES samples, and combined to generate peptide pools. The peptide pools for each library were fractionated using a

nanoflow DIONEX UltiMate 3000 RSLCnano System (Thermo Fisher Scientific) with an XBridge Peptide BEH C18 column (300 Å,
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5 mm 3 4.6 mm 3 250 mm) (Waters; Milford, MA, USA). The samples were separated using a gradient from 5% to 35% acetonitrile

(ACN) in 10 mM ammonia (pH = 10.0) at a flow rate of 1 mL/min. Peptides were separated into 20 fractions, which were subsequently

dried and re-dissolved in 2% ACN/0.1% formic acid (FA). The re-dissolved peptides were analyzed in a ddaPASEF mode with the

same LC-MS/MS settings as in the ML samples.

We acquired 40 data-dependent acquisition (DDA)-MS files to generate a spectral library using Spectronaut (version:

14.6.201001.47784). The FDR cutoff was set to 1%at the precursor and protein levels. The SwissProt Human database (downloaded

on 15 July 2020, containing 20368 reviewed protein sequences) was used for protein inference. The Decoy generationmethod, as set

as inverse and Cross Run Normalization, was not performed for quantification. Other parameter settings were default. The result

generated a library containing 149865 precursors, 104067 peptides, and 10135 proteins.

Data analysis into the protein matrix
The acquired data for the tissue specimens were analyzed by Spectronaut using a library-based workflow. The FDR cutoff was set to

1% at the precursor and protein levels, and the other parameter settings were default. 130582 unique precursors, 109727 modified

peptides, 96865 stripped peptides, and 8948 protein groups were quantified from the 295 tissue samples together with the 19 tech-

nical replicates. 3388 unique proteins of 3452 protein groups were quantified from the 23 pooled samples by independent Spectro-

naut analysis. The peptide matrixes were processed into protein matrixes for clinical specimens and pools (Table S2) using

ProteomeExpert.84

Quality control
The quality of proteomic data was assessed at multiple levels. For LC-MS/MS acquisition, blank samples (buffer A) were injected

after every four LC-MS/MS injections to avoid carryovers. For data processing, pooled samples were used to evaluate quantitative

accuracy.

After filtering 8948 proteins with protein groups in all samples, 8860 unique proteins of 314 samples (including 295 tissue samples

and 19 technical replicates) with a missing ratio rate of 40.47% were used for QC. We assessed the quality of proteomics data of

proteins in pooled samples and technical replicates by Pearson correlation analysis. The Pearson correlation was computed by

the cor function in R (version: 4.0.2). "pairwise.complete.obs" was used to compute covariances in the presence of missing values.

Besides, t-SNE unsupervised clustering was performed in all samples for different MS machines, diseases, spatial locations, and

batches. 8807 proteins were obtained after excluding contaminants in the data matrix for further bioinformatics analysis.

Pathway and network analysis
IPA software was used to perform the pathway enrichment. All the enriched pathways were demonstrated to be significant (p value

<0.05) by IPA analysis.

Proteomic analyses of serum samples
Sample preparation

10 mL of serum from each sample was processed using a High Select Top-14 Abundant Protein Depletion Mini Spin Column (Thermo

Fisher Scientific) equipped with 175 mL of packing material and 300 mL of phosphate buffer saline, then incubated on a shaker for

20 min. After removing the caps and tips, the columns were placed into 2 mL EP tubes and centrifuged at 2000 rpm for 2 min at

room temperature to derive the samples. 500 mL of 13 PBS was added to a 3 kDa Millipore super filtration membrane column

and centrifuged at 12000 g for 10 min to remove glycerol until less than 100 mL of PBS was left. To enrich the proteins, we added

the samples into the Millipore super filtration membrane columns and centrifuged at 12000 g for 30 min at room temperature.

50 mL of the eluate was transferred to a 1.5 mL EP tube and denatured in 50 mL lysis buffer (8 M urea in 100 mM triethylammonium

bicarbonate, TEAB) at 600 rpm for 30 min at 31.5�C. The proteins were reduced with 5 mL of 200 mM tris (2-carboxyethyl) phosphine

(TCEP) for 30 min at 32�C, 600 rpm, then alkylated for 30 min with 5 mL of 800 mM iodoacetamide in darkness at 32�C, 600 rpm. The

protein extracts were diluted with 200 mL 100mMTEAB and digested with double-step trypsinization. The reaction was quenched by

adding 31.5 mL 10% trifluoroacetic acid (TFA) and confirmed that the pH of the solution was between 2 and 3. Digested peptides were

cleaned-up with SOLAm (Thermo Fisher Scientific) and labeled with TMTpro 16plex label reagents (Thermo Fisher Scientific) accord-

ing to the manufacturer’s instructions. The labeled peptides in each batch were combined and fractionated using a DIONEX U3000

System (Thermo Fisher Scientific) with an XBridge Peptide BEH C18 column (300 Å, 5 mm 3 4.6 mm 3 250 mm) (Waters). Fraction-

ation was performed with a gradient from 5% to 35% buffer (98% acetonitrile in water containing 10 mM ammonia, pH = 10.0) at a

flow rate of 0.5 mL/min in 60 min 60 fractions were collected and consolidated into 30 fractions. After dryness, the fractions were re-

dissolved with 2% acetonitrile (ACN)/0.1% formic acid (FA) of MS grade in preparation for LC-MS/MS analysis.

Data acquisition
The peptides were analyzed with a nanoflowDIONEXUltiMate 3000 RSLCnano system coupled to aQ Exactive HF-Orbitrap (Thermo

Fisher Scientific) in data-dependent acquisition (DDA) mode. For LC-MS/MS acquisition, peptides were loaded onto a pre-column

(3 mm, 100 Å, 20 mm*75 mm i.d.) at a flow rate of 6 mL/min and then analyzed using an analytical column (1.9 mm, 120 Å,

150 mm*75 mm i.d.) with a 60 min LC gradient at a flow rate of 300 nL/min. Buffer A was 2% ACN and 98% H2O containing 0.1%
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FA, and buffer B was 98%ACN and 2%H2O containing 0.1% FA. All reagents were MS grade. Them/z range of MS1 was 350-1,800

m/zwith the resolution at 60000 (at 200m/z). The top 20 precursors were selected for MS/MS acquisition. The resolution of MS2 was

set as 30000. AGC target was set at 3e6 for MS1 and 2e5 for MS2, respectively. The maximum injection time (max IT) was set as

50 ms for MS1 and 100 ms for MS2, respectively. The isolation window of the selected precursor was 0.7 m/z.

Data analyses into the protein matrix
The raw proteomic data for the 60 serum samples from 4 batches were analyzed using Proteome Discoverer software (Version

2.4.0.305, Thermo Fisher Scientific). The fasta file was downloaded from the Uniprot database (SwissProt Human database was

downloaded from UniProtKB on 15 July 2020) containing sequences from 20368 reviewed proteins of Homo Sapiens and 286 con-

taminants. Sequest HT was set as the search engine, and the enzyme was set to trypsin with two missed cleavage tolerance. Static

modifications were set to carbamidomethylation (+57.021464) of cysteine, TMTpro (+304.207145) of lysine residues, and peptides’

N-terminus. Variable modifications were set to oxidation (+15.994915) of methionine and acetylation (+42.010565) of peptides’ N-

terminus. Precursor ion mass tolerance was set to 10 ppm, and product ion mass tolerance was set to 0.02 Da. The peptide-spec-

trum-match was evaluated at a 1% target false discovery rate (FDR) (strict) and a 5% target FDR (relaxed). Other parameters were set

as default. 2074 proteins were identified in total (Table S2).

Microbiome analyses of tissue and fecal specimens
DNA extraction for tissue and fecal 16S rRNA amplicon sequencing

Frozen tissue samples and fecal samples were processed for DNA extraction using an E.Z.N.A. stool kit (Omega Bio-tek; Norcross,

GA, USA) according to the manufacturer’s instructions. The hypervariable V3-V4 region (338F_806R) of the 16S rRNA gene was

amplified by PCR with the following primer: forward 338F (50-ACTCCTACGGGAGGCAGCAG-30 and reverse 806R (50-GGAC

TACHVGGGTWTCTAAT-30). PCR products were purified using an AxyPrep DNA Gel Extraction Kit (Axygen Biosciences; Union

City, CA, USA) and quantified by QuantiFluor-ST (Promega; Madison, WI, USA). The constructed DNA libraries were sequenced

on Illumina MiSeq 3000 (Illumina, Inc.; San Diego, CA, USA) platform with 2 3 300 bp paired-end reads.

Bioinformatic analysis of 16S rRNA gene sequencing data
The procession of 16S rRNA sequencing data was performed in theQuantitative Insights IntoMicrobial Ecology 2 (QIIME2 V.2019.07)

platform.85 Briefly, barcode sequences were first removed by Cutadapt.86 Then paired reads were joined, and low-quality reads

(Q < 20) were filtered out. Deblur algorithm plugin wrapped in QIIME2 was used to obtain sub-operational-taxonomic-unit (sOTU),

which obtained a single-nucleotide resolution from sequencing data by inferring the putative true sequences. The average number

of tissue and fecal 16S rRNA reads per sample was 32330 and 18880, respectively. Samples with less than 2000 reads were removed

from further analyses. Representative sequences of each sOTU were aligned using Fast Fourier Trans-form in Multiple Alignment

(MAFFT)87 in q2-phylogeny plug-in, and the phylogenetic tree was constructed by the Fast-Tree plugin.88 Finally, sOTUs were as-

signed taxonomy via the Naive Bayes classifier89 trained on 99% clustered sequences in Greengenes 13.8 99% full-length reference

database.90

Decontamination and microbial taxonomic analysis
For tissue samples, sOTU counts of each sample were stringently decontaminated using the ‘‘decontam’’ package in R. Putative

contaminants were identified using the negative blank samples (‘‘method = prevalence’’ in decontam; p = 0.5), where sOTUs

were labeled as putative contaminants for being more abundant in negative blanks than in biological samples. Collectively, 184 sO-

TUswere removed as putative contaminants. Then, negative blanks and 6 biological samples that had few remainingmicrobial reads

were removed. Furthermore, contaminating DNA reads from extraction kits and other reagents were removed to ensure a robust

analysis in low microbial biomass tissue samples.91

Microbial taxonomic and functional analyses
To avoid the bias of unbalanced sequencing depth, alpha and beta diversities were calculated based on the rarefied count table at a

depth of 2075. Bray-Curtis distance was used to estimate microbiota beta diversity, and microbial compositions of different tissue

sites were measured by Anosim. The sOTU count table was then organized into different levels and converted into the relative abun-

dance to perform downstream analysis. The differential genus was identified with a non-parameter Wilcoxon test, and p values less

than 0.05 were identified as the significantly differential genus.

The functional composition of the gut microbiome was inferred from 16S rRNA sequences with Phylogenetic Investigation of

Communities by Reconstruction of Unobserved States (PICRUSt2) as described previously.92 Microbial functions were annotated

according to the Kyoto Encyclopedia of Genes and Genomes (KEGG) database at KEGG Orthology (KO) gene and pathway levels.

Differential analyses were performed based on a microbial functional profile via a non-parameter Wilcoxon test. To evaluate the

contribution of each genus to overall differential KO genes, it was defined as a ratio of the sum of the functional abundance of sOTUs

assigned as a specific genus to the total functional abundance of all sOTUs in a given KO gene using a ‘‘per_sequence_contrib’’

mode.93 We thus determined the major contribution genera of key KO genes selected in the host protein-microbial function associ-

ations analyses.
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To study the structure of the microbial community in each tissue site, we performed a co-abundance analysis at the genus level.

Only genera with prevalence in more than 10 samples were included in this analysis. Associations between genera were calculated

using the SparCC algorithm, which is known for its robustness for compositional data characterized by the members’ diversity and

sparsity.67 Correlation coefficients were estimated at the average of 50 inference iterations with the default strength threshold. p

values were calculated from 1,000 bootstrap correlations. Correlation coefficients with p values <0.01 (defined as significant), as

well as a magnitude above 0.4, were selected for further visualization in Gephi (V 0.9.2). The importance of genus in the community

was evaluated using Hyperlink-Induced Topic Search (HITS) algorithms in the Python package ‘networkx’, which takes the informa-

tion of both the seed node and its linked nodes into consideration. The importance of the node was indicated in terms of node size.

Microbial source tracking analysis
FEAST is a highly efficient expectation-maximization-based method68 that uses community structure to measure the similarity be-

tween sink samples and potential source environments. Besides, FEAST is agnostic to the sequencing data type and performs well

across all levels of sequencing depth. Therefore, we adopted FEAST to investigate the potential microbiota source of the inflamed

tissue sites fromCD patients based on 16S rRNAmicrobial data. The statistical model used by FEAST assumes each sink is a convex

combination of known and unknown sources. In detail, the microbial composition profile of each inflamed sample site was treated as

a sink, and microbial profiles of other tissue sites were treated as potential sources. To this end, the relative contributions from the

different source environments (i.e., uMUC, iSMS, uSMS) to the sink environment (i.e., iMUC) were assessed using FEASTwith default

parameters.

Host proteome and gut microbiome interaction analyses
Changes in the abundance of all differential microbial functional KO genes across the intestinal and its accessory tissue regions were

standardized and clustered using Fuzzy C-Means clustering implemented in the ‘‘mfuzz’’ R package. The final number of clusters

was determined based on an inspection of the coherence of the profiles contained in each cluster. The clustering assigned a mem-

bership between 0 and 1 to each genus for each cluster. A similar analysis was done against the host proteome, and seven protein

clusters were identified. Pathway enrichment analyses were performed via clusterProfile 4.0 against the KEGG database.69

The associations between microbial genes and host proteins in the corresponding clusters were calculated via spearman corre-

lation analysis based on the relative abundance of microbial genes and the expression amount of host proteins. Permutation tests

were used to calculate the exact p value of each association via perm.cor.test (10000 permutations), and associations with permu-

tation p values <0.05 (defined as significant) were selected for further visualization with a heatmap and labeled with a star.

Construction of classification model
To assess the potential diagnostic efficiency of serum circulating proteins and fecal genera, we constructed a classification model for

diagnosing patients with active CD using the five overlapped differential proteins and 19 overlapped differential genera detected in

both different tissue as serum and fecal samples. We first tuned hyperparameters (e.g., the number of estimated trees, the maximum

depth of the trees, and the number of features per tree of the RF classifier) via a Bayesian optimization method. To avoid overfitting,

we built the classification models with stratified 5-fold cross-validation against the selected optimal hyperparameters. The general

performance of the model was reported with cross-validation AUC values. All analyses were performed in the scikit-learn (v 0.21)

package.77

QUANTIFICATION AND STATISTICAL ANALYSIS

Missing valueswere imputedwith the 0.8-foldminimum value in the proteomics dataset. Fold-change (FC) was calculated at a ratio of

the mean value of protein intensity to each pair of comparing groups. A two-sided unpaired Welch’s t-test was performed for each

pair of comparing groups. Adjusted p values were calculated by the method of Benjamini & Hochberg correction. Differentially ex-

pressed proteins were selected by the stated cutoff: adjusted p value <0.05 and |log2(FC)| > 1. Differential analyses of themicrobiome

were performed as described above. All statistical analysis was based on R (version: 4.0.2). Most microbiome plots were performed

using the vegan package.73 Other plots were generated using the ggplot2 package.94

Asterisks denote statistical significance based on unpaired two-sided Welch’s t-test: *p < 0.05; **p < 0.01; ***p < 0.001.
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Supplemental Figures 

Figure S1. Quality control of proteomics data, Related to Figure 1 

A. The bar plot shows the number of protein identifications in different tissues. Each column represents 

the number of the identified proteins in one sample of each tissue site. Dark blue represents the 

inflamed samples of CD patients. Light green represents the adjacent uninflamed samples of CD 



patients. Light blue represents normal samples of NCs. 

B. The t-SNE analysis of samples from different patients (top left), different tissue types (top right), 

different batches (bottom left), and different mass spectrometry analyses (bottom right). 

C. The volcano plots compare the inflamed tissues with adjacent uninflamed tissues from CD patients, 

as indicated in the plot. Proteins with log2(FC) beyond 0.25 or below -0.25 with an adjusted p-value 

 0.05 were considered significantly differential expression. 

 

  



Figure S2. The landscape of dysregulated proteins in different tissues from CD patients and NCs, 

Related to Figure 2 

A. The volcano plots compare inflamed tissues from CD patients with normal tissues from NCs, as 

indicated in the plot. Proteins with log2(FC) beyond 0.25 or below -0.25 with an adjusted p-value  

0.05 were considered significantly differential expressions. Names of significantly down- (blue) and 



up- (red) regulated proteins are shown in the plots. 

B. The heatmap shows the dysregulated proteins in all five types of tissues (i.e., MUC, SMS, MAT, 

MES, and MLN) between CD patients and NCs. iCD, inflamed tissues of CD patients; NC, normal 

tissues of NCs. 

C. The pathways are dysregulated across different types of tissues. Pathway analysis was performed 

using all dysregulated proteins in the specific tissues by IPA, and the most enriched pathways 

(adjusted p-value < 0.05) among the five inflamed tissues were shown. The size of the circles 

represents the -log10 (p-value), and the color represents the Z score by IPA. 

 

  



Figure S3. The landscape of dysregulated proteins involved in antimicrobial immunity and 

metabolism, Related to Figure 3 

The chord diagrams show dysregulated proteins of antimicrobial immunity (A) and metabolism (C) in 

different tissues between CD patients and NCs. The length of the brick representing each protein 

corresponds to the sum of absolute log2(FC) in different types of tissues, and the length of the brick 



representing each type of tissue corresponds to the sum of absolute log2(FC) in one or more proteins. The 

protein-protein interaction networks were generated from the dysregulated proteins of antimicrobial 

immunity (B) and metabolism (D) in different tissues. Red circles, upregulated proteins; blue circles, 

downregulated proteins; red lines, positive interaction; blue lines, negative interaction. The solid lines 

represent the interactions analyzed by the String database, and the dashed lines represent the interactions 

analyzed by our proteomics data. The circle size represents the absolute log2(FC) of each protein. 

 

  



Figure S4. Microbial sequencing and compositional alterations across different tissues of CD 

patients, Related to Figure 4 

A. Boxplots show the alpha diversity measured by Chao1 and Shannon index between inflamed (red) 

and adjacent uninflamed (orange) MUC, SMS, MAT, MES, and MLN of CD patients. All boxplots 

represent the 25th–75th percentile of the distribution, and the median is shown in the thick line in 

the middle of the box. The whiskers indicate the range of 1.5-fold IQR. The p values are calculated 

by paired Wilcoxon test. 

B. Principal coordinate analysis of samples from inflamed tissues (red) and adjacent uninflamed tissues 

(orange) of CD patients based on the unweighted Unifrac distance in MUC, SMS, MAT, and MES, 



respectively. The p values of beta diversity based on the unweighted Unifrac distance are calculated 

with PERMANOVA by 999 permutations. 

C. Boxplots show the alpha diversity measured by Chao1 and Shannon index in inflamed MUC, SMS, 

MAT, MES, and MLN of CD patients. All boxplots represent the 25th–75th percentile of the 

distribution, and the median is shown in the thick line in the middle of the box. The whiskers indicate 

the range of 1.5-fold IQR. The p values were calculated by a two-tailed Wilcoxon test. 

D. Principal coordinate analysis of samples from inflamed MUC, SMS, MAT, MES, and MLN of CD 

patients based on the unweighted Unifrac distance. The p values of beta diversity based on the 

unweighted Unifrac distance were calculated with PERMANOVA by 999 permutations. Tissue sites 

are labeled with different colors. 

 

  



Figure S5. Microbial composition and functional alterations between inflamed tissues of CD 

patients and normal tissues of NCs, Related to Figure 4 

A. Boxplots show the alpha diversity measured by Chao1 between inflamed tissues of CD patients and 

normal tissues of NCs. All boxplots represent the 25th–75th percentile of the distribution, and the 

median is shown in the thick line in the middle of the box. The whiskers indicate the range of 1.5-

fold IQR, and the outliers are represented as dots. The p values were calculated by a two-tailed 

Wilcoxon test. 

B. Boxplots show the alpha diversity measured by the Shannon index between inflamed tissues of CD 

patients and normal tissues of NCs. All boxplots represent the 25th–75th percentile of the 



distribution, and the median is shown in the thick line in the middle of the box. The whiskers indicate 

the range of 1.5-fold IQR, and the outliers are represented as dots. The p values were calculated by 

a two-tailed Wilcoxon test. 

C. Microbial compositions of inflamed tissues from CD patients (CD) and normal tissues from NCs at 

the phylum level. Only the abundant phyla are shown in the stacked bar plot, and the rare phyla are 

summed into others. p values were calculated by the two-tailed Wilcoxon test. 

D. Boxplots show the relative abundance of differential KO genes between inflamed tissues of CD 

patients (red) and normal tissues of NCs (blue) in MUC, SMS, MAT, MES, and MLN, respectively. 

All boxplots represent the 25th–75th percentile of the distribution, and the median is shown in the 

thick line in the middle of the box. The whiskers indicate the range of 1.5-fold IQR, and the outliers 

are represented as dots. The p values were calculated by the two-tailed Wilcoxon test. 

 

  



Figure S6. Correlations between host proteins and microbial functional genes, Related to Figure 6 

A. The mfuzz clustering of differential host proteins and gut microbial genes across different tissues of 

CD patients. Membership scores indicate the degree to which the microbial gene or host protein 

belongs in each cluster. M.C., clusters based on microbial genes; P.C., clusters based on proteins. 

B. The heatmap shows correlations by spearman rank correlation analysis between host protein clusters 

and microbial gene clusters. Circles labeled by stars represent significant correlations. P.C, protein 

clusters; M.C, microbial genes clusters. 

C. Gene set variation enrichment analysis of host P.C1 across each tissue site. 

D. The heatmap shows the spearman rank correlation between key proteins in P.C1 and microbial genes 

in M.C1. The star labeled in cells represents significant correlations (permutation p-value < 0.05), 

and the colors of cells indicate the degree of correlations. Tissue sites are labeled with different 

colors. MUC, red; SMS, blue; MAT, purple; MES, green; MLN, orange. 

  



Figure S7. Alterations in host serum proteome and fecal microbiome of CD patients, Related to 

Figure 7 

A. The KEGG pathway enrichment analysis of differential proteins identified in serum samples. The 

dot size corresponds to the enriched gene count, and the dot color represents the enrichment -

log10(FDR). 

B. Alterations in microbial alpha diversity were measured by Chao1 and Shannon index between 

healthy donors (HC, blue) and active CD patients (A-CD, red). 



C. Alterations in microbial beta diversity were measured by the Bray-Curtis distance between healthy 

donors (HC) and active CD patients (A-CD). The p values were calculated with PERMANOVA by 

999 permutations. 

D. The volcano plot shows the differential microbial genes between healthy donors (HC) and active 

CD patients (A-CD). 

E. The KEGG pathway enrichment analysis of differential microbial genes identified in fecal samples. 

The dot size corresponds to the enriched gene count, and the dot color represents the enrichment -

log10(FDR). 
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