

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Cohort Profile: Rationale and Methods of UK Biobank Repeat Imaging Study Eye Measures

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-069258
Article Type:	Cohort profile
Date Submitted by the Author:	14-Oct-2022
Complete List of Authors:	Foster, Paul; NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology Atan, Denize; University of Bristol Khawaja, Anthony; 1. NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust & UCL Institute of Ophthalmology, London, UK Lotery, Andrew; University of Southampton MacGillivray, Tom; Queens Medical Research Institution, Clinical Research Imaging Centre Owen, Christopher; St George's, University London, Population Health Research Institute Patel, Praveen; Moorfields Eye Hospital NHS Foundation Trust, NIHR Biomedical Research Centre Petzold, Axel; Queen Square Institute of Neurology, UCL, Department of Molecular Neurosciences, Moorfields Eye Hospital and The National Hospital for Neurology and Neurosurgery; Amsterdam UMC, Departments of Neurology, Ophthalmology and Expertise Center for Neuro-ophthalmology Rudnicka, Alicja; SGUL University of London Sun, Zihan; University College London, Institute of Ophthalmology Sheard, Simon; UK Biobank Allen, Naomi; University of Oxford, Nuffield Department of Population Health; UK Biobank
Keywords:	OPHTHALMOLOGY, EPIDEMIOLOGY, Dementia < NEUROLOGY
	1

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Cohort Profile: Rationale and Methods of UK Biobank Repeat Imaging Study Eye

Measures

Authors:

- Paul J Foster¹, Denize Atan^{2,3}, Anthony P. Khawaja¹, Andrew J. Lotery⁴, Tom MacGillivray⁵, Christopher G Owen⁶, Praveen J. Patel¹, Axel Petzold^{7,8}, Alicja R. Rudnicka⁶, Zihan Sun¹, Simon Sheard⁹, Naomi Allen^{9,10}, On behalf of UK Biobank and UK Biobank Eye and Vision Consortium

Affiliations:

- 1. NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
- 2. Bristol Eye Hospital, University Hospitals Bristol & Weston NHS Foundation Trust, Bristol, UK
- 3. Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
 - 4. Clinical Neurosciences Group, Clinical and Experimental Sciences, Faculty of Medicine,
- University of Southampton, Southampton, UK
- 5. Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- 6. Population Health Research Institute, St George's, University of London, London, UK
- 7. Queen Square Institute of Neurology, UCL, Department of Molecular Neurosciences, Moorfields
- Eye Hospital and The National Hospital for Neurology and Neurosurgery, London, UK
- 8. Departments of Neurology, Ophthalmology and Expertise Center for Neuro-ophthalmology,
- Amsterdam UMC, Amsterdam, Netherlands
- 9. UK Biobank, Stockport, UK
 - 10. Nuffield Department of Population Health, University of Oxford, Oxford, UK

Correspondence to:

- Prof Paul J Foster
- Address: UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL
- Email address: p.foster@ucl.ac.uk

BMJ Open

35 ABSTRACT

36 Purpose: To describe the rationale and methodology of eye and vision assessments in the UK
37 Biobank Repeat Imaging study.

Participants: UK Biobank is a large-scale, multicentre, prospective cohort containing indepth genetic, lifestyle, environmental and health information from half a million participants aged 40-69 enrolled across the UK. A subset (up to 60,000 participants) of the cohort will be invited to the UK Biobank Repeat Imaging Study to collect repeated brain, cardiac and abdominal magnetic resonance imaging (MRI) scans, whole-body DEXA (Dual-energy x-ray absorptiometry), carotid ultrasound, as well as retinal optical coherence tomography (OCT) and colour fundus photographs.

45 Findings to date: UK Biobank has helped make significant advances in understanding risk 46 factors for many common diseases, including for dementia and cognitive decline. Ophthalmic 47 genetic and epidemiology studies have also benefited from the unparalleled combination of 48 very large numbers of participants, deep phenotyping, and longitudinal follow-up of the 49 cohort, with comprehensive health data linkage to disease outcomes. In addition, we have 50 used UK Biobank data to describe the relationship between retinal structures, cognitive 51 function and brain MRI-derived phenotypes.

Future plans: UK Biobank is one of the largest prospective cohorts worldwide with
extensive data on ophthalmic diseases and conditions. The collection of eye-related data (e.g.
OCT), as part of the UK Biobank Repeat Imaging study, will take place between 2022-2028.
The depth and breadth and longitudinal nature of this dataset, coupled with its open-access
policy, will create a major new resource for dementia diagnostic discovery and to better
understand its association with co-morbid diseases.

59 STRENGTHS AND LIMITATIONS OF THIS STUDY

60 Strengths

61	•	World's largest prospective, longitudinal multi-modal imaging cohort with
62		unprecedented power for analysis of determinants of a wide range of health outcomes.
63	•	Exceptional added value from the size, depth, and quality of the cross-sectional and
64		longitudinal MRI data on the eye, brain, body and imaging of heart, carotids, together
65		with linkage to electronic health records, through which overt dementia and
66		Alzheimer's disease can be identified.
67	•	Optimal timing to study cognitive impairment (age distribution: $\sim 80\% \ge 60$ years and
68		$\sim 65\% \ge 65$ years)
69	Limita	tions
70	0	Consistency of measurements between imaging devices over time, particularly with
71		use of different OCT devices.
72	0	Healthier participants compared to the general population.
73		

BMJ Open

74 INTRODUCTION

Dementia refers to a heterogeneous group of neurodegenerative disorders affecting 46.8 million people globally.[1-3] Alzheimer's disease (AD) is the commonest, affecting 60-80% of people with dementia. [4, 5] Usually, a long prodromal period of up to 20 years of progressive cerebral atrophy is detectable on magnetic resonance imaging (MRI) scans and using body fluid biomarkers for neurodegeneration before AD is diagnosed.[2] These observations lead to a biological, rather than a clinical definition of AD.[6] To date, the majority of candidate drugs for slowing cognitive decline in AD or other dementias have failed in clinical trials[7], probably because they are used too late in the natural history when irreversible, advanced degeneration has already set in.[8, 9] Global rollout of screening and disease progression monitoring strategies for AD based on MRI scans is precluded by their high cost and frequently limited availability. Body fluid biomarkers might provide ways of stratifying or diagnosing dementias but will remain complimentary to structural imaging biomarkers because of their lack of diagnostic specificity and are not recommended as a screening test.[10]

The eye provides insights into the risk or presence of all systemic diseases, including hypertension and diabetes, as well as changes associated with cognitive ageing and neurodegeneration.[11-13] As an alternative to MRI or plasma biomarkers, optical coherence tomography (OCT) offers a rapid, low-cost and non-invasive method for obtaining high-resolution $(3-5\mu m)$ images of the retina at the back of the eye – the only part of the central nervous system (CNS) that can be visualized directly. The laminated structure of the retina enables the direct monitoring of neurodegeneration at a near cellular level in vivo at a resolution that is more detailed than for any other non-invasive, in vivo imaging modalities. There is strong evidence that quantitative OCT measurements are associated with concurrent cognitive impairment and future cognitive decline and dementia.[14, 15] Additionally, OCT

methods may directly monitor related vascular pathology: amyloid microangiopathy affects retinal and choroidal vasculature, as well as that in the cerebrum with AD.[16] Thus, retinal OCT scans offer the means to identify individuals at high risk of developing AD, providing them with opportunities to change their lifestyles or enter drug trials to delay or avert the onset of dementia. OCT scans are also a sensitive way to monitor patients for neurotoxic side-effects of novel drug treatments. The ability to directly measure specific neuronal layers and microvascular characteristics in detail may provide a surrogate outcome marker for the CNS more generally and potentially enhance the power to detect disease much earlier than methods based on clinical history and genetic factors. Several genetic (e.g. APOE), comorbid (e.g. diabetes, hypertension, depression, obesity), and lifestyle factors (e.g. low educational attainment and smoking) have been associated with increased AD risk.[17-19] However, observational epidemiological studies cannot distinguish cause from effect and are vulnerable to bias from reverse causation and confounders. The analyses by Norton and Larsson illustrate how different disease risk factors can co-exist and are often correlated, but they do not independently increase the risk of AD.[19, 20] It also highlights the importance of identifying causal risk factors for dementia in designing upstream public health policies and social policies to reduce disease risk, clinical trials for new AD drugs and basic science research to understand the underlying mechanisms of dementia development. Using quantitative measurements from OCT scans, it may be possible to assess causal relationships between risk factors and retinal biomarkers related to dementia. The large size of the cohort and the associated healthcare, imaging and genetic data make UK Biobank uniquely valuable for disambiguation of associations from causal comorbidities both for patient stratification and for elucidation of underlying mechanisms.

122 The research gaps, as mentioned earlier, motivated us to develop a major new resource for123 dementia diagnostic discovery and to better understand the association with co-morbid

Page 7 of 25

BMJ Open

diseases by adding rapid, low-cost OCT to the anticipated UK Biobank Repeat Imaging
study, alongside ancillary testing of autorefraction/keratometry and fragmented letter test
(FLT).[21] The objectives of this article are to describe (1) the process of test selection (2)
the methodology for eye and vision measures in the UK Biobank Repeat Imaging study; (3)
the baseline characteristics of the study population in this study.

129 COHORT DESCRIPTION

130 UK Biobank

UK Biobank is a large-scale biomedical database and research resource containing in-depth genetic and health information from over 500,000 participants aged 40-69 enrolled across the UK between 2006 and 2010. Detailed study protocols are available on the UK Biobank website (https://www.ukbiobank.ac.uk/). It has become the pre-eminent biomedical research platform for studying the aetiology of common diseases of later life. During the baseline assessment, extensive sociodemographic, lifestyle, and health-related information was collected through a touch screen questionnaire and oral interview, and a wide range of physical measurements was performed. [22, 23] Participants also provided biological samples for genotyping, haematological, biochemistry, metabolomics and proteomics assays for the full cohort.[24] UK Biobank received approval from the National Information Governance Board for Health

and Social Care and the National Health Service Northwest Centre for Research Ethics
Committee (Ref: 11/NW/0382). UK Biobank is compliant with the previous Data Protection
Act and the more recent General Data Protection Regulation (GDPR) implemented in 2018.
For the GDPR, participants were contacted by email or post to explain how UK Biobank
meets the requirements of the new regulations (https://www.ukbiobank.ac.uk/gdpr/).
At the baseline assessment in 2006-2010, various eye measures including visual acuity,

autorefraction, keratometry, intraocular pressure, corneal biomechanics, and retinal imaging

comprising disc/macular digital colour photographs and a 3D macular OCT were performed
on a subset of the UK Biobank participants – e.g., over 110,000 participants have completed
the visual acuity, refractive error, and intraocular pressure measurements; and ~67,000
participants underwent retinal imaging. Detailed information on the baseline eye and vision
measures has been published elsewhere [22].

154 The Repeat Imaging Sub-study

In 2014, UK Biobank launched the world's largest multimodal imaging study, intending to include baseline magnetic resonance imaging (MRI) of the brain, heart and abdomen, whole-body DEXA (Dual-energy x-ray absorptiometry) and carotid Doppler ultrasound on up to 100,000 participants. Detailed methods of the UK Biobank imaging enhancement were published elsewhere.[25] Although imaging 100,000 participants is a unique and powerful enhancement to the UKB resource, many valuable insights could only be gained from observing the change in imaging phenotypes over time. Recognising the importance of serial measurements, up to 60,000 of those in the imaging enhancement study will be invited to undergo repeat multimodal imaging between 2019-2028. As part of the repeat imaging study, data collection of the eye measures (e.g., OCT) is anticipated to take place from 2022-2028. The specific study design is as follows:

All UK Biobank participants who have previously attended a baseline brain and body imaging visit will be invited to attend a repeat imaging visit (the invitation will specify the same imaging centre as their baseline imaging visit to minimize measurement error caused by differences between scanners at different centres).
 169 Mathematical Mathematical Appointment slots are planned in groups of 3 to minimize equipment downtime and to maximize participant throughput and data quality.
 172 On arrival, those who accept will be asked to consent to the study, and each

participant will then undergo a pre-screening safety assessment.

Page 9 of 25

1

BMJ Open

2		
3 4	174	• The 3 participants would then progress to the imaging modalities as follows:
5 6 7	175	• Participant #1 => Brain MRI
7 8 9	176	 Participant #2 => Abdomen and heart MRI
10 11	177	\circ Participant #3 => DeXA, ultrasound and OCT
12 13	178	• Each imaging modality "group" takes approximately 40 minutes, after which the
14 15 16	179	participants will move to the next modality, then switch again after 40 minutes so that
10 17 18	180	each member of the group of 3 has visited all three imaging measurement stations
19 20	181	over a 2-hour period.
21 22	182	• The participants then all progress to the non-imaging parts of the visit where they will
23 24 25	183	complete questionnaires, have physical measures, and give biological samples, which
26 27	184	mirrors much of the initial (2006-2010) baseline visit.
28 29	185	• As one group of 3 participants exits the imaging part of the visit, the next group of 3
30 31 32	186	are ready to enter, thus ensuring that the imaging part of the visit is fully utilized.
33 34	187	• This process will repeat for five groups of 3 people (15 total) on 7 days per week at
35 36	188	each of UK Biobank's 4 dedicated imaging centres.
37 38 39	189	Study location
40 41 42	190	This multisite study will be run from four dedicated UK Biobank Imaging Centres across the
43 44	191	UK (Newcastle upon Tyne, Stockport, Reading and Bristol). These 4 centres help ensure
45 46	192	most participants are within a reasonable distance to attend a scanning visit. As far as is
47 48 49	193	reasonably practical, maintaining the same instruments and software/firmware across the sites
50 51	194	and all phases of the UK Biobank project will ensure consistency and comparability of results
52 53	195	from the start of the baseline imaging project to the end of the repeat imaging program. UK
54 55 56 57 58 59 60	196	Biobank built the following strategies to reduce variability across the different sites:

1

59

60

2		
2 3 4	197	• The sites are each populated with the same equipment (same manufacturer, same
5 6	198	model, same software/firmware etc.) configured with the same protocols and the same
7 8	199	settings.
9 10 11	200	• MR scanner settings/performance across all four sites is monitored by UK Biobank's
12 13	201	full-time in-house MR physicist with continuous quality assurance processes to
14 15	202	identify and resolve quality issues that may arise.
16 17 18	203	• All staff are trained to standard operating procedures, and (in the case of the imaging
19 20	204	element) compliance/consistency is overseen by an in-house senior radiographer and
21 22	205	an in-house MR physicist. The non-imaging aspects are overseen by UK Biobank's
23 24 25	206	dedicated "Training and Monitoring" team.
25 26 27	207	• Systems are already in place to ensure appropriate levels of training for all operational
28 29	208	staff, monitored via Clinic Training Assessments/Training Matrices. These will be
30 31	209	extended to cover the OCT measures: appropriate training will be provided, training
32 33 34	210	assessments/matrices extended to cover these measures, and performance monitored.
35 36	211	• Imaging data are routinely made available to members of the project's expert working
37 38	212	group, which is made up of experts in each of the imaging modalities; this group
39 40	213	monitors the project progress, periodically provides training interventions and
41 42 43	214	critically, periodically/routinely provides an independent view of performance and
44 45	215	data output. A similar approach will be taken regarding the OCT measures with data
46 47	216	made available to the Eye Consortium members listed in this application for quality
48 49 50	217	control purposes.
51 52 53	218	Recruitment
54 55	219	The UK Biobank cohort includes a committed and engaged group of participants who are
56 57 58	220	regularly invited for follow up activities: the typical response rate to online surveys is >50%,
50		

and there have been very few withdrawals from the study since recruitment (<0.2%). Regular

Page 11 of 25

BMJ Open

1 2		
3 4	222	communications with the cohort (via newsletters, participant meetings, study update meetings
5 6	223	and the participant section of the UK Biobank website: www.ukbiobank.ac.uk/explore-your-
/ 8 9	224	participation) help to maintain enthusiasm for and engagement with the study. Direct
10 11	225	telephone communication with individual participants regarding new sub-studies or general
12 13	226	participation questions via a dedicated "Participant Contact Centre" (PCC) provides
14 15 16	227	personalized information and reassurance.
10 17 18	228	This study will use the same invitation protocol as the UK Biobank imaging enhancement
19 20	229	study (2014-2023)[25]. The planned protocol for this repeat imaging study involves:
21 22	230	• E-mail/postal explanation of the study and invitation to book an appointment
23 24 25	231	• A telephone call to book an appointment and perform safety pre-screening via PRC
26 27	232	• Assessment at the nearest of four imaging centres across the UK (Stockport,
28 29	233	Newcastle, Reading and Bristol) to minimize travel time and maximize participant
30 31 32	234	attendance.
33 34	235	At the start of the pandemic (lockdown in the UK in March 2020), 50,000 of the target
35 36	236	100,000 participants had been imaged. Participant questionnaires on completion of baseline
37 38	237	imaging visit indicate >90% would be happy to undertake a repeat imaging visit. Pilot studies
39 40 41	238	involving a few thousand participants have demonstrated ~60% acceptance rates, providing
42 43	239	confidence that ~60,000 could be recruited for this repeat imaging study.
44 45 46	240	Examination procedures
47 48 49	241	The whole-body imaging modalities have been extensively detailed elsewhere[25]; this
50 51	242	article only describes the scope of eye and vision measurements in the Repeat Imaging study.
52 53	243	The Topcon Triton OCT platform is being used to obtain OCT images in this study. The
54 55 56	244	Triton platform uses ultra-highspeed swept-source (SS) OCT technology with a central
57 58	245	wavelength of 1050 microns that penetrates deeper than the retina, allowing visualization of
59 60	246	the choroid and the vasculature therein.[26] The platform also takes colour retinal fundus

photographs immediately after the OCT scans, allowing measurement of the optic disc and retinal vessel metrics (including retinal vessel calibre and tortuosity). The Topcon Triton supports wide-angle 12 mm x 9 mm scans that include the optic disc and macula in a single scan.

Widefield SS-OCT enables quantitative measurements of several candidate biomarkers,
including but not limited to total macular retinal thickness, macular inner retinal sublayer
thicknesses, peripapillary retinal nerve fibre layer thickness, choroidal vascularity index,
retinal arteriolar and retinal venular calibres, retinal vascular fractal dimension, retinal
vascular tortuosity. Details of the candidate biomarkers are summarized in Table 1.

256 OCT Image Processing

Total retinal thickness and segmented values for retinal sublayer thicknesses for macula and optic nerve scans are generated by the current generation OCT devices, using FDA approved algorithms, during the examination. In contrast to the processing of baseline UK Biobank macular OCT scans[27], they do not generally require the development of new processing pipelines (apart from measures of the choroidal vascular layer, which are now possible thanks to greater depth of imaging than was previously possible with older OCT technology). Fundamental to both the challenge and the opportunity that would be provided by UK Biobank OCT imaging is that modern retinal imaging software can measure changes that would be imperceptible to, or missed by, a human grader. In operations featuring large-scale data collection, a small proportion of the imaging is likely to be insufficient quality for automated analysis. Problems may also arise with image acquisition, for instance, due to some study participants presenting with ocular pathology. Thus, the first step in an analysis pipeline is to assess the image quality and discard images that cannot be adequately measured. Subsequent analysis of vasculometrics from retinal photographs would include automated vessel segmentation followed by classification of arterioles and venules (see

Page 13 of 25

BMJ Open

below). For OCT, algorithms delineate the borders of the internal limiting membrane (ILM) and the RNFL to give the measurement of RNFL thickness, a biomarker of axonal loss affecting retinal ganglion cells and the optic nerves. The thickness of the RNFL is evaluated using the standard TSNIT (temporal, superior, nasal, inferior, temporal) mapping that subdivides the measurements and colour codes statistical significance compared with a database of normal healthy values. Further delineation of boundaries enables quantitative mapping of the ganglion cell layer (GCL) and inner plexiform layer (IPL) thicknesses, a marker of neuronal somatic loss [13, 28]. Although the processing of quantitative retinal vasculometric data is not routinely used in clinical settings, we have developed and validated a fully automated AI-enabled retinal image analysis system (QUARTZ) for extracting vessel maps and quantifying retinal vasculometry (including vessel size and tortuosity), which we will use to create the image processing pipeline. The system overcomes many of the difficulties of earlier vasculometry approaches, particularly by being fully automated. [29, 30] QUARTZ has been demonstrated to be highly robust, capable of processing large datasets with automated image quality assessments, resulting in accurate, reliable and high levels of vessel segmentation. To date, QUARTZ has measured approximately 4 million vessel segments from over 190,000 images from 95,000 participants of two very large population-based cohorts (UK Biobank and EPIC-Norfolk). This system has been developed specifically for use on TOPCON macular centred images. In brief, the QUARTZ system distinguishes between right and left eyes, venules and arterioles (with 87% accuracy using AI-enabled deep learning), identifies vessel segments and centreline coordinates and outputs measures of vessel width and tortuosity (based on the mean change in chord length between successive divisions of the vessel).[31, 32] The system obtains 10-20 thousands of measurements of width and tortuosity from the whole retinal image (dependent on image quality), not just selected vessels lying within concentric areas

207	contrad on the dise. Mansures are summarized using mean width and tertucsity, weighted by
291	centred on the disc. Measures are summarized using mean width and tortuosity, weighted by
298	segment length, for arterioles and venules separately for each image. QUARTZ measures in
299	UK Biobank have previously shown that venular width and tortuosity are associated with
300	markers of adiposity[33] and that both arteriolar and venular width and arteriolar tortuosity
301	show strong inverse associations with blood pressure (systolic and diastolic) and arterial
302	stiffness index.[34] More importantly, prognostic models using QUARTZ vasculometry
303	measures perform very well at predicting circulatory mortality and at least as well as
304	established risk scores in the prediction of stroke and myocardial infarction, remarkably
305	without the need for either a blood test or blood pressure measurement.[35] Given the
306	identification of vessel maps, these could be inputted into other systems (i.e., the VAMPIRE
307	system) with additional vasculometry summaries, such as fractal analyses to quantify the
308	complexity of the arteriolar and venular components of the retinal vascular network.
309	Marrying the automated functionality of QUARTZ with VAMPIRE will afford a more in-
310	depth characterization of the vessel complex on an unprecedented scale.
311	The VAMPIRE (Vascular Assessment and Measurement Platform for Images of the REtina)
312	system is an international collaborative project designed to quantify retinal vascular
313	morphometry with large collections of fundus photographs. The system provides automatic
314	detection of retinal landmarks and quantifies some key parameters used frequently in
315	investigative studies - vessel width, vessel branching coefficients, tortuosity, and fractal
316	analyses. Detailed definitions have been reported elsewhere.[36, 37] In general, it computes
317	149 measurements per image, including basic statistics. Thirty-nine are width-related: central
318	retinal arteriolar equivalent (CRAE), central retinal venular equivalent (CRVE), retinal
319	arteriovenous ratio (AVR), basic statistics (mean, median, standard deviation, maximum,
320	minimum), width gradients along vessels, average ratio length-diameter at branching points,
321	by arteries and veins; 104 are tortuosity measurements, computed by different algorithms and

Page 15 of 25

1

BMJ Open

2	
2	
1	
- 5	
5	
0	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
23	
24	
25	
20	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
۰۳ ۸۵	
40 70	
49	
50 E 1	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

322	with the statistics listed above; 6 are fractal dimension coefficients. All measures are
323	calculated by vessel type (arteriole or venule) and region (zone, whole image, quadrants).
324	VAMPIRE is a validated software application and has been extensively used in several
325	international studies.[36, 38, 39]
326	Patient and public involvement
327	UK Biobank maintains a website to keep participants and researchers up to date on the study
328	(<u>http://www.ukbiobank.ac.uk/news/</u>). Eye and vision-related publications resulting from UK
329	Biobank are maintained at (https://www.ukbiobankeyeconsortium.org.uk/publications). UK
330	Biobank also holds regular events to inform the participants about the imaging study and the
331	latest research. In addition, UK Biobank has a Twitter feed (@uk_biobank). The study was
332	set up by the Medical Research Council (MRC), Department of Health (DoH), and Wellcome
333	Trust with input from major patient representative organizations. An annual scientific
334	meeting is recorded and available to the public as a webcast.
335	Statistical Analysis Plan
336	Baseline ocular characteristics will be summarized as mean (standard deviation) for
337	continuous variables and number (%) for categorical variables.
338	Primary aims would be to examine:
339	1) cross-sectional associations between retinal biomarkers, measures of cognitive
340	performance and brain-volume from MRI imaging
341	2) the comparative performance of retinal biomarkers for risk stratification, to identify
342	those with cognitive impairment
343	3) the comparative performance of retinal biomarkers to detect those with longitudinal
344	decline in cognitive performance

Previous work within UK Biobank examining RNFL measures in relation to mild cognitive impairment, showed that those in the lowest quintile of RNFL thickness were 11% (95%CI: 2% to 21%) more likely to fail on at least one of four cognitive tests. [40] This shows that RNFL measures have the potential to identify those at higher risk of cognitive impairment. After vigorous image quality control, the proposed imaging of a further 60,000 participants will provide 45,000-55,000 participants with good-quality retinal images for quantification of individual components of the RNFL and potential to extract detailed retinal vasculometric measures. This large sample size, will have 99% power (alpha = 0.001) to detect at least 0.03 standard deviation change in the cognitive score[41] or brain measures[42] per 1 standard deviation increase in any retinal biomarker (RNFL or retinal vasculometric measure). Cross-sectional analyses using multiple linear regression will quantify the dose response relationship between cognitive score with considerable power to evaluate in the region of 30 candidate predictors (retinal biomarkers, age, sex, geographical location, height, refraction, intraocular pressure, smoking status, socioeconomic positions and established cardiovascular risk markers).[43] This will allow the independent contribution of retinal biomarkers as a predictor of cognitive performance to be realized with considerable precision, [44] across a spectrum of cognitive scores.[43] Given that UK Biobank has longitudinal data on cognitive change (with repeated measures available from online questionnaires and performed in-person at the imaging assessments), the study would be uniquely placed to assess the determinants of cognitive decline in middle-

366 prior cognitive performance. In UK Biobank, the annual incidence of dementia among those

later life. For prospective evaluation the rates of dementia would also be pivotal in relation to

aged \geq 60 years old is approximately 2.5 per 1000 person years.[45] Therefore, within 2 years

368 of retinal image capture there would be approximately 250 cases of dementia per 45,000-

55,000 participants.

BMJ Open

370 Exist	ing Data
-----------	----------

Once recruitment was fully under way, additional measures were incorporated into the baseline assessment, including hearing and arterial stiffness tests, a cardiorespiratory fitness test, and various eye and vision measures, including visual acuity on a computerised system designed to observe logMAR principles, and following the British Standard (BS-1968),[46] autorefraction and keratometry, intraocular pressure and corneal biomechanics, and retinal imaging comprising disc/macular digital colour photographs and a 3D macular OCT.[22] After the baseline visit, subsets of participants have supported additional data collection through various enhancements to the study. These have included: a complete repeat of the baseline assessment, collection of physical activity data over 7-days by wearing accelerometers, and regular online questionnaires covering various topics such as diet, cognitive function, occupational history, mental wellbeing, gastrointestinal health and pain. All participants provided consent for their health to be followed-up through linkage to health-related records, which currently includes death, cancer, and hospital inpatient records for the entire cohort. Although UK Biobank is not representative of the entire UK population, the large sample size and variation across all levels of measures nonetheless enable a valid assessment of many exposure-outcome relationships to be made. All publications using UK Biobank data are available on the website (https://www.ukbiobank.ac.uk/enable-your-research/publications). Eye and vision-related publications resulting from UK Biobank is maintained at (https://www.ukbiobankeyeconsortium.org.uk/publications). Baseline characteristics of the study participants were summarized in Table 2. In addition to imaging, UK Biobank has implemented a wide range of cognitive function tests since baseline that are relevant to assessing various aspects of cognitive decline and dementia and will be conducted at the repeat imaging and proposed OCT visit (Table 3). **FINDINGS TO DATE**

UK Biobank has helped make significant advances in the understanding of risk factors for diseases including cardiovascular diseases, cancer, diabetes, stroke, multiple sclerosis, optic neuritis and dementia. [23, 47-57] Ophthalmic genetics and epidemiology have benefited from the unparalleled combination of very large numbers of participants, very extensive and detailed phenotyping and longitudinal follow-up.[30, 58-62] In addition, we have used UK Biobank data to describe the relationship between retinal structures and both cognitive function and brain MR image-derived phenotypes.[40, 42] For example, previous work examining RNFL measures in relation to mild cognitive impairment, showed that those in the lowest quintile of RNFL thickness were 11% (95% CI 2.0% to 2.1%) more likely to fail on at least one of four cognitive tests. [40] This indicates that RNFL thickness measurements have the potential to identify those at higher risk of cognitive impairment. Chua et al [42] reported that markers of retinal neurodegeneration are associated with smaller brain volumes - macular ganglion cell-inner plexiform layer (GCIPL) thickness, ganglion cell complex (GCC) thickness and total macular thickness were significantly associated with smaller total brain (p < 0.001), grey matter and white matter volume (p < 0.01), and grey matter volume in the occipital pole (p < 0.05); thinner macular GCC and total macular thicknesses were associated with smaller hippocampal volume (p < 0.02). In the context of these results, and the findings of other studies (e.g. The Rotterdam

413 Study),[63-65] we proposed supplementing the testing menu in the UK Biobank Whole Body
414 Repeat Imaging Study with measures that support the discovery and quantification of eye and
415 vision variables that are associated with cognitive ageing and decline, and overt dementia.

416 COLLABORATION

417 UK Biobank aims to provide open access data for healthcare-related research. The data are
418 available to all bona fide researchers from the academic, charity, public and commercial
419 sectors in the UK and internationally, without preferential or exclusive access for any

BMJ Open

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
17
10
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
50 27
3/
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
55
50
5/
58
59

420	user.[66] All interested researchers may apply to access the data via an online application.
421	Strict guidelines are in place to help ensure anonymity and confidentiality of participants'
422	data and samples.[67] We have formed the UK Biobank Eye and Vision Consortium, an 80
423	person strong group of researchers with interest and expertise in ophthalmic epidemiology,
424	visual system neurology, and the epidemiology of related diseases such as diabetes and
425	cardiovascular disease (<u>https://www.ukbiobankeyeconsortium.org.uk/</u>).
426	FURTHER DETAILS
427	Acknowledgements:
428	In addition to the listed authors, Prof Rory Collins, Prof Paul Matthews and Dr Mark
429	Effingham participated in scientific discussions which moulded the project that we have
430	outlined here. A funding proposal was developed following discussions with members of the
431	Alzheimer's Drug Discovery Foundation. Meanwhile, we would like to thank all the
432	participants of UK Biobank for their vital contribution to the resource.
433	Data sharing statement:
434	This research used data from the UK Biobank Resource, under data access request number
435	2112.
436	Contributorship statement:
437	PJF, APK, PJP & ZS had full access to all the data in the study and take responsibility for the
438	integrity and accuracy of the data analysis. Concept and design: PJF, DA, APK, AJL, TM,
439	CGO, PJP, AP, ARR. Data acquisition, analysis, or interpretation: UK Biobank obtained the
440	data. APK performed data analysis. All authors interpreted data. Critical revision of the
441	manuscript for important intellectual content: all authors. Obtained funding: NA, SS, UK
442	Biobank. All authors approved the final manuscript.
443	Funding declaration:

Page 20 of 25

BMJ Open

444	The study sponsor/funder was not involved in the design of the study; the collection, analysis,
445	and interpretation of data; writing the report; and did not impose any restrictions regarding
446	the publication of the report. UK Biobank is funded by the Medical Research Council,
447	Wellcome Trust, Department of Health, Scottish Government, the Welsh Assembly
448	Government, British Heart Foundation, Cancer Research UK, NIHR and the Northwest
449	Regional Development Agency. The UK Biobank Eye and Vision Consortium is supported
450	by grants from Moorfields Eye Charity, the NIHR Biomedical Research Centre at Moorfields
451	Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, the Alcon
452	Research Institute and the International Glaucoma Association (UK).
453	APK, AP, ZS, PJF and PJP receive salary support from the NIHR BRC at Moorfields Eye
454	Hospital & UCL Institute of Ophthalmology. NA receives salary support from University of
455	Oxford and UK Biobank. PJF receives support from the Desmond Foundation, London, UK.
456	APK is supported by a UKRI Future Leaders Fellowship and an Alcon Research Institute
457	Young Investigator Award. TM acknowledges support from NHS Lothian R&D and the
458	Clinical Research Facility at the University of Edinburgh.
459	The authors acknowledge a proportion of our financial support from the UK Department of
460	Health through an award made by the National Institute for Health Research to Moorfields
461	Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology for a Biomedical
462	Research Centre for Ophthalmology.
463	Financial disclosures:
464	PJF reports personal fees from Allergan, Carl Zeiss, Google/DeepMind and Santen, a grant
465	from Alcon, outside the submitted work. PJP reports grants from Topcon Inc, outside the

466 scope of the current report. APK reports personal fees from Abbvie, Aerie, Google Health,

467 Novartis, Reichert, Santen, and Thea, outside the submitted work. AP reports grant support

468 for remyelination trials in multiple sclerosis to the Amsterdam University Medicam Centre,

OCTA from Zeiss (Plex Elite).

1

Department of Neurology, MS Centre (RESTORE trial) and UCL, London RECOVER trial;

(Wolters Kluver) on a book chapter; speaker fees for the Heidelberg Academy; participation

on Advisory Board SC Zeiss OCTA Angi-Network, SC Novartis OCTiMS study; equipment:

.ite).

Fight for Sight (nimodipine in optic neuritis trial); royalties or licenses from Up-to-Date

2 3 4	469
5 6	470
7 8	471
9 10 11	472
12 13	473
14 15	474
16 17	
18 19 20	
20 21 22	
23 24	
25 26	
27 28	
29 30	
31 32	
33 34	
35 36	
37 38	
39 40 41	
41 42 43	
43 44 45	
46 47	
48 49	
50 51	
52 53	
54 55	
56 57	
58 59	
60	

REFERENCES

 Reitz C, Mayeux R: Alzheimer disease: epidemiology, diagnostic criteria, risk factors and biomarkers. <i>Biochemical pharmacology</i> 2014, 88(4):640-651. Bateman RJ, Xiong C, Benzinger TL, Fagan AM, Goate A, Fox NC, Marcus DS, Cairns NJ, Xie X, Blazey TM: Clinical and biomarker changes in dominantly inherited Alzheimer's disease. <i>N Engl J Med</i> 2012, 367:795-804. Tahami Monfared AA, Byrnes MJ, White LA, Zhang Q: Alzheimer's Disease: Epidemiology and Clinical Progression. <i>Neurol Ther</i> 2022, 11(2):553-569. Kalaria RN, Maestre GE, Arizaga R, Friedland RP, Galasko D, Hall K, Luchsinger JA, Ogunniy A, Perry EK, Potocnik F: Alzheimer's disease and vascular dementia in developing countries: prevalence, management, and risk factors. <i>The Lancet Neurology</i> 2008, 7(9):812-826. Collaborators G: Global, regional, and national burden of Alzheimer's disease and other dementias, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. <i>Lancet Neurol</i> 2019, 18(1):88-106. Jack Jr CR, Bennett DA, Blennow K, Carrillo A, Research framework: toward a biological definition of Alzheimer's disease. <i>Alzheimer's & Dementia</i> 2018, 14(4):535-562. Mehta D, Jackson R, Paul G, Shi J, Sabbagh M: Why do trials for Alzheimer's disease drugs keep failing? A discontinued drug perspective for 2010-2015. <i>Expert opinion on investigational drugs</i> 2017, 26(6):735-739. Gomez-Isla T, Price JL, McKeel Jr DW, Morris JC, Growdon JH, Hyman BT: Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer's disease. <i>Journal of Neuroscience</i> 1996, 16(14):4491-4500. Long JM, Holtzman DN: Alzheimer disease: an update on pathobiology and treatment strategies. <i>Cell</i> 2019, 179(2):312-339. Dubois B, Villain N, Frisoni GB, Rabinovici GD, Sabbagh M, Cappa S, Bejanin A, Bombois S, Epelbaum S, Teichmann M: Clinical diagnosis of Alzheimer's disease: recommendations of the International Working Group.	7			
9 478 and biomarkers. Biochemical pharmacology 2014, 88(4):640-651. 11 479 2. Bateman RJ, Xiong C, Benzinger TL, Fagan AM, Goate A, Fox NC, Marcus DS, Cairns NJ, Xie X, Blazey TM: Clinical and biomarker changes in dominantly inherited 14 481 Alzheimer's disease. N Engl J Med 2012, 367:795-804. 14 482 3. Tahami Monfared AA, Byrnes MJ, White LA, Zhang Q: Alzheimer's Disease: 14 Fpidemiology and Clinical Progression. Neurol Ther 2022, 11(2):553-569. 144 14 482 3. Tahami Monfared KA, Byrnes MJ, White LA, Zhang Q: Alzheimer's Disease: 14 845 Ogunniyi A, Perry EK, Potocnik F: Alzheimer's disease and vascular dementia in 14 485 Ogunniyi A, Perry EK, Potocnik F: Alzheimer's disease and vascular dementia in 14 486 Collaborators G: Global, regional, and national burden of Alzheimer's disease and 14 50 Collaborators G: Global, regional, and national burden of Alzheimer's disease and 14 192 192 192 192 192 14 192 192 192 192 192 192 14 192 192 192	8	477	1.	Reitz C, Mayeux R: Alzheimer disease: epidemiology, diagnostic criteria, risk factors
 2. Bateman RJ, Xiong C, Benzinger TL, Fagan AM, Goate A, Fox NC, Marcus DS, Cairns NJ, Xie X, Blazey TM: Clinical and biomarker changes in dominantly inherited Alzheimer's disease. N Engl J Med 2012, 367:795-804. 3. Tahami Monfared AA, Byrnes MJ, White LA, Zhang Q: Alzheimer's Disease: Epidemiology and Clinical Progression. Neurol Ther 2022, 11(2):553-569. 483 Epidemiology and Clinical Progression. Neurol Ther 2022, 11(2):553-569. 484 Kalaria RN, Maestre GE, Arizaga R, Friedland RP, Galasko D, Hall K, Luchsinger JA, Ogunniyi A, Perry EK, Potocnik F: Alzheimer's disease and vascular dementia in developing countries: prevalence, management, and risk factors. The Lancet Neurology 2008, 7(9):812-826. 485 Collaborators G: Global, regional, and national burden of Alzheimer's disease and other dementias, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 2019, 18(1):88-106. 490 Disease Study 2016. Lancet Neurol 2019, 18(1):88-106. 491 Jagust W, Jessen F, Karlawish J: NIA-AA research framework: toward a biological definition of Alzheimer's disease. Alzheimer's & Dementia 2018, 14(4):535-562. 495 Mehta D, Jackson R, Paul G, Shi J, Sabbagh M: Why do trials for Alzheimer's disease. Journal of Neuroscience 1996, 16(14):4491-4500. 498 Gómez-Isla T, Price JL, McKeel Jr DW, Morris JC, Growdon JH, Hyman BT: Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer's disease. Journal of Neuroscience 1996, 16(14):4491-4500. 503 Giong JM, Holtzman DM: Alzheimer disease: an update on pathobiology and treatment strategies. Cell 2019, 179(2):312-339. 504 Journal of Neuroscience 1996, 16(14):4491-4500. 505 Long JM, Holtzman DM: Alzheimer disease: an update on pathobiology and treatment strategies. Cell 2019, 179(2):312-339. 506 Journal of Neuroscience 1996, 16(14):4491-4500. 507 Long JM, Hol	9	478		and biomarkers. Biochemical pharmacology 2014, 88(4):640-651.
 480 NJ, Xie X, Blazey TM: Clinical and biomarker changes in dominantly inherited Alzheimer's disease. N Engl J Med 2012, 367:795-804. 481 Tahami Monfared AA, Byrnes MJ, White LA, Zhang Q: Alzheimer's Disease: Epidemiology and Clinical Progression. Neurol Ther 2022, 11(2):553-569. 483 Kalaria RN, Maestre GE, Arizaga R, Friedland RP, Galasko D, Hall K, Luchsinger JA, Ogunniyi A, Perry EK, Potocnik F: Alzheimer's disease and vascular dementia in developing countries: prevalence, management, and risk factors. The Lancet Neurology 2008, 7(9):812-826. 488 C. Collaborators G: Global, regional, and national burden of Alzheimer's disease and other dementias, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 2019, 18(1):88-106. 491 G. Jack Jr CR, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, Holtzman DM, Jagust W, Jessen F, Karlawish J: NIA-AA research framework: toward a biological definition of Alzheimer's disease. Alzheimer's & Dementia 2018, 14(4):535-562. 495 7. Mehta D, Jackson R, Paul G, Shi J, Sabbagh M: Why do trials for Alzheimer's disease drugs keep failing? A discontinued drug perspective for 2010-2015. Expert opinion on investigational drugs 2017, 26(6):735-739. 498 8. Gómez-Isla T, Price JL, McKeel Jr DW, Morris JC, Growdon JH, Hyman BT: Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer's disease. Journal of Neuroscience 1996, 16(14):4491-4500. 500 9. Long JM, Holtzman DM: Alzheimer disease: an update on pathobiology and treatment strategies. Cell 2019, 179(2):312-339. 503 10. Dubois B, Villain N, Frisoni GB, Rabinovici GD, Sabbagh M, Cappa S, Bejanin A, Bombois S, Epelbaum S, Teichmann M: Clinical diagnosis of Alzheimer's disease: recommendations of the International Working Group. The Lancet Neurology 2021, 20(6):484-496. 504 11. Cheung CY-I, Ikram MK, Sabanayagam C, Wong TY: Retinal microvas	10 11	479	2.	Bateman RJ, Xiong C, Benzinger TL, Fagan AM, Goate A, Fox NC, Marcus DS, Cairns
 481 Alzheimer's disease. <i>N Engl J Med</i> 2012, 367:795-804. 482 3. Tahami Monfared AA, Byrnes MJ, White LA, Zhang Q: Alzheimer's Disease: 484 4. Kalaria RN, Maestre GE, Arizaga R, Friedland RP, Galasko D, Hall K, Luchsinger JA, Ogunniyi A, Perry EK, Potocnik F: Alzheimer's disease and vascular dementia in developing countries: prevalence, management, and risk factors. <i>The Lancet Neurology</i> 2008, 7(9):812-826. 5. Collaborators G: Global, regional, and national burden of Alzheimer's disease and other dementias, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. <i>Lancet Neurol</i> 2019, 18(1):88-106. 489 other dementias, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. <i>Lancet Neurol</i> 2019, 18(1):88-106. 491 6. Jack Jr CR, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, Holtzman DM, Jagust W, Jessen F, Karlawish J: NIA-AA research framework: toward a biological definition of Alzheimer's disease. <i>Alzheimer's & Dementic</i> 2018, 14(4):535-562. 7. Mehta D, Jackson R, Paul G, Shi J, Sabbagh M: Why do trials for Alzheimer's disease. <i>Journal of Neuroscience</i> 1996, 16(14):4491-4500. 9. Long JM, Holtzman DM: Alzheimer disease: an update on pathobiology and treatment strategies. <i>Cell</i> 2019, 179(2):312-339. 9. Long JM, Holtzman DM: Alzheimer disease: an update on pathobiology and treatment strategies. <i>Cell</i> 2019, 179(2):312-339. 9. Long JM, Holtzman DM: Alzheimer disease: an update on pathobiology 2021, 20(6):484-496. 9. Cheung CY-J, Kiram MK, Sabanayagam C, Wong TY: Retinal microvasculature as a model to study the manifestations of hypertension. <i>Hypertension</i> 2012, 60(5):1094-1103. 10. Dubois S, Delbaum S, Teichmann M: Clinical diagnosis of Alzheimer's disease: recommendations of the International Working Group. <i>The Lancet Neurology</i> 2021, 20(6):484-496. 11. Cheung CY-J, Ikram MK, Sabanayag	12	480		NJ, Xie X, Blazey TM: Clinical and biomarker changes in dominantly inherited
 Tahami Monfared AA, Byrnes MJ, White LA, Zhang Q: Alzheimer's Disease: Epidemiology and Clinical Progression. Neurol Ther 2022, 11(2):553-569. Kalaria RN, Maestre GE, Arizaga R, Friedland RP, Galasko D, Hall K, Luchsinger JA, Ogunniyi A, Perry EK, Potocnik F: Alzheimer's disease and vascular dementia in developing countries: prevalence, management, and risk factors. The Lancet Neurology 2008, 7(9):812-826. Collaborators G: Global, regional, and national burden of Alzheimer's disease and other dementias, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 2019, 18(1):88-106. Jack Jr CR, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, Holtzman DM, Jagust W, Jessen F, Karlawish J: NIA-AA research framework: toward a biological definition of Alzheimer's disease. Alzheimer's & Dementia 2018, 14(4):535-562. Mehta D, Jackson R, Paul G, Shi J, Sabbagh M: Why do trials for Alzheimer's disease drugs keep failing? A discontinued drug perspective for 2010-2015. Expert opinion on investigational drugs 2017, 26(5):735-739. Gómez-Isla T, Price JL, McKeel Jr DW, Morris JC, Growdon JH, Hyman BT: Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer's disease. Journal of Neuroscience 1996, 16(14):4491-4500. Long JM, Holtzman DM: Alzheimer disease: an update on pathobiology and treatment strategies. Cell 2019, 179(2):312-339. Dubois B, Villain N, Frisoni GB, Rabinovici GD, Sabbagh M, Cappa S, Bejanin A, Bombois S, Epelbaum S, Teichmann M: Clinical diagnosis of Alzheimer's disease: recommendations of the International Working Group. The Lancet Neurology 2021, 20(6):484-496. Cheung CY-I, Ikram MK, Sabanayagam C, Wong TY: Retinal microvasculature as a model to study the mainfestations of hypertension. Hypertension 2012, 60(5):1094- 1103. Lesage S, Mosley T, Wong T, Szklo M, Knopman D, Catellier DJ, Cole S, Klein R, Coresh J, Co	13	481		Alzheimer's disease. N Engl J Med 2012, 367:795-804.
15 483 Epidemiology and Clinical Progression. Neurol Ther 2022, 11(2):553-569. 17 484 4. 18 485 Ogunniyi A, Perry EK, Potocnik F: Alzheimer's disease and vascular dementia in 18 485 Ogunniyi A, Perry EK, Potocnik F: Alzheimer's disease and vascular dementia in 18 486 developing countries: prevalence, management, and risk factors. The Lancet 18 487 Collaborators G: Global, regional, and national burden of Alzheimer's disease and 18 488 Collaborators G: Global, regional, and national burden of Alzheimer's disease and 18 489 other dementias, 1990-2016: a systematic analysis for the Global Burden of 19 Disease Study 2016. Lancet Neurol 2019, 18(1):88-106. 29 126, Jr CR, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, Holtzman 20 DM, Jagust W, Jessen F, Karlawish J: NIA-AA research framework: toward a 21 biological definition of Alzheimer's disease. 24 94 14(4):535-562. 25 Mehta D, Jackson R, Paul G, Shi J, Sabbagh M: Why do trials for Alzheimer's disease. 26 Mugs keep failing? A discontinued drug perspective for 2010-2015. Expert opinion 26 forez-Isla T, Price JL, McKeel Jr DW, Morris JC, Growdon JH, Hyman	14	482	3.	Tahami Monfared AA, Byrnes MJ, White LA, Zhang Q: Alzheimer's Disease:
 484 4. Kalaria RN, Maestre GE, Arizaga R, Friedland RP, Galasko D, Hall K, Luchsinger JA, Ogunniyi A, Perry EK, Potocnik F: Alzheimer's disease and vascular dementia in developing countries: prevalence, management, and risk factors. <i>The Lancet</i> <i>Neurology</i> 2008, 7(9):812-826. 5. Collaborators G: Global, regional, and national burden of Alzheimer's disease and other dementias, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. <i>Lancet Neurol</i> 2019, 18(1):88-106. 6. Jack Jr CR, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, Holtzman DM, Jagust W, Jessen F, Karlawish J: NIA-AA research framework: toward a biological definition of Alzheimer's disease. <i>Alzheimer's & Dementia</i> 2018, 14(4):535-562. 7. Mehta D, Jackson R, Paul G, Shi J, Sabbagh M: Why do trials for Alzheimer's disease drugs keep failing? A discontinued drug perspective for 2010-2015. <i>Expert opinion on investigational drugs</i> 2017, 26(6):735-739. 8. Gómez-Isla T, Price JL, McKeel Jr DW, Morris JC, Growdon JH, Hyman BT: Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer's disease. <i>Journal of Neuroscience</i> 1996, 16(14):4491-4500. 9. Long JM, Holtzman DM: Alzheimer disease: an update on pathobiology and treatment strategies. <i>Cell</i> 2019, 179(2):312-339. 10. Dubois B, Villain N, Frisoni GB, Rabinovici GD, Sabbagh M, Cappa S, Bejanin A, Bombois S, Epelbaum S, Teichmann M: Clinical diagnosis of Alzheimer's disease: recommendations of the International Working Group. <i>The Lancet Neurology</i> 2021, 20(6):484-496. 11. Cheung CY-I, Ikram MK, Sabanayagam C, Wong TY: Retinal microvasculature as a model to study the manifestations of hypertension. <i>Hypertension</i> 2012, 60(5):1094- 1103. 12. Lesage S, Mosley T, Wong T, Szklo M, Knopman D, Catellier DJ, Cole S, Klein R, Coresh J, Coker L: Retinal microvascular abnormalities and cognitive decline: the ARIC 14- year follow-up study. <i>Ne</i>	15	483		Epidemiology and Clinical Progression. Neurol Ther 2022, 11(2):553-569.
1485Ogunniyi A, Perry EK, Potocnik F: Alzheimer's disease and vascular dementia in19486developing countries: prevalence, management, and risk factors. The Lancet1487Neurology 2008, 7(9):812-826.14885.Collaborators G: Global, regional, and national burden of Alzheimer's disease and1489other dementias, 1990-2016: a systematic analysis for the Global Burden of1489Disease Study 2016. Lancet Neurol 2019, 18(1):88-106.1490Disease Study 2016. Lancet Neurol 2019, 18(1):88-106.1491G. Jack Jr CR, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, Holtzman1492DM, Jagust W, Jessen F, Karlawish J: NIA-AA research framework: toward a1493biological definition of Alzheimer's disease. Alzheimer's & Dementia 2018,149414(4):535-562.14957.1496Mehta D, Jackson R, Paul G, Shi J, Sabbagh M: Why do trials for Alzheimer's disease1496drugs keep failing? A discontinued drug perspective for 2010-2015. Expert opinion1597on investigational drugs 2017, 26(6):735-739.1498R. Gómez-Isla T, Price JL, McKeel Jr DW, Morris JC, Growdon JH, Hyman BT: Profound1698loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer's disease.1799Journal of Neuroscience 1996, 16(14):4491-4500.17919.Long JM, Holtzman DM: Alzheimer disease: an update on pathobiology and treatment strategies. Cell 2019, 179(2):312-339.17019.Long JM, Holtzman DM: Alzheimer disease: an update on pathobiology 2021, 2016, 1204-486.17019.Long S, Bele	16 17	484	4.	Kalaria RN, Maestre GE, Arizaga R, Friedland RP, Galasko D, Hall K, Luchsinger JA,
 486 developing countries: prevalence, management, and risk factors. <i>The Lancet</i> <i>Neurology</i> 2008, 7(9):812-826. Collaborators G: Global, regional, and national burden of Alzheimer's disease and other dementias, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. <i>Lancet Neurol</i> 2019, 18(1):88-106. Jack Jr CR, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, Holtzman DM, Jagust W, Jessen F, Karlawish J: NIA-AA research framework: toward a biological definition of Alzheimer's disease. <i>Alzheimer's & Dementia</i> 2018, 14(4):535-562. Mehta D, Jackson R, Paul G, Shi J, Sabbagh M: Why do trials for Alzheimer's disease drugs keep failing? A discontinued drug perspective for 2010-2015. <i>Expert opinion</i> <i>on investigational drugs</i> 2017, 26(6):735-739. Gómez-Isla T, Price JL, McKeel Jr DW, Morris JC, Growdon JH, Hyman BT: Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer's disease. <i>Journal of Neuroscience</i> 1996, 16(14):4491-4500. Long JM, Holtzman DM: Alzheimer disease: an update on pathobiology and treatment strategies. <i>Cell</i> 2019, 179(2):312-339. Dubois B, Villain N, Frisoni GB, Rabinovici GD, Sabbagh M, Cappa S, Bejanin A, Bombois S, Epelbaum S, Teichmann M: Clinical diagnosis of Alzheimer's disease: recommendations of the International Working Group. <i>The Lancet Neurology</i> 2021, 20(6):484-496. Lesage S, Mosley T, Wong T, Szklo M, Knopman D, Catellier DJ, Cole S, Klein R, Coresh J, Coker L: Retinal microvascular abnormalities and cognitive decline: the ARIC 14- year follow-up study. <i>Neurology</i> 2009, 73(11):862-868. Petzold A, Balcer LJ, Calabresi PA, Costello F, Frohman TC, Frohman EM, Martinez- Lapiscina EH, Green AJ,	17	485		Ogunniyi A, Perry EK, Potocnik F: Alzheimer's disease and vascular dementia in
 487 Neurology 2008, 7(9):812-826. 488 5. Collaborators G: Global, regional, and national burden of Alzheimer's disease and other dementias, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 2019, 18(1):88-106. 490 Disease Study 2016. Lancet Neurol 2019, 18(1):88-106. 491 6. Jack Jr CR, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, Holtzman DM, Jagust W, Jessen F, Karlawish J: NIA-AA research framework: toward a biological definition of Alzheimer's disease. Alzheimer's & Dementia 2018, 14(4):535-562. 495 7. Mehta D, Jackson R, Paul G, Shi J, Sabbagh M: Why do trials for Alzheimer's disease drugs keep failing? A discontinued drug perspective for 2010-2015. Expert opinion on investigational drugs 2017, 26(6):735-739. 498 8. Gómez-Isla T, Price JL, McKeel Jr DW, Morris JC, Growdon JH, Hyman BT: Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer's disease. Journal of Neuroscience 1996, 16(14):4491-4500. 501 9. Long JM, Holtzman DM: Alzheimer disease: an update on pathobiology and treatment strategies. Cell 2019, 179(2):312-339. 503 10. Dubois B, Villan N, Frisoni GB, Rabinovici GD, Sabbagh M, Cappa S, Bejanin A, Bombois S, Epelbaum S, Teichmann M: Clinical diagnosis of Alzheimer's disease: recommendations of the International Working Group. The Lancet Neurology 2021, 20(6):484-496. 507 11. Cheung CY-I, Ikram MK, Sabanayagam C, Wong TY: Retinal microvasculature as a model to study the manifestations of hypertension. Hypertension 2012, 60(5):1094- 1103. 510 12. Lesage S, Mosley T, Wong T, Szklo M, Knopman D, Catellier DJ, Cole S, Klein R, Coresh J, Coker L: Retinal microvascular abnormalities and cognitive decline: the ARIC 14- year follow-up study. Neurology 2009, 73(11):862-868. 513 13. Petzold A, Balcer LJ, Calabresi PA, Costello F, Frohman TC, Frohman EM, Martinez- Lapiscina EH, Green AJ,	19	486		developing countries: prevalence, management, and risk factors. The Lancet
 488 5. Collaborators G: Global, regional, and national burden of Alzheimer's disease and other dementias, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 2019, 18(1):88-106. 491 6. Jack Jr CR, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, Holtzman DM, Jagust W, Jessen F, Karlawish J: NIA-AA research framework: toward a biological definition of Alzheimer's disease. Alzheimer's & Dementia 2018, 14(4):535-562. 7. Mehta D, Jackson R, Paul G, Shi J, Sabbagh M: Why do trials for Alzheimer's disease drugs keep failing? A discontinued drug perspective for 2010-2015. Expert opinion on investigational drugs 2017, 26(6):735-739. 8. Gómez-Isla T, Price JL, McKeel Jr DW, Morris JC, Growdon JH, Hyman BT: Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer's disease. Journal of Neuroscience 1996, 16(14):4491-4500. 9. Long JM, Holtzman DM: Alzheimer disease: an update on pathobiology and treatment strategies. Cell 2019, 179(2):312-339. 10. Dubois B, Villain N, Frisoni GB, Rabinovici GD, Sabbagh M, Cappa S, Bejanin A, Bombois S, Epelbaum S, Teichmann M: Clinical diagnosis of Alzheimer's disease: recommendations of the International Working Group. The Lancet Neurology 2021, 20(6):484-496. 11. Cheung CY-I, Ikram MK, Sabanayagam C, Wong TY: Retinal microvasculature as a model to study the manifestations of hypertension. Hypertension 2012, 60(5):1094- 1103. 12. Lesage S, Mosley T, Wong T, Szklo M, Knopman D, Catellier DJ, Cole S, Klein R, Coresh J, Coker L: Retinal microvascular abnormalities and cognitive decline: the ARIC 14- year follow-up study. Neurology 2009, 73(11):862-868. 13. Petzold A, Balcer LJ, Calabresi PA, Costello F, Frohman TC, Frohman EM, Martinez- Lapiscina EH, Green AJ, Kardon R, Outteryck O: Retinal layer segmentation in multiple sclerosis: a systematic review and meta-analysis. The Lancet Neurology 2017, 16(10)	20	487		Neurology 2008, 7(9):812-826.
 489 other dementias, 1990-2016: a systematic analysis for the Global Burden of 490 Disease Study 2016. Lancet Neurol 2019, 18(1):88-106. 491 6. Jack Jr CR, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, Holtzman 492 493 biological definition of Alzheimer's disease. Alzheimer's & Dementia 2018, 494 414(3):535-562. 495 7. Mehta D, Jackson R, Paul G, Shi J, Sabbagh M: Why do trials for Alzheimer's disease 496 drugs keep failing? A discontinued drug perspective for 2010-2015. Expert opinion on investigational drugs 2017, 26(6):735-739. 8. Gómez-Isla T, Price JL, McKeel Jr DW, Morris JC, Growdon JH, Hyman BT: Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer's disease. Journal of Neuroscience 1996, 16(14):4491-4500. 9. Long JM, Holtzman DM: Alzheimer disease: an update on pathobiology and treatment strategies. <i>Cell</i> 2019, 179(2):312-339. 10. Dubois B, Villain N, Frisoni GB, Rabinovici GD, Sabbagh M, Cappa S, Bejanin A, Bombois S, Epelbaum S, Teichmann M: Clinical diagnosis of Alzheimer's disease: recommendations of the International Working Group. <i>The Lancet Neurology</i> 2021, 20(6):484-496. 507 11. Cheung CY-I, Ikram MK, Sabanayagam C, Wong TY: Retinal microvasculature as a model to study the manifestations of hypertension. <i>Hypertension</i> 2012, 60(5):1094- 103. 12. Lesage S, Mosley T, Wong T, Szklo M, Knopman D, Catellier DJ, Cole S, Klein R, Coresh 513 13. Petzold A, Balcer LJ, Calabresi PA, Costello F, Frohman TC, Frohman EM, Martinez- Lapiscina EH, Green AJ, Kardon R, Outteryck O: Retinal layer segmentation in multiple sclerosis: a systematic review and meta-analysis. <i>The Lancet Neurology</i> 2017, 16(10):797-812. 517 14. O'Bryhim BE, Apte RS,	21	488	5.	Collaborators G: Global, regional, and national burden of Alzheimer's disease and
 Disease Study 2016. Lancet Neurol 2019, 18(1):88-106. Jack Jr CR, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, Holtzman DM, Jagust W, Jessen F, Karlawish J: NIA-AA research framework: toward a biological definition of Alzheimer's disease. Alzheimer's & Dementia 2018, 14(4):535-562. Mehta D, Jackson R, Paul G, Shi J, Sabbagh M: Why do trials for Alzheimer's disease drugs keep failing? A discontinued drug perspective for 2010-2015. Expert opinion on investigational drugs 2017, 26(6):735-739. Gómez-Isla T, Price JL, McKeel Jr DW, Morris JC, Growdon JH, Hyman BT: Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer's disease. Journal of Neuroscience 1996, 16(14):4491-4500. Long JM, Holtzman DM: Alzheimer disease: an update on pathobiology and treatment strategies. Cell 2019, 179(2):312-339. Dubois B, Villain N, Frisoni GB, Rabinovici GD, Sabbagh M, Cappa S, Bejanin A, Bombois S, Epelbaum S, Teichmann M: Clinical diagnosis of Alzheimer's disease: recommendations of the International Working Group. The Lancet Neurology 2021, 20(6):484-496. Cheung CY-I, Ikram MK, Sabanayagam C, Wong TY: Retinal microvasculature as a model to study the manifestations of hypertension. Hypertension 2012, 60(5):1094-1103. Lesage S, Mosley T, Wong T, Szklo M, Knopman D, Catellier DJ, Cole S, Klein R, Coresh J, Coker L: Retinal microvascular abnormalities and cognitive decline: the ARIC 14-year follow-up study. Neurology 2009, 73(11):862-868. Petzold A, Balcer LJ, Calabresi PA, Costello F, Frohman TC, Frohman EM, Martinez-Lapiscina EH, Green AJ, Kardon R, Outteryck O: Retinal layer segmentation in multiple sclerosis: a systematic review and meta-analysis. The Lancet Neurology 2017, 16(10):797-812. O'Bryhim BE, Apte RS, Kung N, Coble D, Van Stavern GP: Association of preclinical Alzheimer disease with optical coherence tomographic angiography findings. JAMA 	22	489	-	other dementias. 1990-2016: a systematic analysis for the Global Burden of
 Jack Ir CR, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, Holtzman DM, Jagust W, Jessen F, Karlawish J: NIA-AA research framework: toward a biological definition of Alzheimer's disease. Alzheimer's & Dementia 2018, 14(4):535-562. Mehta D, Jackson R, Paul G, Shi J, Sabbagh M: Why do trials for Alzheimer's disease drugs keep failing? A discontinued drug perspective for 2010-2015. Expert opinion on investigational drugs 2017, 26(6):735-739. Gómez-Isla T, Price JL, McKeel Jr DW, Morris JC, Growdon JH, Hyman BT: Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer's disease. Journal of Neuroscience 1996, 16(14):4491-4500. Long JM, Holtzman DM: Alzheimer disease: an update on pathobiology and treatment strategies. Cell 2019, 179(2):312-339. Dubois S, Epelbaum S, Teichmann M: Clinical diagnosis of Alzheimer's disease: recommendations of the International Working Group. The Lancet Neurology 2021, 20(6):484-496. Cheung CY-I, Ikram MK, Sabanayagam C, Wong TY: Retinal microvasculature as a model to study the manifestations of hypertension. Hypertension 2012, 60(5):1094-1103. Lesage S, Mosley T, Wong T, Szklo M, Knopman D, Catellier DJ, Cole S, Klein R, Coresh J, Coker L: Retinal microvascular abnormalities and cognitive decline: the ARIC 14-year follow-up study. Neurology 2009, 73(11):862-868. Petzold A, Balcer LJ, Calabresi PA, Costello F, Frohman TC, Frohman EM, Martinez-Lapiscina EH, Green AJ, Kardon R, Outteryck O: Retinal layer segmentation in multiple sclerosis: a systematic review and meta-analysis. The Lancet Neurology 2017, 16(10):797-812. O'Bryhim BE, Apte RS, Kung N, Coble D, Van Stavern GP: Association of preclinical Alzheimer disease with optical coherence tomographic angiography findings. JAMA 	23 24	490		Disease Study 2016 . Lancet Neurol 2019. 18 (1):88-106.
26492DM, Jagust W, Jessen F, Karlawish J: NIA-AA research framework: toward a27493biological definition of Alzheimer's disease. Alzheimer's & Dementia 2018,2849414(4):535-562.304957.31496drugs keep failing? A discontinued drug perspective for 2010-2015. Expert opinion32497on investigational drugs 2017, 26(6):735-739.334988.34Gómez-Isla T, Price IL, McKeel Jr DW, Morris JC, Growdon JH, Hyman BT: Profound35loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer's disease.36Journal of Neuroscience 1996, 16(14):4491-4500.379.Long JM, Holtzman DM: Alzheimer disease: an update on pathobiology and38treatment strategies. Cell 2019, 179(2):312-339.3950310.304Bombois S, Epelbaum S, Teichmann M: Clinical diagnosis of Alzheimer's disease:41cohen CY-I, Ikram MK, Sabanayagam C, Wong TY: Retinal microvasculature as a42model to study the manifestations of hypertension. Hypertension 2012, 60(5):1094-43510.Lesage S, Mosley T, Wong T, Szklo M, Knopman D, Catellier DJ, Cole S, Klein R, Coresh44J, Coker L: Retinal microvascular abnormalities and cognitive decline: the ARIC 14-4511.Cheung CY-I, Ikram MK, Sabanayagam C, Wong TY: Retinal microvasculature as a46model to study the manifestations of hypertension. Hypertension 2012, 60(5):1094-47103.4811.49Lesage S, Mosley T, Wong T, Szklo M, Knopman D, Catellier DJ,	25	491	6.	Jack Ir CR. Bennett DA. Blennow K. Carrillo MC. Dunn B. Haeberlein SB. Holtzman
 biological definition of Alzheimer's disease. Alzheimer's & Dementia 2018, 14(4):535-562. 495 Mehta D, Jackson R, Paul G, Shi J, Sabbagh M: Why do trials for Alzheimer's disease drugs keep failing? A discontinued drug perspective for 2010-2015. Expert opinion on investigational drugs 2017, 26(6):735-739. 498 Gómez-Isla T, Price JL, McKeel Jr DW, Morris JC, Growdon JH, Hyman BT: Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer's disease. Journal of Neuroscience 1996, 16(14):4491-4500. Journal of Neuroscience 1996, 16(14):4491-4500. Long JM, Holtzman DM: Alzheimer disease: an update on pathobiology and treatment strategies. Cell 2019, 179(2):312-339. Dubois B, Villain N, Frisoni GB, Rabinovici GD, Sabbagh M, Cappa S, Bejanin A, Bombois S, Epelbaum S, Teichmann M: Clinical diagnosis of Alzheimer's disease: recommendations of the International Working Group. The Lancet Neurology 2021, 20(6):484-496. Cheung CY-I, Ikram MK, Sabanayagam C, Wong TY: Retinal microvasculature as a model to study the manifestations of hypertension. Hypertension 2012, 60(5):1094-1103. Lesage S, Mosley T, Wong T, Szklo M, Knopman D, Catellier DJ, Cole S, Klein R, Coresh J, Coker L: Retinal microvascular abnormalities and cognitive decline: the ARIC 14- year follow-up study. Neurology 2009, 73(11):862-868. Petzold A, Balcer LJ, Calabresi PA, Costello F, Frohman TC, Frohman EM, Martinez- Lapiscina EH, Green AJ, Kardon R, Outteryck O: Retinal layer segmentation in multiple sclerosis: a systematic review and meta-analysis. The Lancet Neurology 2017, 16(10):797-812. Yin 44. O'Bryhim BE, Apte RS, Kung N, Coble D, Van Stavern GP: Association of preclinical Alzheimer dise	26	492		DM. Jagust W. Jessen F. Karlawish J: NIA-AA research framework: toward a
 195 196 196 197 197 198 198 198 198 199 199 199 199 199 190 190 191 192 193 193 193 194 194 194 195 194 195 195 196 196 197 198 198 198 198 199 100 101 102 102 102 102 103 101 102 103 101 102 103 101 103 101 102 103 101 102 103 103 104 105 105 105 105 106 107 108 108 101 101 102 102 103 102 103 103 103 104 105 104 105 105 105 105 105 106 106 107 108 101	27	493		biological definition of Alzheimer's disease Alzheimer's & Dementia 2018
 Alt, 1905 917 Mehta D, Jackson R, Paul G, Shi J, Sabbagh M: Why do trials for Alzheimer's disease drugs keep failing? A discontinued drug perspective for 2010-2015. Expert opinion on investigational drugs 2017, 26(6):735-739. A98 Gómez-Isla T, Price JL, McKeel Jr DW, Morris JC, Growdon JH, Hyman BT: Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer's disease. Journal of Neuroscience 1996, 16(14):4491-4500. S01 Long JM, Holtzman DM: Alzheimer disease: an update on pathobiology and treatment strategies. Cell 2019, 179(2):312-339. Dubois B, Villain N, Frisoni GB, Rabinovici GD, Sabbagh M, Cappa S, Bejanin A, Bombois S, Epelbaum S, Teichmann M: Clinical diagnosis of Alzheimer's disease: recommendations of the International Working Group. The Lancet Neurology 2021, 20(6):484-496. Cheung CY-I, Ikram MK, Sabanayagam C, Wong TY: Retinal microvasculature as a model to study the manifestations of hypertension. Hypertension 2012, 60(5):1094- 1103. Lesage S, Mosley T, Wong T, Szklo M, Knopman D, Catellier DJ, Cole S, Klein R, Coresh J, Coker L: Retinal microvascular abnormalities and cognitive decline: the ARIC 14- year follow-up study. Neurology 2009, 73(11):862-868. Petzold A, Balcer LJ, Calabresi PA, Costello F, Frohman TC, Frohman EM, Martinez- Lapiscina EH, Green AJ, Kardon R, Outteryck O: Retinal layer segmentation in multiple sclerosis: a systematic review and meta-analysis. The Lancet Neurology 2017, 16(10):797-812. O'Bryhim BE, Apte RS, Kung N, Coble D, Van Stavern GP: Association of preclinical Alzheimer disease with optical coherence tomographic angiography findings. JAMA 	28	494		14 (4):535-562
19519	29 30	495	7	Mehta D. Jackson R. Paul G. Shi I. Sabhagh M ¹ Why do trials for Alzheimer's disease
 and the problem of the	31	496	<i>.</i>	drugs keen failing? A discontinued drug nerspective for 2010-2015 Expert opinion
 497 8. Gómez-Isla T, Price JL, McKeel Jr DW, Morris JC, Growdon JH, Hyman BT: Profound 498 8. Gómez-Isla T, Price JL, McKeel Jr DW, Morris JC, Growdon JH, Hyman BT: Profound 499 loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer's disease. 500 Journal of Neuroscience 1996, 16(14):4491-4500. 501 9. Long JM, Holtzman DM: Alzheimer disease: an update on pathobiology and treatment strategies. <i>Cell</i> 2019, 179(2):312-339. 503 10. Dubois B, Villain N, Frisoni GB, Rabinovici GD, Sabbagh M, Cappa S, Bejanin A, 504 Bombois S, Epelbaum S, Teichmann M: Clinical diagnosis of Alzheimer's disease: 505 recommendations of the International Working Group. <i>The Lancet Neurology</i> 2021, 506 20(6):484-496. 507 11. Cheung CY-I, Ikram MK, Sabanayagam C, Wong TY: Retinal microvasculature as a model to study the manifestations of hypertension. <i>Hypertension</i> 2012, 60(5):1094- 510 12. Lesage S, Mosley T, Wong T, Szklo M, Knopman D, Catellier DJ, Cole S, Klein R, Coresh 511 J, Coker L: Retinal microvascular abnormalities and cognitive decline: the ARIC 14- year follow-up study. <i>Neurology</i> 2009, 73(11):862-868. 513 13. Petzold A, Balcer LJ, Calabresi PA, Costello F, Frohman TC, Frohman EM, Martinez- Lapiscina EH, Green AJ, Kardon R, Outteryck O: Retinal layer segmentation in multiple sclerosis: a systematic review and meta-analysis. <i>The Lancet Neurology</i> 2017, 16(10):797-812. 517 14. O'Bryhim BE, Apte RS, Kung N, Coble D, Van Stavern GP: Association of preclinical Alzheimer disease with optical coherence tomographic angiography findings. <i>JAMA</i> 	32	497		on investigational drugs 2017 26 (6):735-739
3449560Control isla (1) filed isl, increase), increase in power in power in the information of the info	33	498	8	Gómez-Isla T. Price II. McKeel Ir DW. Morris IC. Growdon IH. Hyman BT: Profound
 Journal of Neuroscience 1996, 16(14):4491-4500. Journal of Neuroscience 1996, 16(14):4491-4500. Son JM, Holtzman DM: Alzheimer disease: an update on pathobiology and treatment strategies. <i>Cell</i> 2019, 179(2):312-339. Dubois B, Villain N, Frisoni GB, Rabinovici GD, Sabbagh M, Cappa S, Bejanin A, Bombois S, Epelbaum S, Teichmann M: Clinical diagnosis of Alzheimer's disease: recommendations of the International Working Group. <i>The Lancet Neurology</i> 2021, 20(6):484-496. Cheung CY-I, Ikram MK, Sabanayagam C, Wong TY: Retinal microvasculature as a model to study the manifestations of hypertension. <i>Hypertension</i> 2012, 60(5):1094- 1103. Lesage S, Mosley T, Wong T, Szklo M, Knopman D, Catellier DJ, Cole S, Klein R, Coresh J, Coker L: Retinal microvascular abnormalities and cognitive decline: the ARIC 14- year follow-up study. <i>Neurology</i> 2009, 73(11):862-868. Petzold A, Balcer LJ, Calabresi PA, Costello F, Frohman TC, Frohman EM, Martinez- Lapiscina EH, Green AJ, Kardon R, Outteryck O: Retinal layer segmentation in multiple sclerosis: a systematic review and meta-analysis. <i>The Lancet Neurology</i> 2017, 16(10):797-812. O'Bryhim BE, Apte RS, Kung N, Coble D, Van Stavern GP: Association of preclinical Alzheimer disease with optical coherence tomographic angiography findings. <i>JAMA</i> 	34 25	490 499	0.	loss of layer II entorphinal cortex neurons occurs in very mild Alzheimer's disease
 Solo 1990 Solo 100 <li< td=""><td>35 36</td><td>500</td><td></td><td>Journal of Neuroscience 1996 16(14):4491-4500</td></li<>	35 36	500		Journal of Neuroscience 1996 16 (14):4491-4500
 501 5. Long JW, Holtzman DW. Alzheiner disease: an diptate on pathodiology and 502 treatment strategies. <i>Cell</i> 2019, 179(2):312-339. 503 10. Dubois B, Villain N, Frisoni GB, Rabinovici GD, Sabbagh M, Cappa S, Bejanin A, 504 Bombois S, Epelbaum S, Teichmann M: Clinical diagnosis of Alzheimer's disease: 505 recommendations of the International Working Group. <i>The Lancet Neurology</i> 2021, 506 20(6):484-496. 507 11. Cheung CY-I, Ikram MK, Sabanayagam C, Wong TY: Retinal microvasculature as a 508 model to study the manifestations of hypertension. <i>Hypertension</i> 2012, 60(5):1094- 509 1103. 510 12. Lesage S, Mosley T, Wong T, Szklo M, Knopman D, Catellier DJ, Cole S, Klein R, Coresh 511 J, Coker L: Retinal microvascular abnormalities and cognitive decline: the ARIC 14- 512 year follow-up study. <i>Neurology</i> 2009, 73(11):862-868. 513 13. Petzold A, Balcer LJ, Calabresi PA, Costello F, Frohman TC, Frohman EM, Martinez- 514 Lapiscina EH, Green AJ, Kardon R, Outteryck O: Retinal layer segmentation in multiple sclerosis: a systematic review and meta-analysis. <i>The Lancet Neurology</i> 2017, 16(10):797-812. 517 14. O'Bryhim BE, Apte RS, Kung N, Coble D, Van Stavern GP: Association of preclinical 518 Alzheimer disease with optical coherence tomographic angiography findings. <i>JAMA</i> 	37	500	٥	Long IM Holtzman DM: Alzheimer disease: an undate on nathobiology and
 ³⁹ 502 ³⁰ 503 ³⁰ 10. Dubois B, Villain N, Frisoni GB, Rabinovici GD, Sabbagh M, Cappa S, Bejanin A, ³⁰ 503 ³⁰ 10. Dubois B, Villain N, Frisoni GB, Rabinovici GD, Sabbagh M, Cappa S, Bejanin A, ³⁰ 800 ³⁰	38	502	9.	troatmont strategies Coll 2010 170 (2):212 220
 Sola 10. Bubbis B, Villam R, Prison GB, Rabinovici GD, Sabbagir M, Cappa S, Bejann A, Bombois S, Epelbaum S, Teichmann M: Clinical diagnosis of Alzheimer's disease: recommendations of the International Working Group. The Lancet Neurology 2021, 20(6):484-496. Cheung CY-I, Ikram MK, Sabanayagam C, Wong TY: Retinal microvasculature as a model to study the manifestations of hypertension. Hypertension 2012, 60(5):1094- 1103. Lesage S, Mosley T, Wong T, Szklo M, Knopman D, Catellier DJ, Cole S, Klein R, Coresh J, Coker L: Retinal microvascular abnormalities and cognitive decline: the ARIC 14- year follow-up study. Neurology 2009, 73(11):862-868. S13 13. Petzold A, Balcer LJ, Calabresi PA, Costello F, Frohman TC, Frohman EM, Martinez- Lapiscina EH, Green AJ, Kardon R, Outteryck O: Retinal layer segmentation in multiple sclerosis: a systematic review and meta-analysis. The Lancet Neurology 2017, 16(10):797-812. O'Bryhim BE, Apte RS, Kung N, Coble D, Van Stavern GP: Association of preclinical Alzheimer disease with optical coherence tomographic angiography findings. JAMA 	39	502	10	Duboic P. Villain N. Erisoni GP. Pabinovici GD. Sabbarh M. Canna S. Boianin A.
 bornbols 3, Eperoadin 3, retrimant W. Chincal diagnosis of AZhenner's disease. for an ecommendations of the International Working Group. <i>The Lancet Neurology</i> 2021, 20(6):484-496. Cheung CY-I, Ikram MK, Sabanayagam C, Wong TY: Retinal microvasculature as a model to study the manifestations of hypertension. <i>Hypertension</i> 2012, 60(5):1094- to study the manifestations of hypertension. <i>Hypertension</i> 2012, 60(5):1094- to study the manifestations of hypertension. <i>Hypertension</i> 2012, 60(5):1094- to study the manifestations of hypertension. <i>Hypertension</i> 2012, 60(5):1094- to study the manifestations of hypertension. <i>Hypertension</i> 2012, 60(5):1094- to study the manifestations of hypertension. <i>Hypertension</i> 2012, 60(5):1094- to study the manifestations of hypertension. <i>Hypertension</i> 2012, 60(5):1094- to study the manifestations of hypertension. <i>Hypertension</i> 2012, 60(5):1094- to study the manifestations of hypertension. <i>Hypertension</i> 2012, 60(5):1094- to study the manifestations of hypertension. <i>Hypertension</i> 2012, 60(5):1094- to study the manifestations of hypertension. <i>Hypertension</i> 2012, 60(5):1094- to study the manifestations of hypertension. <i>Hypertension</i> 2012, 60(5):1094- to study the manifestations of hypertension. <i>Hypertension</i> 2012, 60(5):1094- to study the manifestations of hypertension. <i>Hypertension</i> 2012, 60(5):1094- to study the manifestations of hypertension. <i>Hypertension</i> 2012, 60(5):1094- to study the manifestations of hypertension. <i>Hypertension</i> 2012, 60(5):1094- to study the manifestations of hypertension. <i>Hypertension</i> 2012, 60(5):1094- to study the manifestations of hypertension. <i>Hypertension</i> 2012, 60(5):1094- to ker L: Retinal microvascular abnormalities and cognitive decline: the ARIC 14- te study the manifestation of hypertension in multiple sclerosis: a sys	40	503	10.	Pombois S. Englbaum S. Toichmann M: Clinical diagnosis of Alzhaimar's dicease:
 Fectominendations of the international working Group. <i>The Lancet Neurology</i> 2021, 20(6):484-496. 507 11. Cheung CY-I, Ikram MK, Sabanayagam C, Wong TY: Retinal microvasculature as a model to study the manifestations of hypertension. <i>Hypertension</i> 2012, 60(5):1094- 1103. 510 12. Lesage S, Mosley T, Wong T, Szklo M, Knopman D, Catellier DJ, Cole S, Klein R, Coresh J, Coker L: Retinal microvascular abnormalities and cognitive decline: the ARIC 14- year follow-up study. <i>Neurology</i> 2009, 73(11):862-868. 513 13. Petzold A, Balcer LJ, Calabresi PA, Costello F, Frohman TC, Frohman EM, Martinez- Lapiscina EH, Green AJ, Kardon R, Outteryck O: Retinal layer segmentation in multiple sclerosis: a systematic review and meta-analysis. <i>The Lancet Neurology</i> 2017, 16(10):797-812. O'Bryhim BE, Apte RS, Kung N, Coble D, Van Stavern GP: Association of preclinical Alzheimer disease with optical coherence tomographic angiography findings. <i>JAMA</i> 	41 42	504		bombols 5, Eperbaum 5, Telchmann W. Chinical diagnosis of Alzheimer's disease.
 20(6).464-496. 507 11. Cheung CY-I, Ikram MK, Sabanayagam C, Wong TY: Retinal microvasculature as a model to study the manifestations of hypertension. <i>Hypertension</i> 2012, 60(5):1094- 1103. 510 12. Lesage S, Mosley T, Wong T, Szklo M, Knopman D, Catellier DJ, Cole S, Klein R, Coresh J, Coker L: Retinal microvascular abnormalities and cognitive decline: the ARIC 14- year follow-up study. <i>Neurology</i> 2009, 73(11):862-868. 513 13. Petzold A, Balcer LJ, Calabresi PA, Costello F, Frohman TC, Frohman EM, Martinez- Lapiscina EH, Green AJ, Kardon R, Outteryck O: Retinal layer segmentation in multiple sclerosis: a systematic review and meta-analysis. <i>The Lancet Neurology</i> 2017, 16(10):797-812. 517 14. O'Bryhim BE, Apte RS, Kung N, Coble D, Van Stavern GP: Association of preclinical Alzheimer disease with optical coherence tomographic angiography findings. <i>JAMA</i> 	43	505		
 45 507 11. Cheung Cr-1, Ikram MK, Sabahayagam C, Wong TY. Retinal microvasculature as a 46 508 model to study the manifestations of hypertension. <i>Hypertension</i> 2012, 60(5):1094- 47 509 1103. 48 510 12. Lesage S, Mosley T, Wong T, Szklo M, Knopman D, Catellier DJ, Cole S, Klein R, Coresh 49 511 J, Coker L: Retinal microvascular abnormalities and cognitive decline: the ARIC 14- 49 512 year follow-up study. <i>Neurology</i> 2009, 73(11):862-868. 52 513 13. Petzold A, Balcer LJ, Calabresi PA, Costello F, Frohman TC, Frohman EM, Martinez- 53 514 Lapiscina EH, Green AJ, Kardon R, Outteryck O: Retinal layer segmentation in 54 515 multiple sclerosis: a systematic review and meta-analysis. <i>The Lancet Neurology</i> 2017, 16(10):797-812. 57 517 14. O'Bryhim BE, Apte RS, Kung N, Coble D, Van Stavern GP: Association of preclinical Alzheimer disease with optical coherence tomographic angiography findings. <i>JAMA</i> 	44	500	11	20(0).464-490. Choung CV L Ikram MK, Sahanayagam C, Wang TV: Patinal miningyagaulature as a
 model to study the mannestations of hypertension. <i>Hypertension</i> 2012, 60(5):1094- 509 510 511 512 513 513 514 515 515 516 516 517 518 518 510 510 510 511 511 512 512 513 514 515 516 517 517 518 518 518 510 510 510 510 511 511 511 512 512 513 514 515 516 517 517 518 518 510 510 510 510 510 511 511 512 512 512 514 515 515 516 517 517 518 518 518 518 510 510 510 510 511 511 511 512 512 514 515 514 515 515 516 517 517 518 518 518 518 510 510 510 510 510 510 510 511 511 512 512 512 514 515 515 515 516 517 517 518 518 518 518 518 510 510 510 511 512 512 512 514 515 515 515 516 517 518 518 518 518 518 518 518 510 510 510 511 511 512 512 512 514 515 515 515 516 516 517 518 518 518	45	507	11.	medal to study the manifestations of hypertension (lynertension 2012, CO (E))1004
 509 510 52 513 53 54 515 516 517 514 515 516 517 517 518 510 510 511 512 513 514 515 516 517 517 518 51103 51103<!--</td--><td>46</td><td>500</td><td></td><td>1102</td>	46	500		1102
 J. Coker L: Retinal microvascular abnormalities and cognitive decline: the ARIC 14- J. Coker L: Retinal microvascular abnormalities and cognitive decline: the ARIC 14- year follow-up study. Neurology 2009, 73(11):862-868. Petzold A, Balcer LJ, Calabresi PA, Costello F, Frohman TC, Frohman EM, Martinez- Lapiscina EH, Green AJ, Kardon R, Outteryck O: Retinal layer segmentation in multiple sclerosis: a systematic review and meta-analysis. The Lancet Neurology 2017, 16(10):797-812. O'Bryhim BE, Apte RS, Kung N, Coble D, Van Stavern GP: Association of preclinical Alzheimer disease with optical coherence tomographic angiography findings. JAMA 	47 48	510	10	1103.
50511J, Coker L: Retinal microvascular abnormalities and cognitive decline: the ARIC 14-50512year follow-up study. Neurology 2009, 73(11):862-868.5251313.Petzold A, Balcer LJ, Calabresi PA, Costello F, Frohman TC, Frohman EM, Martinez-53514Lapiscina EH, Green AJ, Kardon R, Outteryck O: Retinal layer segmentation in54515multiple sclerosis: a systematic review and meta-analysis. The Lancet Neurology555162017, 16(10):797-812.5751714.O'Bryhim BE, Apte RS, Kung N, Coble D, Van Stavern GP: Association of preclinical58518Alzheimer disease with optical coherence tomographic angiography findings. JAMA	49	510	12.	Lesage S, Mosley T, Wong T, Szkio M, Knopman D, Catellier DJ, Cole S, Klein R, Coresn
 512 year follow-up study. Neurology 2009, 73(11):862-868. 52 513 13. Petzold A, Balcer LJ, Calabresi PA, Costello F, Frohman TC, Frohman EM, Martinez- 53 514 Lapiscina EH, Green AJ, Kardon R, Outteryck O: Retinal layer segmentation in 54 515 multiple sclerosis: a systematic review and meta-analysis. The Lancet Neurology 55 516 2017, 16(10):797-812. 57 517 14. O'Bryhim BE, Apte RS, Kung N, Coble D, Van Stavern GP: Association of preclinical 58 518 Alzheimer disease with optical coherence tomographic angiography findings. JAMA 	50	511		J, Coker L: Retinal microvascular abnormalities and cognitive decline: the ARIC 14-
 513 13. Petzold A, Balcer LJ, Calabresi PA, Costello F, Frohman TC, Frohman EM, Martinez- 514 Lapiscina EH, Green AJ, Kardon R, Outteryck O: Retinal layer segmentation in 515 multiple sclerosis: a systematic review and meta-analysis. <i>The Lancet Neurology</i> 516 2017, 16(10):797-812. 517 14. O'Bryhim BE, Apte RS, Kung N, Coble D, Van Stavern GP: Association of preclinical 58 518 Alzheimer disease with optical coherence tomographic angiography findings. <i>JAMA</i> 	51	512	10	year follow-up study. <i>Neurology</i> 2009, 73 (11):862-868.
 53 514 Lapiscina EH, Green AJ, Kardon R, Outteryck O: Retinal layer segmentation in 54 515 multiple sclerosis: a systematic review and meta-analysis. The Lancet Neurology 55 516 2017, 16(10):797-812. 57 517 14. O'Bryhim BE, Apte RS, Kung N, Coble D, Van Stavern GP: Association of preclinical 58 518 Alzheimer disease with optical coherence tomographic angiography findings. JAMA 	52	513	13.	Petzold A, Balcer LJ, Calabresi PA, Costello F, Frohman TC, Frohman EM, Martinez-
515multiple sclerosis: a systematic review and meta-analysis. The Lancet Neurology555162017, 16(10):797-812.5751714.O'Bryhim BE, Apte RS, Kung N, Coble D, Van Stavern GP: Association of preclinical58518Alzheimer disease with optical coherence tomographic angiography findings. JAMA	53 54	514		Lapiscina EH, Green AJ, Kardon R, Outteryck O: Retinal layer segmentation in
565162017, 16(10):797-812.5751714.O'Bryhim BE, Apte RS, Kung N, Coble D, Van Stavern GP: Association of preclinical58518Alzheimer disease with optical coherence tomographic angiography findings. JAMA59510510	55	515		multiple sclerosis: a systematic review and meta-analysis. The Lancet Neurology
 517 14. O'Bryhim BE, Apte RS, Kung N, Coble D, Van Stavern GP: Association of preclinical 518 Alzheimer disease with optical coherence tomographic angiography findings. JAMA 59 510 14. O'Bryhim BE, Apte RS, Kung N, Coble D, Van Stavern GP: Association of preclinical 	56	516		2017, 16 (10):797-812.
58 518 Alzheimer disease with optical coherence tomographic angiography findings. JAMA	57	517	14.	O'Bryhim BE, Apte RS, Kung N, Coble D, Van Stavern GP: Association of preclinical
	58	518		Alzheimer disease with optical coherence tomographic angiography findings. JAMA
⁵⁹ 519 ophthalmology 2018, 136 (11):1242-1248.	59 60	519		ophthalmology 2018, 136 (11):1242-1248.

1			
2			
5 4	520	15.	Mutlu U, Colijn JM, Ikram MA, Bonnemaijer PW, Licher S, Wolters FJ, Tiemeier H,
5	521		Koudstaal PJ, Klaver CC, Ikram MK: Association of retinal neurodegeneration on
6	522		optical coherence tomography with dementia: a population-based study. JAMA
7	523		neurology 2018, 75 (10):1256-1263.
8	524	16.	Masuzzo A, Dinet V, Cavanagh C, Mascarelli F, Krantic S: Amyloidosis in retinal
9	525		neurodegenerative diseases. Frontiers in Neurology 2016, 7:127.
10 11	526	17.	Reitz C, Brayne C, Mayeux R: Epidemiology of Alzheimer disease. Nature Reviews
12	527		Neurology 2011. 7(3):137-152.
13	528	18.	Lambert J-C. Ibrahim-Verbaas CA. Harold D. Nai AC. Sims R. Bellenguez C. Jun G.
14	529	-	DeStefano AL, Bis JC, Beecham GW: Meta-analysis of 74.046 individuals identifies
15	530		11 new suscentibility loci for Alzheimer's disease Nature genetics 2013
16	531		45 (12):1452-1458
17 18	532	10	Norton S Matthews EE Barnes DE Vaffe K Bravne C: Potential for primary
19	522	15.	novention of Alzheimer's diseases on analysis of nonulation based data. The
20	555		prevention of Alzheimer's disease. an analysis of population-based data. The
21	534	20	Luncer Neurology 2014, 13(8):788-794.
22	555	20.	Larsson SC, Traylor IVI, Malik R, Dichgans IVI, Burgess S, Markus HS: Modifiable
23	536		pathways in Alzheimer's disease: Mendelian randomisation analysis. <i>bmj</i> 2017,
24 25	537	•	359.
26	538	21.	Bowen M, Zutshi H, Cordiner M, Crutch S, Shakespeare T: Qualitative, exploratory
27	539		pilot study to investigate how people living with posterior cortical atrophy, their
28	540		carers and clinicians experience tests used to assess vision. BMJ open 2019,
29	541		9 (3):e020905.
30	542	22.	Chua SYL, Thomas D, Allen N, Lotery A, Desai P, Patel P, Muthy Z, Sudlow C, Peto T,
31 32	543		Khaw PT: Cohort profile: design and methods in the eye and vision consortium of
33	544		UK Biobank . <i>BMJ open</i> 2019, 9 (2):e025077.
34	545	23.	Littlejohns TJ, Sudlow C, Allen NE, Collins R: UK Biobank: opportunities for
35	546		cardiovascular research. European heart journal 2019, 40(14):1158-1166.
36	547	24.	Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, Motyer A, Vukcevic D,
37	548		Delaneau O, O'Connell J: The UK Biobank resource with deep phenotyping and
20 39	549		genomic data. Nature 2018, 562(7726):203-209.
40	550	25.	Littlejohns TJ, Holliday J, Gibson LM, Garratt S, Oesingmann N, Alfaro-Almagro F, Bell
41	551		JD. Boultwood C. Collins R. Conrov MC: The UK Biobank imaging enhancement of
42	552		100.000 participants: rationale, data collection, management and future directions.
43	553		Nature communications 2020 11 (1):1-12
44 45	554	26	Huber B. Woitkowski M. Eujimoto IG. Jiang I. Cable A: Three-dimensional and C-
45	555	20.	mode OCT imaging with a compact frequency swent laser source at 1300 nm
47	556		Ontice events 2005 $12(26)\cdot10523-10538$
48	557	27	Keane DA Gressi CM Fester DI Vang O Beisman CA Chan K Dete T Thomas D Datel
49	550	27.	DL Consortium UDEV() Ontical scherence temperanhy in the UK higherk study
50	550		PJ, Consortium OBEV. Optical concretence tomography in the OK biobank study-
51 52	559		rapid automated analysis of retinal thickness for large population-based studies.
53	560	•	<i>PLos One</i> 2016, 11 (10):e0164095.
54	561	28.	Cruz-Herranz A, Balk LJ, Oberwahrenbrock T, Saidha S, Martinez-Lapiscina EH,
55	562		Lagreze WA, Schuman JS, Villoslada P, Calabresi P, Balcer L: The APOSTEL
56	563		recommendations for reporting quantitative optical coherence tomography
57	564		studies. Neurology 2016, 86(24):2303-2309.
58 50	565	29.	Welikala R, Fraz M, Habib M, Daniel-Tong S, Yates M, Foster P, Whincup P, Rudnicka
60	566		AR, Owen CG, Strachan D: Automated quantification of retinal vessel morphometry
-			

1			
2			
5 4	567		in the UK Biobank Cohort. In: 2017 Seventh International Conference on Image
5	568		Processing Theory, Tools and Applications (IPTA): 2017: IEEE; 2017: 1-6.
6	569	30.	Welikala R, Fraz M, Foster P, Whincup P, Rudnicka AR, Owen CG, Strachan D, Barman
7	570		SA: Automated retinal image quality assessment on the UK Biobank dataset for
8	571		epidemiological studies. Computers in biology and medicine 2016, 71:67-76.
9	572	31.	Fraz MM, Welikala R, Rudnicka AR, Owen CG, Strachan D, Barman SA: QUARTZ:
10	573		Quantitative Analysis of Retinal Vessel Topology and size-an automated system for
12	574		quantification of retinal vessels morphology. Expert Systems with Applications 2015,
13	575		42 (20):7221-7234.
14	576	32.	Welikala R. Foster P. Whincup P. Rudnicka AR. Owen CG. Strachan D. Barman S:
15	577	01	Automated arteriole and venule classification using deep learning for retinal
16	578		images from the IIK Biobank cohort Computers in biology and medicine 2017
17 18	570		
10	590	22	Tann BL Owen CC Parman SA Welikala BA Fester DL Whinsun DH Strashan DD
20	501	55.	Pudpicka AD, LIK Dichark Eva VC: Detinal vessular tertuseity and dismeter
21	501		Ruunicka AR, UK Biobank Eye VC. Retinal vascular tortuosity and diameter
22	582		associations with adiposity and components of body composition. Obesity 2020,
23	583	~ .	28 (9):1750-1760.
24 25	584	34.	Tapp RJ, Owen CG, Barman SA, Welikala RA, Foster PJ, Whincup PH, Strachan DP,
26	585		Rudnicka AR: Associations of Retinal Microvascular Diameters and Tortuosity With
27	586		Blood Pressure and Arterial Stiffness: United Kingdom Biobank. Hypertension 2019,
28	587		74 (6):1383-1390.
29	588	35.	Rudnicka AR, Welikala R, Barman S, Foster PJ, Luben R, Hayat S, Khaw KT, Whincup P,
30	589		Strachan D, Owen CG: Artificial intelligence-enabled retinal vasculometry for
31 32	590		prediction of circulatory mortality, myocardial infarction and stroke. Br J
33	591		Ophthalmol 2022.
34	592	36.	McGrory S, Taylor AM, Pellegrini E, Ballerini L, Kirin M, Doubal FN, Wardlaw JM,
35	593		Doney AS, Dhillon B, Starr JM: Towards standardization of quantitative retinal
36	594		vascular parameters: comparison of SIVA and VAMPIRE measurements in the
37	595		Lothian Birth Cohort 1936. Translational vision science & technology 2018, 7(2):12-
20 29	596		12.
40	597	37.	Perez-Rovira A, MacGillivray T, Trucco E, Chin K, Zutis K, Lupascu C, Tegolo D,
41	598		Giachetti A. Wilson PJ. Donev A: VAMPIRE: vessel assessment and measurement
42	599		platform for images of the REtina. In: 2011 Annual International Conference of the
43	600		IFFE Engineering in Medicine and Biology Society: 2011: IFFE: 2011: 3391-3394
44 45	601	38	Remond P. Antel F. Cunnac P. Labarere I. Palombi K. Penin I-I. Pollet-Villard F. Hogg
45 46	602	50.	S. Wang R. MacGillivray T: Retinal vessel phenotype in patients with poparteritic
47	603		anterior ischemic ontic neuronathy. American journal of onhthalmology 2019
48	604		
49	605	20	Azanan MS Chandrasokaran S Bosli ES Chua II. Oh I. Chin TE Van TV Bajagonal B
50	605	59.	Azarlari MS, Chandrasekarari S, Rosires, Chua LL, On L, Chini TF, Yapiri, Rajagopark,
51	606		Rajasuriar R, MacGillivray T: Retinal Vessel Analysis as a Novel Screening Tool to
53	00/		Conditioned and a contraction of a statistic framework of the statistic fra
54	608		Cargiovascular Disease . Journal of pediatric hematology/oncology 2020, 42 (6):e394-
55	609		
56	610	40.	Ko F, Muthy ZA, Gallacher J, Sudlow C, Rees G, Yang Q, Keane PA, Petzold A, Khaw
57	611		PT, Reisman C: Association of retinal nerve fiber layer thinning with current and
20 59	612		future cognitive decline: a study using optical coherence tomography. JAMA
60	613		neurology 2018, 75 (10):1198-1205.

2			
3 ⊿	614	41.	Cornelis MC, Wang Y, Holland T, Agarwal P, Weintraub S, Morris MC: Age and
4 5	615		cognitive decline in the UK Biobank. PloS one 2019, 14(3):e0213948.
6	616	42.	Chua SY, Lascaratos G, Atan D, Zhang B, Reisman C, Khaw PT, Smith SM, Matthews
7	617		PM, Petzold A, Strouthidis NG: Relationships between retinal layer thickness and
8	618		brain volumes in the UK Biobank cohort. European Journal of Neurology 2021,
9	619		28 (5):1490-1498.
10	620	43.	Lvall DM. Cullen B. Allerhand M. Smith DJ. Mackay D. Evans J. Anderson J. Fawns-
12	621		Ritchie C. McIntosh AM. Deary IJ: Cognitive test scores in UK Biobank: data
13	622		reduction in 480.416 participants and longitudinal stability in 20.346 participants.
14	623		PloS one 2016, 11 (4):e0154222
15	624	44	Riley RD Snell KL Ensor L Burke DL Harrell Ir FE Moons KG Collins GS: Minimum
16	625		sample size for developing a multivariable prediction model: PART II-binary and
1/ 18	625		time_to_event outcomes. Statistics in medicine 2010, 38(7):1276-1206
19	627	46	Determann Bocha E. Lyall DM. Gray SP. Estohan Corneia I. Quinn TI. Ho EK. Doll ID.
20	629	45.	Colic Marsles C. Accesiotions between physical freiby and demontic insidences of
21	620		Cells-Worales C. Associations between physical fraity and dementia incidence: a
22	029		prospective study from OK Biobank. The Lancet Healthy Longevity 2020, 1(2):e58-
23	630	4.6	
24 25	631	46.	Standard B: Test charts for determining distance visual acuity: BS 42/4-1968. British
26	632		Standards Institute 1968.
27	633	47.	Tikkanen E, Gustafsson S, Ingelsson E: Associations of fitness, physical activity,
28	634		strength, and genetic risk with cardiovascular disease: longitudinal analyses in the
29	635		UK Biobank Study. Circulation 2018, 137 (24):2583-2591.
30 31	636	48.	Perez-Cornago A, Key TJ, Allen NE, Fensom GK, Bradbury KE, Martin RM, Travis RC:
32	637		Prospective investigation of risk factors for prostate cancer in the UK Biobank
33	638		cohort study . <i>British journal of cancer</i> 2017, 117 (10):1562-1571.
34	639	49.	Allen NE, Sudlow C, Peakman T, Collins R, biobank U: UK biobank data: come and get
35	640		it. In., vol. 6: American Association for the Advancement of Science; 2014: 224ed224-
36 27	641		224ed224.
38	642	50.	Ntuk UE, Gill JM, Mackay DF, Sattar N, Pell JP: Ethnic-specific obesity cutoffs for
39	643		diabetes risk: cross-sectional study of 490,288 UK biobank participants. Diabetes
40	644		care 2014, 37 (9):2500-2507.
41	645	51.	Millett ER, Peters SA, Woodward M: Sex differences in risk factors for myocardial
42	646		infarction: cohort study of UK Biobank participants. bmj 2018, 363.
45 44	647	52.	Gallacher KI, McQueenie R, Nicholl B, Jani BD, Lee D, Mair FS: Risk factors and
45	648		mortality associated with multimorbidity in people with stroke or transient
46	649		ischaemic attack: a study of 8,751 UK Biobank participants. Journal of comorbidity
47	650		2018, 8 (1):1-8.
48	651	53.	Ma H, Li X, Sun D, Zhou T, Ley SH, Gustat J, Heianza Y, Qi L: Association of habitual
49 50	652		glucosamine use with risk of cardiovascular disease: prospective study in UK
50	653		Biobank. <i>bmi</i> 2019. 365 .
52	654	54.	Gao L. Li P. Cui L. Wong PM. Johnson-Akeiu O. Lane I. Saxena R. Scheer F. Hu K: Sleep
53	655	0.11	disturbance and incident Alzheimer's disease: A UK Biobank study of 502,538
54	656		middle-aged to older participants: Biomarkers (non-neuroimaging): Alzheimer's
55 56	657		disease incidence, risk factors and hiomarkers Alzheimer's & Dementia 2020
50 57	658		
58	650	55	Veronese N. Vang I. Diccio I. Smith I. Firth I. Mary W. Giannelli G. Caruso M.G.
59	660	55.	Cisternino AM. Notarnicola M: Adherence to a healthy lifestyle and multiple
60	000		esternino Awi, Notarnicola wi. Adherence to a healthy mestyle and multiple

1			
2			
5 4	661		sclerosis: a case-control study from the UK Biobank. Nutritional neuroscience
5	662		2020:1-9.
6	663	56.	Petzold A, Chua SY, Khawaja AP, Keane PA, Khaw PT, Reisman C, Dhillon B,
7	664		Strouthidis NG, Foster PJ, Patel PJ: Retinal asymmetry in multiple sclerosis. Brain
8	665		2021 <i>,</i> 144 (1):224-235.
9	666	57.	Petzold A, Fraser CL, Abegg M, Alroughani R, Alshowaeir D, Alvarenga R, Andris C,
10	667		Asgari N, Barnett Y, Battistella R: Diagnosis and classification of optic neuritis. The
12	668		Lancet Neurology 2022.
13	669	58.	Cumberland PM, Rahi JS: Visual function, social position, and health and life
14	670		chances: the UK biobank study. JAMA ophthalmology 2016, 134 (9):959-966.
15	671	59.	Chan MP. Grossi CM. Khawaia AP. Yip JL. Khaw K-T. Patel PJ. Khaw PT. Morgan JE.
16 17	672		Vernon SA. Foster PJ: Associations with intraocular pressure in a large cohort:
18	673		results from the UK Biobank. Onhthalmology 2016. 123 (4):771-782.
19	674	60	Shah RI Guggenheim IA: Genome-wide association studies for corneal and
20	675	00.	refractive astigmatism in LIK Biobank demonstrate a shared role for myonia
21	676		suscentibility loci Human genetics 2018 137 (11):881-896
22	677	61	Wood A Guggenheim IA: Refractive error has minimal influence on the risk of age-
25 24	678	01.	rolated macular degeneration: a Mondelian randomization study. American journal
25	670		of onbthalmology 2010 206 :97.02
26	690	62	Of Ophthalmology 2019, 200.87-95.
27	601	02.	Charghall LL, Charghalthani Di Multitrait analysis of clausana identifies now risk lasi
28	692		warshall h, Gharankhall P. Wutttrait analysis of glaucoma identifies new fisk loci
29 30	082		and enables polygenic prediction of disease susceptibility and progression. <i>Nature</i>
31	083	62	genetics 2020, 52 (2):160-166.
32	684	63.	de Jong FJ, Schrijvers EW, Ikram WK, Koudstaal PJ, de Jong PT, Hofman A, Vingerling
33	685		JR, Breteler MM: Retinal Vascular caliber and risk of dementia: the Rotterdam
34 25	686	~ ~	study. Neurology 2011, 76(9):816-821.
35 36	68/	64.	Mutiu U, Cremers LG, De Groot M, Hofman A, Niessen WJ, Van Der Lugt A, Klaver CC,
37	688		Ikram MA, Vernooij MW, Ikram MK: Retinal microvasculature and white matter
38	689		microstructure: the Rotterdam Study. Neurology 2016, 87(10):1003-1010.
39	690	65.	Mutlu U, Bonnemaijer PW, Ikram MA, Colijn JM, Cremers LG, Buitendijk GH,
40	691		Vingerling JR, Niessen WJ, Vernooij MW, Klaver CC: Retinal neurodegeneration and
41 42	692		brain MRI markers: the Rotterdam Study. <i>Neurobiology of aging</i> 2017, 60 :183-191.
43	693	66.	Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, Downey P, Elliott P, Green
44	694		J, Landray M: UK biobank: an open access resource for identifying the causes of a
45	695		wide range of complex diseases of middle and old age. PLoS medicine 2015,
46	696		12 (3):e1001779.
47 49	697	67.	Biobank U: UK Biobank ethics and governance framework. In.; 2015.
40 49	698		
50			
51			
52			
53			
54 55			
56			
57			
58			
59			
60			

BMJ Open

Cohort Profile: Rationale and Methods of UK Biobank Repeat Imaging Study Eye Measures to Study Dementia

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-069258.R1
Article Type:	Cohort profile
Date Submitted by the Author:	17-May-2023
Complete List of Authors:	Foster, Paul; NIHR Moorfields Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust Atan, Denize; University of Bristol Khawaja, Anthony; 1. NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust & UCL Institute of Ophthalmology, London, UK Lotery, Andrew; University of Southampton MacGillivray, Tom; Queens Medical Research Institution, Clinical Research Imaging Centre Owen, Christopher; St George's, University London, Population Health Research Institute Patel, Praveen; Moorfields Eye Hospital NHS Foundation Trust, NIHR Biomedical Research Centre Petzold, Axel; Queen Square Institute of Neurology, UCL, Department of Molecular Neurosciences, Moorfields Eye Hospital and The National Hospital for Neurology and Neurosurgery; Amsterdam UMC, Departments of Neurology, Ophthalmology and Expertise Center for Neuro-ophthalmology Rudnicka, Alicja; SGUL University of London Sun, Zihan; University College London, Institute of Ophthalmology Sheard, Simon; UK Biobank Allen, Naomi; University of Oxford, Nuffield Department of Population Health; UK Biobank
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Ophthalmology
Keywords:	OPHTHALMOLOGY, EPIDEMIOLOGY, Dementia < NEUROLOGY

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1		
2		
3	1	Cohort Profile: Rationale and Methods of UK Biobank Reneat Imaging Study Eve
4	1	Conore i rome. Radonale and Freehous of Ore Diobank Repeat imaging Study Lye
5	2	
6	2	Measures to Study Dementia
7		
8	3	
9	4	
10	5	Authors:
11	6	Paul L Foster ¹ Denize Atan ^{2,3} Anthony P Khawaja ¹ Andrew I Lotery ⁴ Tom MacGillivray ⁵
12	7	Christonher G Owen ⁶ Prayeen I Patel ¹ Avel Petzold ^{7,8} Alicia R Rudnicka ⁶ Zihan Sun ¹ Simo
13	8	Sheard Naomi Allen 9.10 On hehalf of UK Riobank and UK Riobank Eva and Vision Consortium
14	0	Sheard, Naohii Ahen , On benuij of OK biobank and OK biobank Eye and vision Consolitat
15	10	
16	10	
17	11	
18	12	Affiliations:
10	13	1. NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and U
20	14	Institute of Ophthalmology, London, UK
20	15	2. Bristol Eye Hospital, University Hospitals Bristol & Weston NHS Foundation Trust, Bristol,
21	16	3. Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
22	17	4. Clinical Neurosciences Group, Clinical and Experimental Sciences, Faculty of Medicine,
25	18	University of Southampton, Southampton, UK
24	19	5 Centre for Clinical Brain Sciences University of Edinburgh Edinburgh UK
25	$\frac{1}{20}$	6 Population Health Research Institute St George's University of London London LIK
26	20	7. Oueen Square Institute of Neurology LICL Department of Molecular Neurosciences, Moorfi
27	21	7. Queen Square institute of Neurology, OCL, Department of Worceura Neurosciences, Woorr
28	22	Eye Hospital and The National Hospital for Neurology and Neurosurgery, London, UK
29	23	8. Departments of Neurology, Ophthalmology and Expertise Center for Neuro-ophthalmology,
30	24	Amsterdam UMC, Amsterdam, Netherlands
31	25	9. UK Biobank, Stockport, UK
32	26	10. Nuffield Department of Population Health, University of Oxford, Oxford, UK
33	27	
34	28	
35	29	
36	30	Correspondence to:
37	31	Drof Daul I Foster
38	22	Addragg: UCL Institute of Onbthalmalagy 11 42 Dath Street London EC1V OEL
39	$\frac{32}{22}$	Address. OCL institute of Ophthalmology, 11-45 Bath Sheet, London ECTV 9EL
40	33	Email address : p.ioster@uci.ac.uk
41	34	
42		
43		
44		
45		
46		
47		
48		
49		
50		
51		
52		
53		
54		
55		
56		
57		
58		
59		
60		

ul J Foster¹, Denize Atan^{2,3}, Anthony P. Khawaja¹, Andrew J. Lotery⁴, Tom MacGillivray⁵, ristopher G Owen⁶, Praveen J. Patel¹, Axel Petzold^{7,8}, Alicja R. Rudnicka⁶, Zihan Sun¹, Simon eard⁹, Naomi Allen^{9,10}, On behalf of UK Biobank and UK Biobank Eye and Vision Consortium

filiations:

- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL titute of Ophthalmology, London, UK
- Bristol Eye Hospital, University Hospitals Bristol & Weston NHS Foundation Trust, Bristol, UK
- Franslational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Clinical Neurosciences Group, Clinical and Experimental Sciences, Faculty of Medicine,
- iversity of Southampton, Southampton, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- Population Health Research Institute, St George's, University of London, London, UK
 - Queen Square Institute of Neurology, UCL, Department of Molecular Neurosciences, Moorfields
 - e Hospital and The National Hospital for Neurology and Neurosurgery, London, UK
 - Departments of Neurology, Ophthalmology and Expertise Center for Neuro-ophthalmology,
 - nsterdam UMC, Amsterdam, Netherlands
- JK Biobank, Stockport, UK
 - Nuffield Department of Population Health, University of Oxford, Oxford, UK

rrespondence to:

- f Paul J Foster
- dress: UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL
- ail address : p.foster@ucl.ac.uk

BMJ Open

35	ABSTRACT
36	Purpose: The retina provides biomarkers of neuronal and vascular health that offer
37	promising insights into cognitive ageing, mild cognitive impairment (MCI) and dementia.
38	This article described the rationale and methodology of eye and vision assessments with the
39	aim of supporting the study of dementia in the UK Biobank Repeat Imaging study.
40	Participants: UK Biobank is a large-scale, multicentre, prospective cohort containing in-
41	depth genetic, lifestyle, environmental and health information from half a million participants
42	aged 40-69 enrolled in 2006-2010 across the UK. A subset (up to 60,000 participants) of the
43	cohort will be invited to the UK Biobank Repeat Imaging Study to collect repeated brain,
44	cardiac and abdominal magnetic resonance imaging (MRI) scans, whole-body DEXA (Dual-
45	energy x-ray absorptiometry), carotid ultrasound, as well as retinal optical coherence
46	tomography (OCT) and colour fundus photographs.
47	Findings to date: UK Biobank has helped make significant advances in understanding risk
48	factors for many common diseases, including for dementia and cognitive decline. Ophthalmic
49	genetic and epidemiology studies have also benefited from the unparalleled combination of
50	very large numbers of participants, deep phenotyping, and longitudinal follow-up of the
51	cohort, with comprehensive health data linkage to disease outcomes. In addition, we have
52	used UK Biobank data to describe the relationship between retinal structures, cognitive
53	function and brain MRI-derived phenotypes.
54	Future plans: The collection of eye-related data (e.g., OCT), as part of the UK Biobank
55	Repeat Imaging study, will take place in 2022-2028. The depth and breadth and longitudinal
56	nature of this dataset, coupled with its open-access policy, will create a major new resource
57	for dementia diagnostic discovery and to better understand its association with co-morbid
58	diseases. Additionally, the broad and diverse data available in this study will support research

60 STRENGTHS AND LIMITATIONS OF THIS STUDY

61 Strengths

62	•	World's largest prospective, longitudinal multi-modal imaging cohort with
63		unprecedented power for analysis of determinants of a wide range of health outcomes.
64	•	Exceptional added value from the size, depth, and quality of the cross-sectional and
65		longitudinal MRI data on the eye, brain, body and imaging of heart, carotids, together
66		with linkage to electronic health records, through which overt dementia and
67		Alzheimer's disease can be identified.
68	•	Optimal timing to study cognitive impairment (age distribution: $\sim 80\% \ge 60$ years and
69		$\sim 65\% \ge 65$ years)
70	Limita	ations
71	0	Consistency of measurements between imaging devices over time, particularly with
72		use of different OCT devices.
73	0	Healthier participants compared to the general population.
74		

BMJ Open

75 INTRODUCTION

Dementia refers to a heterogeneous group of neurodegenerative disorders affecting 46.8 million people globally.[1-3] Alzheimer's disease (AD) is the commonest, affecting 60-80% of people with dementia. [4, 5] Usually, a long prodromal period of up to 20 years of progressive cerebral atrophy is detectable on magnetic resonance imaging (MRI) scans and using body fluid biomarkers for neurodegeneration before AD is diagnosed.[2] These observations lead to a biological, rather than a clinical definition of AD.[6] To date, the majority of candidate drugs for slowing cognitive decline in AD or other dementias have failed in clinical trials[7], probably because they are used too late in the natural history when irreversible, advanced degeneration has already set in.[8, 9] Global rollout of screening and disease progression monitoring strategies for AD based on MRI scans is precluded by their high cost and frequently limited availability. Body fluid biomarkers might provide ways of stratifying or diagnosing dementias but will remain complimentary to structural imaging biomarkers because of their lack of diagnostic specificity and are not recommended as a screening test.[10]

The eye provides insights into the risk or presence of some major systemic diseases, including hypertension and diabetes, as well as changes associated with cognitive ageing and neurodegeneration.[11-13] As an alternative to MRI or plasma biomarkers, optical coherence tomography (OCT) offers a rapid, low-cost and non-invasive method for obtaining high-resolution $(3-5\mu m)$ images of the retina at the back of the eye – the only part of the central nervous system (CNS) that can be visualized directly. The laminated structure of the retina enables the direct monitoring of neurodegeneration at a near cellular level in vivo at a resolution that is more detailed than for any other non-invasive, in vivo imaging modalities. There is strong evidence that quantitative OCT measurements are associated with concurrent cognitive impairment and future cognitive decline and dementia.[14, 15] Additionally, OCT

methods may directly monitor related vascular pathology: amyloid microangiopathy affects retinal and choroidal vasculature, as well as that in the cerebrum with AD.[16] Thus, retinal OCT scans offer the means to identify individuals at high risk of developing AD, providing them with opportunities to change their lifestyles or enter drug trials to delay or avert the onset of dementia. OCT scans are also a sensitive way to monitor patients for neurotoxic side-effects of novel drug treatments. The ability to directly measure specific neuronal layers and microvascular characteristics in detail may provide a surrogate outcome marker for the CNS more generally and potentially enhance the power to detect disease much earlier than methods based on clinical history and genetic factors.

Several genetic (e.g. APOE), comorbid (e.g. diabetes, hypertension, depression, obesity), and lifestyle factors (e.g. low educational attainment and smoking) have been associated with increased AD risk.[17-19] However, observational epidemiological studies cannot distinguish cause from effect and are vulnerable to bias from reverse causation and confounders. The analyses by Norton and Larsson illustrate how different disease risk factors can co-exist and are often correlated, but they do not independently increase the risk of AD.[19, 20] It also highlights the importance of identifying causal risk factors for dementia in designing upstream public health policies and social policies to reduce disease risk, clinical trials for new AD drugs and basic science research to understand the underlying mechanisms of dementia development. The large size of the cohort and the associated healthcare, imaging and genetic data make UK Biobank uniquely valuable for disambiguation of associations from causal comorbidities both for patient stratification and for elucidation of underlying mechanisms.

122The research gaps, as mentioned earlier, motivated us to develop a major new123resource for dementia diagnostic discovery and to better understand the association with co-124morbid diseases by adding rapid, low-cost OCT to the anticipated UK Biobank Repeat

BMJ Open

Imaging study, alongside ancillary testing of autorefraction/keratometry and fragmented letter
test (FLT).[21] The objectives of this article are to describe (1) the process of test selection
(2) the methodology for eye and vision measures in the UK Biobank Repeat Imaging study;
(3) the baseline characteristics of the study population in this study.

129 COHORT DESCRIPTION

130 UK Biobank

UK Biobank is a large-scale biomedical database and research resource containing in-depth genetic and health information from over 500,000 participants aged 40-69 enrolled across the UK between 2006 and 2010. Detailed study protocols are available on the UK Biobank website (https://www.ukbiobank.ac.uk/). It has become the pre-eminent biomedical research platform for studying the aetiology of common diseases of later life. During the baseline assessment, extensive sociodemographic, lifestyle, and health-related information was collected through a touch screen questionnaire and oral interview, and a wide range of physical measurements was performed. [22, 23] Participants also provided biological samples for genotyping, haematological, biochemistry, metabolomics and proteomics assays for the full cohort.[24]

UK Biobank received approval from the National Information Governance Board for Health and Social Care and the National Health Service Northwest Centre for Research Ethics Committee (Ref: 11/NW/0382). UK Biobank is compliant with the previous Data Protection Act and the more recent General Data Protection Regulation (GDPR) implemented in 2018. For the GDPR, participants were contacted by email or post to explain how UK Biobank meets the requirements of the new regulations (https://www.ukbiobank.ac.uk/gdpr/). At the baseline visit, ophthalmic assessments were performed on a subset of participants between 2009-2010 at 6 of 22 UK Biobank assessment centres, including visual acuity, autorefraction, keratometry, intraocular pressure, corneal biomechanics, and retinal imaging

comprising disc/macular digital colour photographs and a 3D macular OCT. Over 110,000

2	
3 4	150
5 6	151
7 8	152
9 10 11	153
12 13 14	154
15 16	155
17 18 19	156
20 21	157
22 23	158
24 25 26	159
27 28	160
29 30	161
31 32 33	162
34 35	163
36 37	164
38 39 40	165
40 41 42	166
43 44	167
45 46 47	168
47 48 49	169
50 51	170
52 53	171
54 55 56	172
57 58	173
59 60	174

1

151 participants have completed the visual acuity, refractive error, and intraocular pressure 152 measurements; and ~67,000 participants underwent retinal imaging. Detailed information on 153 the baseline eye and vision measures has been published elsewhere [22]. 154 The Repeat Imaging Sub-study 155 In 2014, UK Biobank launched the world's largest multimodal imaging study, 156 intending to include baseline magnetic resonance imaging (MRI) of the brain, heart and 157 abdomen, whole-body DEXA (Dual-energy x-ray absorptiometry) and carotid Doppler 158 ultrasound on up to 100,000 participants. Detailed methods of the UK Biobank imaging 159 enhancement were published elsewhere.[25] Although imaging 100,000 participants is a 160 unique and powerful enhancement to the UKB resource, many valuable insights could only 161 be gained from observing the change in imaging phenotypes over time. Recognising the 162 importance of serial measurements, up to 60,000 of those in the imaging enhancement study 163 will be invited to undergo repeat multimodal imaging between 2019-2028. As part of the 164 repeat imaging study, data collection of the eye measures (e.g., OCT) is anticipated to take 165 place from 2022-2028. The specific study design is as follows: 166 All UK Biobank participants who have previously attended a baseline brain and body 167 imaging visit will be invited to attend a repeat imaging visit (the invitation will 168 specify the same imaging centre as their baseline imaging visit to minimize 169 measurement error caused by differences between scanners at different centres). 170 Appointment slots are planned in groups of 3 to minimize equipment downtime and to • 171 maximize participant throughput and data quality. 172 On arrival, those who accept will be asked to consent to the study, and each

173 participant will then undergo a pre-screening safety assessment.

• The 3 participants would then progress to the imaging modalities as follows:

Page 9 of 29

1

BMJ Open

2		
3 4	175	 Participant #1 => Brain MRI
5 6	176	\circ Participant #2 => Abdomen and heart MRI
7 8	177	\circ Participant #3 => DeXA, ultrasound and OCT
9 10 11	178	• Each imaging modality "group" takes approximately 40 minutes, after which the
12 13	179	participants will move to the next modality, then switch again after 40 minutes so that
14 15	180	each member of the group of 3 has visited all three imaging measurement stations
16 17 18	181	over a 2-hour period.
19 20	182	• The participants then all progress to the non-imaging parts of the visit where they will
21 22	183	complete questionnaires, have physical measures, and give biological samples, which
23 24 25	184	mirrors much of the initial (2006-2010) baseline visit.
25 26 27	185	• As one group of 3 participants exits the imaging part of the visit, the next group of 3
28 29	186	are ready to enter, thus ensuring that the imaging part of the visit is fully utilized.
30 31	187	• This process will repeat for five groups of 3 people (15 total) on 7 days per week at
32 33 34	188	each of UK Biobank's 4 dedicated imaging centres.
35 36	189	Study location
37 38		2
39 40	190	This multisite study will be run from four dedicated UK Biobank Imaging Centres
41 42	191	across the UK (Newcastle upon Tyne, Stockport, Reading and Bristol). These 4 centres help
43 44	192	ensure most participants are within a reasonable distance to attend a scanning visit. As far as
45 46	193	is reasonably practical, maintaining the same instruments and software/firmware across the
47 48 49	194	sites and all phases of the UK Biobank project will ensure consistency and comparability of
50 51	195	results from the start of the baseline imaging project to the end of the repeat imaging
52 53	196	program. UK Biobank built the following strategies to reduce variability across the different
54 55	197	sites:
56 57		
58 50		
59 60		

1 2

3 4	198	• The sites are each populated with the same equipment (same manufacturer, same
5 6	199	model, same software/firmware etc.) configured with the same protocols and the same
7 8	200	settings.
9 10 11	201	• MR scanner settings/performance across all four sites is monitored by UK Biobank's
12 13	202	full-time in-house MR physicist with continuous quality assurance processes to
14 15	203	identify and resolve quality issues that may arise.
16 17	204	• All staff are trained to standard operating procedures, and (in the case of the imaging
18 19 20	205	element) compliance/consistency is overseen by an in-house senior radiographer and
21 22	206	an in-house MR physicist. The non-imaging aspects are overseen by UK Biobank's
23 24	207	dedicated "Training and Monitoring" team.
25 26 27	208	• Systems are already in place to ensure appropriate levels of training for all operational
27 28 29	209	staff, monitored via Clinic Training Assessments/Training Matrices. These will be
30 31	210	extended to cover the OCT measures: appropriate training will be provided, training
32 33	211	assessments/matrices extended to cover these measures, and performance monitored.
34 35 26	212	• Imaging data are routinely made available to members of the project's expert working
36 37 38	213	group, which is made up of experts in each of the imaging modalities; this group
39 40	214	monitors the project progress periodically provides training interventions and
41 42	215	critically periodically/routinely provides an independent view of performance and
43 44	215	data output. A similar approach will be taken regarding the OCT measures with data
45 46 47	210	made evailable to the Eva Consortium members listed in this application for quality
47 48 49	217	made available to the Eye Consolition members listed in this application for quanty
50 51	218	control purposes.
52 53	219	Recruitment
54 55	220	The UK Biobank cohort includes a committed and engaged group of participants who
56 57 58	221	are regularly invited for follow up activities: the typical response rate to online surveys
59 60	222	is >50%, and there have been very few withdrawals from the study since recruitment

Page 11 of 29

1 2

BMJ Open

3 4	223	(<0.2%). Regular communications with the cohort (via newsletters, participant meetings,
5 6 7	224	study update meetings and the participant section of the UK Biobank website:
7 8 9	225	www.ukbiobank.ac.uk/explore-your-participation) help to maintain enthusiasm for and
10 11	226	engagement with the study. Direct telephone communication with individual participants
12 13	227	regarding new sub-studies or general participation questions via a dedicated "Participant
14 15 16	228	Contact Centre" (PCC) provides personalized information and reassurance.
16 17 18	229	This study will use the same invitation protocol as the UK Biobank imaging enhancement
19 20	230	study (2014-2023)[25]. The planned protocol for this repeat imaging study involves:
21 22	231	• E-mail/postal explanation of the study and invitation to book an appointment.
23 24 25	232	• A telephone call to book an appointment and perform safety pre-screening via
26 27	233	Participant Resource Centre (PRC).
28 29	234	• Assessment at the nearest of four imaging centres across the UK (Stockport,
30 31 32	235	Newcastle, Reading and Bristol) to minimize travel time and maximize participant
33 34	236	attendance.
35 36	237	At the start of the pandemic (lockdown in the UK in March 2020), 50,000 of the target
37 38 20	238	100,000 participants had been imaged. Participant questionnaires on completion of baseline
40 41	239	imaging visit indicate >90% would be happy to undertake a repeat imaging visit. Pilot studies
42 43	240	involving a few thousand participants have demonstrated ~60% acceptance rates, providing
44 45	241	confidence that ~60,000 could be recruited for this repeat imaging study.
46 47 48 49	242	Examination procedures
50 51	243	The whole-body imaging modalities have been extensively detailed elsewhere[25];
52 53	244	this article only describes the scope of eye and vision measurements in the Repeat Imaging
54 55 56	245	study. The Topcon Triton OCT platform is being used to obtain OCT images in this study.
57 58	246	The Triton platform uses ultra-highspeed swept-source (SS) OCT technology with a central
59 60	247	wavelength of 1050 microns that penetrates deeper than the retina, allowing visualization of

the choroid and the vasculature therein.[26] The platform also takes colour retinal fundus photographs immediately after the OCT scans, allowing measurement of the optic disc and retinal vessel metrics (including retinal vessel calibre and tortuosity). The Topcon Triton supports wide-angle 12 mm x 9 mm scans that include the optic disc and macula in a single scan.

Widefield SS-OCT enables quantitative measurements of several candidate biomarkers,
including but not limited to total macular retinal thickness, macular inner retinal sublayer
thicknesses, peripapillary retinal nerve fibre layer thickness, choroidal vascularity index,
retinal arteriolar and retinal venular calibres, retinal vascular fractal dimension, retinal
vascular tortuosity. Details of the candidate biomarkers are summarized in Table 1.

258 OCT Image Processing

Total retinal thickness and segmented values for retinal sublayer thicknesses for macula and optic nerve scans are generated by the current generation OCT devices, using FDA approved algorithms, during the examination. In contrast to the processing of baseline UK Biobank macular OCT scans[27], they do not generally require the development of new processing pipelines (apart from measures of the choroidal vascular layer, which are now possible thanks to greater depth of imaging than was previously possible with older OCT technology). Fundamental to both the challenge and the opportunity that would be provided by UK Biobank OCT imaging is that modern retinal imaging software can measure changes that would be imperceptible to, or missed by, a human grader. In operations featuring large-scale data collection, a small proportion of the imaging is likely to be insufficient quality for automated analysis. Problems may also arise with image acquisition, for instance, due to some study participants presenting with ocular pathology. Thus, the first step in an analysis pipeline is to assess the image quality and discard images that cannot be adequately measured. Subsequent analysis of vasculometrics from retinal photographs would include

Page 13 of 29

BMJ Open

automated vessel segmentation followed by classification of arterioles and venules (see below). For OCT, algorithms delineate the borders of the internal limiting membrane (ILM) and the RNFL to give the measurement of RNFL thickness, a biomarker of axonal loss affecting retinal ganglion cells and the optic nerves. The thickness of the RNFL is evaluated using the standard TSNIT (temporal, superior, nasal, inferior, temporal) mapping that subdivides the measurements and colour codes statistical significance compared with a database of normal healthy values. Further delineation of boundaries enables quantitative mapping of the ganglion cell layer (GCL) and inner plexiform layer (IPL) thicknesses, a marker of neuronal somatic loss [13, 28]. Although the processing of quantitative retinal vasculometric data is not routinely used in clinical settings, we have developed and validated a fully automated AI-enabled retinal image analysis system (QUARTZ) for extracting vessel maps and quantifying retinal vasculometry (including vessel size and tortuosity), which we will use to create the image processing pipeline. The system overcomes many of the difficulties of earlier vasculometry approaches, particularly by being fully automated. [29, 30] OUARTZ has been demonstrated to be highly robust, capable of processing large datasets with automated image quality assessments, resulting in accurate, reliable and high levels of vessel segmentation. To date, QUARTZ has measured approximately 4 million vessel segments from over 190,000 images from 95,000 participants of two very large population-based cohorts (UK Biobank and EPIC-Norfolk). This system has been developed specifically for use on TOPCON macular centred images. In brief, the QUARTZ system distinguishes between right and left eves, venules and arterioles (with 87% accuracy using AI-enabled deep learning), identifies vessel segments

and centreline coordinates and outputs measures of vessel width and tortuosity (based on the mean change in chord length between successive divisions of the vessel).[31, 32] The system

obtains 10-20 thousands of measurements of width and tortuosity from the whole retinal image (dependent on image quality), not just selected vessels lying within concentric areas centred on the disc. Measures are summarized using mean width and tortuosity, weighted by segment length, for arterioles and venules separately for each image. QUARTZ measures in UK Biobank have previously shown that venular width and tortuosity are associated with markers of adiposity[33] and that both arteriolar and venular width and arteriolar tortuosity show strong inverse associations with blood pressure (systolic and diastolic) and arterial stiffness index.[34] More importantly, prognostic models using QUARTZ vasculometry measures perform very well at predicting circulatory mortality and at least as well as established risk scores in the prediction of stroke and myocardial infarction, remarkably without the need for either a blood test or blood pressure measurement.[35] Given the identification of vessel maps, these could be inputted into other systems (i.e., the VAMPIRE system) with additional vasculometry summaries, such as fractal analyses to quantify the complexity of the arteriolar and venular components of the retinal vascular network. Marrying the automated functionality of OUARTZ with VAMPIRE will afford a more in-depth characterization of the vessel complex on an unprecedented scale. The VAMPIRE (Vascular Assessment and Measurement Platform for Images of the REtina) system is an international collaborative project designed to quantify retinal vascular morphometry with large collections of fundus photographs. The system provides automatic detection of retinal landmarks and quantifies some key parameters used frequently in investigative studies - vessel width, vessel branching coefficients, tortuosity, and fractal analyses. Detailed definitions have been reported elsewhere. [36, 37] In general, it computes 149 measurements per image, including basic statistics. Thirty-nine are width-related: central retinal arteriolar equivalent (CRAE), central retinal venular equivalent (CRVE), retinal arteriovenous ratio (AVR), basic statistics (mean, median, standard deviation, maximum,

Page 15 of 29

1

BMJ Open

2 3 4	323
5 6	324
7 8	325
9 10 11	326
12 13	327
14 15	328
16 17 18	329
20 21	330
22 23	331
24 25 26	332
20 27 28	333
29 30	334
31 32 33	335
34 35	336
36 37	337
38 39	338
40 41 42	339
43 44 45	340
46 47	341
48 49 50	342
50 51 52	343
53 54	344
55 56	345
57 58 59	346
60	

minimum), width gradients along vessels, average ratio length-diameter at branching points, by arteries and veins; 104 are tortuosity measurements, computed by different algorithms and with the statistics listed above; 6 are fractal dimension coefficients. All measures are calculated by vessel type (arteriole or venule) and region (zone, whole image, quadrants). VAMPIRE is a validated software application and has been extensively used in several international studies.[36, 38, 39] Patient and public involvement UK Biobank maintains a website to keep participants and researchers up to date on the study (http://www.ukbiobank.ac.uk/news/). Eye and vision-related publications resulting from UK Biobank are maintained at (https://www.ukbiobankeyeconsortium.org.uk/publications). UK Biobank also holds regular events to inform the participants about the imaging study and the latest research. In addition, UK Biobank has a Twitter feed (@uk biobank). The study was set up by the Medical Research Council (MRC), Department of Health (DoH), and Wellcome Trust with input from major patient representative organizations. An annual scientific meeting is recorded and available to the public as a webcast.

339 Statistical Analysis Plan

Baseline ocular characteristics will be summarized as mean (standard deviation) for
continuous variables and number (%) for categorical variables.

9 342 Primary aims would be to examine:

- 1) cross-sectional associations between retinal biomarkers, measures of cognitive
- 344 performance and brain-volume from MRI imaging
- 5 345 2) the comparative performance of retinal biomarkers for risk stratification, to identify

those with cognitive impairment.

347 3) the comparative performance of retinal biomarkers to detect those with longitudinal348 decline in cognitive performance.

Previous work within UK Biobank examining RNFL measures in relation to mild cognitive impairment, showed that those in the lowest quintile of RNFL thickness were 11% (95% CI: 2% to 21%) more likely to fail on at least one of four cognitive tests.[40] This shows that RNFL measures have the potential to identify those at higher risk of cognitive impairment. After vigorous image quality control, the proposed imaging of a further 60,000 participants will provide 45,000-55,000 participants with good-quality retinal images for quantification of individual components of the RNFL and potential to extract detailed retinal vasculometric measures. This large sample size, will have 99% power (alpha = 0.001) to detect at least 0.03 standard deviation change in the cognitive score[41] or brain measures[42] (based on F-tests of linear regression coefficients from cross-sectional analyses) per 1 standard deviation increase in any retinal biomarker (RNFL or retinal vasculometric measure). Cross-sectional analyses using multiple linear regression will quantify the dose response relationship between cognitive score with considerable power to evaluate in the region of 30 candidate predictors (retinal biomarkers, age, sex, geographical location, height, refraction, intraocular pressure, smoking status, socioeconomic positions and established cardiovascular risk markers).[43] This will allow the independent contribution of retinal biomarkers as a predictor of cognitive performance to be realized with considerable precision,[44] across a spectrum of cognitive scores.[43]

Given that UK Biobank has longitudinal data on cognitive change (with repeated measures available from online questionnaires and performed in-person at the imaging assessments), the study would be uniquely placed to assess the determinants of cognitive decline in middle-later life. For prospective evaluation the rates of dementia would also be pivotal in relation to prior cognitive performance. In UK Biobank, the annual incidence of

Page 17 of 29

BMJ Open

dementia among those aged ≥ 60 years old is approximately 2.5 per 1000 person years.[45] Therefore, within 2 years of retinal image capture there would be approximately 250 cases of dementia per 45,000-55,000 participants. The longitudinal nature of the data will allow models to be developed for incident cognitive outcomes / neurodegenerative events using multivariable Cox proportional hazards models with relevant eye measures (i.e., OCT, retinal vasculometry derived measures) as continuous predictors both with and without inclusion of other parameters, including age at cognitive decline / neurodegenerative onset, sex, ethnicity (although the cohort is largely of white European ancestry), smoking status (current, former and never), alcohol consumption, body mass index, blood pressure, blood biochemistry measures, social deprivation (by postcode), physical activity / sedentary behaviour, and relevant family history where available.

383 Existing Data

Once recruitment was fully under way, additional measures were incorporated into the baseline assessment, including hearing and arterial stiffness tests, a cardiorespiratory fitness test, and various eye and vision measures, including visual acuity on a computerised system designed to observe logarithm of the minimum angle of resolution (logMAR) principles, and following the British Standard (BS-1968), [46] autorefraction and keratometry, intraocular pressure and corneal biomechanics, and retinal imaging comprising disc/macular digital colour photographs and a 3D macular OCT.[22] After the baseline visit, subsets of participants have supported additional data collection through various enhancements to the study. These have included: a complete repeat of the baseline assessment, collection of physical activity data over 7-days by wearing accelerometers, and regular online questionnaires covering various topics such as diet, cognitive function, occupational history, mental wellbeing, gastrointestinal health and pain. All participants provided consent for their health to be followed-up through linkage to health-related records, which currently includes

death, cancer, and hospital inpatient records for the entire cohort. Although UK Biobank is not representative of the entire UK population, the large sample size and variation across all levels of measures nonetheless enable a valid assessment of many exposure-outcome relationships to be made. All publications using UK Biobank data are available on the website (https://www.ukbiobank.ac.uk/enable-your-research/publications). Eye and vision-related publications resulting from UK Biobank is maintained at (https://www.ukbiobankeyeconsortium.org.uk/publications). In brief, based on data from UK Biobank participants attending the baseline imaging assessment to date (N=48,998), the mean (standard deviation) age was 55.2 (7.6) years; 52% (N=25,290) of them were female. A subset of 13,732 (28%) participants had undergone retinal imaging. As there is a policy for the UK Biobank Repeat Imaging Study to over-sample participants with baseline retinal imaging, the estimated numbers of participants with overlapping retinal imaging and whole-body imaging data in the repeat imaging visit will be more than 16,800. Detailed cognitive scores, APOE genotypes, self-reported comorbidities and medication use are provided in Table 2. In addition to imaging, UK Biobank has implemented a wide range of cognitive function tests since baseline that are relevant to assessing various aspects of cognitive decline and dementia and will be conducted at the repeat imaging and proposed OCT visit (Table 3). **FINDINGS TO DATE**

UK Biobank has helped make significant advances in the understanding of risk factors
for diseases including cardiovascular diseases, cancer, diabetes, stroke, multiple sclerosis,
optic neuritis and dementia.[23, 47-57] Ophthalmic genetics and epidemiology have
benefited from the unparalleled combination of very large numbers of participants, very
extensive and detailed phenotyping and longitudinal follow-up.[30, 58-62]

Page 19 of 29

BMJ Open

In addition, we have used UK Biobank data to describe the relationship between retinal structures and both cognitive function and brain MR image-derived phenotypes. [40, 42] For example, previous work examining RNFL measures in relation to mild cognitive impairment, showed that those in the lowest quintile of RNFL thickness were 11% (95% CI 2.0% to 2.1%) more likely to fail on at least one of four cognitive tests. [40] This indicates that RNFL thickness measurements have the potential to identify those at higher risk of cognitive impairment. Chua et al [42] reported that markers of retinal neurodegeneration are associated with smaller brain volumes – macular ganglion cell-inner plexiform layer (GCIPL) thickness, ganglion cell complex (GCC) thickness and total macular thickness were significantly associated with smaller total brain (p < 0.001), grey matter and white matter volume (p < 0.01), and grey matter volume in the occipital pole (p < 0.05); thinner macular GCC and total macular thicknesses were associated with smaller hippocampal volume (p < 0.02).

In the context of these results, and the findings of other studies (e.g. The Rotterdam
Study),[63-65] we proposed supplementing the testing menu in the UK Biobank Whole Body
Repeat Imaging Study with measures that support the discovery and quantification of eye and
vision variables that are associated with cognitive ageing and decline, and overt dementia.

437 COLLABORATION

UK Biobank aims to provide open access data for healthcare-related research. The
data are available to all bona fide researchers from the academic, charity, public and
commercial sectors in the UK and internationally, without preferential or exclusive access for
any user.[66] All interested researchers may apply to access the data via an online
application. Strict guidelines are in place to help ensure anonymity and confidentiality of
participants' data and samples.[67] We have formed the UK Biobank Eye and Vision
Consortium, an 80 person strong group of researchers with interest and expertise in

л Л	
-	
S	
6	
7	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
~~ 72	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
22	
ככ ז∢ר	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
11	
-7-4 // F	
4) 42	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
22	
20	
5/	
58	
59	

ophthalmic epidemiology, visual system neurology, and the epidemiology of related diseases

446 such as diabetes and cardiovascular disease (<u>https://www.ukbiobankeyeconsortium.org.uk/</u>).

447 FURTHER DETAILS

448 Acknowledgements:

449 In addition to the listed authors, Prof Rory Collins, Prof Paul Matthews and Dr Mark

450 Effingham participated in scientific discussions which moulded the project that we have

451 outlined here. A funding proposal was developed following discussions with members of the

452 Alzheimer's Drug Discovery Foundation. Meanwhile, we would like to thank all the

453 participants of UK Biobank for their vital contribution to the resource.

454 Data sharing statement:

455 This research used data from the UK Biobank Resource, under data access request number456 2112.

457 Contributorship statement:

PJF, APK, PJP & ZS had full access to all the data in the study and take responsibility for the
integrity and accuracy of the data analysis. Concept and design: PJF, DA, APK, AJL, TM,
CGO, PJP, AP, ARR. Data acquisition, analysis, or interpretation: UK Biobank obtained the
data. APK performed data analysis. All authors interpreted data. Critical revision of the
manuscript for important intellectual content: all authors. Obtained funding: NA, SS, UK
Biobank. All authors approved the final manuscript.

464 Funding declaration:

465 The study sponsor/funder was not involved in the design of the study; the collection, analysis,
466 and interpretation of data; writing the report; and did not impose any restrictions regarding
467 the publication of the report. UK Biobank is funded by the Medical Research Council,
468 Wellcome Trust, Department of Health, Scottish Government, the Welsh Assembly
469 Government, British Heart Foundation, Cancer Research UK, NIHR and the Northwest

Page 21 of 29

1 2

BMJ Open

3 4	470	Regional Development Agency. The UK Biobank Eye and Vision Consortium is supported
5 6	471	by grants from Moorfields Eye Charity, the NIHR Biomedical Research Centre at Moorfields
7 8 0	472	Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, the Alcon
9 10 11	473	Research Institute and the International Glaucoma Association (UK).
12 13	474	APK, AP, ZS, PJF and PJP receive salary support from the NIHR BRC at Moorfields Eye
14 15 16	475	Hospital & UCL Institute of Ophthalmology. NA receives salary support from University of
10 17 18	476	Oxford and UK Biobank. PJF receives support from the Desmond Foundation, London, UK.
19 20	477	APK is supported by a UKRI Future Leaders Fellowship and an Alcon Research Institute
21 22 23	478	Young Investigator Award. TM acknowledges support from NHS Lothian R&D and the
23 24 25	479	Clinical Research Facility at the University of Edinburgh.
26 27	480	The authors acknowledge a proportion of our financial support from the UK Department of
28 29 20	481	Health through an award made by the National Institute for Health Research to Moorfields
30 31 32	482	Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology for a Biomedical
33 34	483	Research Centre for Ophthalmology.
35 36	484	Financial disclosures:
37 38 30	485	PJF reports personal fees from Allergan, Carl Zeiss, Google/DeepMind and Santen, a grant
40 41	486	from Alcon, outside the submitted work. PJP reports grants from Topcon Inc, outside the
42 43	487	scope of the current report. APK reports personal fees from Abbvie, Aerie, Google Health,
44 45 46	488	Novartis, Reichert, Santen, and Thea, outside the submitted work. AP reports grant support
40 47 48	489	for remyelination trials in multiple sclerosis to the Amsterdam University Medicam Centre,
49 50	490	Department of Neurology, MS Centre (RESTORE trial) and UCL, London RECOVER trial;
51 52	491	Fight for Sight (nimodipine in optic neuritis trial); royalties or licenses from Up-to-Date
53 54 55	492	(Wolters Kluver) on a book chapter; speaker fees for the Heidelberg Academy; participation
56 57	493	on Advisory Board SC Zeiss OCTA Angi-Network, SC Novartis OCTiMS study; equipment:
58 59 60	494	OCTA from Zeiss (Plex Elite).

3	
4	
5	
6	
7	
, 8	
0	
9 10	
10	
11	
12	
13	
14	
15	
16	
1/	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

to peer teriew only

498

496 Table 1. Description of the candidate biomarkers497

Biomarkers	View	Description
Total macular retinal thickness	cross-section	distance between the inner boundary of ILM
		to the lower boundary to RPE
Macular inner retinal sublayer		
thicknesses		
RNFL thickness	cross-section	distance between ILM to the outer boundary
		of RNFL
GC-IPL thickness	cross-section	distance between the inner boundary of GCL
		to the outer boundary of IPL
GCC thickness	cross-section	GC-IPL+ RNFL
Peripapillary RNFL thickness	cross-section	distance between ILM to the outer boundary
		of RNFL
Choroidal vascularity index	cross-section/en face	ratio of vascular luminal area to the total
		choroidal area
Retinal arteriolar calibres	en face	evaluates generalized arteriolar narrowing
Retinal venular calibres	en face	evaluates generalized arteriolar narrowing
Retinal vascular fractal dimension	en face	measure the vascular pattern complexity
Retinal vascular tortuosity	en face	characterized by an abnormal curvature of the
		vessels, evincing a non-smooth appearance,
		presenting turns and twists throughout their
		course.

499 RNFL=retinal nerve fibre layer; GCIPL=ganglion cell-inner plexiform layer; GCL=ganglion cell layer;

500 *ILM=inner limiting membrane; IPL=inner plexiform layer; m=macular.* 501

reziez onz

Table 2. Demographics, cognitive scores, APOE genotype, self-reported comorbidities, medication use and availability of eye imaging factors for UK Biobank participants

attending the baseline imaging assessment to-date (N = 48,998).

Characteristics	n (%) or mean
Age (years)	55.2 (7.6)
Sex	
Female	25,290 (52%
Male	23,708 (48%
Cognitive scores at baseline assessment	
Numeric memory: maximum digits remembered correctly (n=4,911)	6.97 (1.25)
Fluid intelligence score (n=16,427)	6.68 (2.04)
Prospective memory test (n=16,544)	1.10 (0.36)
Snap game: mean time to correctly identify matches (ms) (n=48,858)	539.2 (101.3
Pairs matching: number of incorrect matches in round (n=24,988)	0.66 (1.24)
APOE genotype	
ε3ε3	28,297 (59%
ε3ε4	11,063 (23%
ε2ε3	5,892 (12%
ε2ε4	1,128 (2%)
ε4ε4	1,065 (2%)
ε2ε2	277 (1%)
Comorbidities	
Hypertension	13,666 (28%
Diabetes	2,008 (4%)
Ischemic heart disease	2,649 (5%)
Stroke	719 (1%)
Chronic obstructive pulmonary disease	1,016 (2%)
Asthma	6,689 (14%
Obesity (BMI > 30 kg/m^2)	8,918 (18%
Parkinson's disease	136 (<1%)
Alzheimer's disease	34 (<1%)
Multiple sclerosis	202 (<1%)
Medication use	
Anti-hypertensive	9,769 (20%
Statin	8,750 (18%
Eve imaging available	13,732 (28%

Mean (SD) is presented for continuous variables and count (%) for categorical variables. All variables are presented for the full sample except for APOE genotype (1276 missing) and for cognitive scores (numbers of participants for each test at ANY PHASE of UK Biobank examinations are presented in the table).

BMI=body mass index; SD=standard deviation; ms=microsecond; APOE=Apolipoprotein E.

	Study phase (n)					
(variable ID)	Baseline (n) (2006-2010)	Repeat Assessment (2012-2013)	Online (2015)	Imaging study (2014-now)	Repeat Imaging (2019-2020	
Fluid IQ (<u>100027</u>)	165,500	20,100	123,500	39,600	800	
Pairs matching (<u>100030</u>)	497,900	20,300	118,500	40,400	800	
Prospective memory (<u>100031</u>)	171,600	20,300	0	40,400	800	
Reaction time (<u>100032</u>)	496,700	20,300	0	40,200	800	
Numeric memory (<u>100029</u>)	51,800	0	111,000	28,7000	800	
Matrix (<u>501</u>)	0	0	0	27,600	800	
Symbol digit substitution (502)	0	0	118,500	27,600	800	
Tower test (<u>503</u>)	0	0	0	27,300	800	
Picture vocabulary (<u>504</u>)	0	0	0	27,500	800	
Trail making (<u>505</u>)	0	0	120,500	27,900	800	
Paired associate learning (506)	0	0	0	27,900	800	

ing (506) 0 0 0 27,900

3 4	516	REFERENCES					
5	517	1	Boitz C. Mayoux D. Alzhaimar disaasay anidamialagu, diagnastia gritaria, risk fastars				
6	519	1.	and biomarkers. <i>Biochamical pharmacology</i> 2014, 99 (4):640,651				
/ 8	510	n	Bateman BL Vieng C. Benzinger TL, Eagan AM, Coate A. Foy NC, Marcus DS, Cairos				
9	520	Ζ.	Baleman RJ, Xiong C, Benzinger TL, Fagan AW, Goale A, Fox NC, Marcus DS, Carris				
10	520		NJ, XIE X, BIAZEY TWI: Clinical and biomarker changes in dominantly innerited				
11	521	2	Aizneimer's disease. IN Engl J Med 2012, 367:795-804.				
12	522	3.	Tahami Monfared AA, Byrnes MJ, White LA, Zhang Q: Alzheimer's Disease:				
13	523		Epidemiology and Clinical Progression. <i>Neurol Ther</i> 2022, 11 (2):553-569.				
14 15	524	4.	Kalaria RN, Maestre GE, Arizaga R, Friedland RP, Galasko D, Hall K, Luchsinger JA,				
16	525		Ogunniyi A, Perry EK, Potocnik F: Alzheimer's disease and vascular dementia in				
17	526		developing countries: prevalence, management, and risk factors. The Lancet				
18	527		Neurology 2008, 7(9):812-826.				
19	528	5.	Collaborators G: Global, regional, and national burden of Alzheimer's disease and				
20	529		other dementias, 1990-2016: a systematic analysis for the Global Burden of				
21	530		Disease Study 2016. Lancet Neurol 2019, 18(1):88-106.				
23	531	6.	Jack Jr CR, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, Holtzman				
24	532		DM, Jagust W, Jessen F, Karlawish J: NIA-AA research framework: toward a				
25	533		biological definition of Alzheimer's disease. Alzheimer's & Dementia 2018,				
26	534		14 (4):535-562.				
27	535	7.	Mehta D, Jackson R, Paul G, Shi J, Sabbagh M: Why do trials for Alzheimer's disease				
29	536		drugs keep failing? A discontinued drug perspective for 2010-2015. Expert opinion				
30	537		on investigational drugs 2017, 26 (6):735-739.				
31	538	8.	Gómez-Isla T, Price JL, McKeel Jr DW, Morris JC, Growdon JH, Hyman BT: Profound				
32	539		loss of laver II entorhinal cortex neurons occurs in very mild Alzheimer's disease.				
33 34	540		Journal of Neuroscience 1996. 16 (14):4491-4500.				
35	541	9.	Long JM. Holtzman DM: Alzheimer disease: an update on pathobiology and				
36	542	-	treatment strategies. Cell 2019. 179 (2):312-339.				
37	543	10.	Dubois B. Villain N. Frisoni GB. Rabinovici GD. Sabbagh M. Cappa S. Bejanin A.				
38	544		Bombois S. Epelbaum S. Teichmann M: Clinical diagnosis of Alzheimer's disease:				
39	545		recommendations of the International Working Group The Lancet Neurology 2021				
40 41	546		20 (6):484-496				
42	547	11	Cheung CV-I Ikram MK, Sabanayagam C, Wong TV: Retinal microvasculature as a				
43	548	11.	model to study the manifestations of hypertension Hypertension 2012 60(5):1094-				
44	540		1103				
45	550	12	Losago S. Moslov T. Wong T. Szklo M. Knonman D. Catollior DI. Colo S. Kloin P. Corosh				
40 47	551	12.	Lesage 5, Mosley 1, Wong 1, 52Ko M, Knophan D, Catellier DJ, Cole 5, Kielin K, Colesin				
48	557		J, COREL L. Retinal Inclovascular abnormancies and cognitive decime. the ARIC 14-				
49	552	10	year follow-up study. <i>Neurology</i> 2009, 73 (11):802-808.				
50	555	13.	Perzola A, Balcer LJ, Calabresi PA, Costello F, Fronman TC, Fronman EM, Martinez-				
51	554		Lapiscina EH, Green AJ, Kardon R, Outteryck O: Retinal layer segmentation in				
52 53	333		multiple scierosis: a systematic review and meta-analysis. The Lancet Neurology				
54	556		2017, 16 (10):797-812.				
55	557	14.	O Brynim BE, Apte RS, Kung N, Coble D, Van Stavern GP: Association of preclinical				
56	558		Alzneimer disease with optical coherence tomographic angiography findings. JAMA				
57	559		ophthalmology 2018, 136 (11):1242-1248.				
58 50	560	15.	Mutlu U, Colijn JM, Ikram MA, Bonnemaijer PW, Licher S, Wolters FJ, Tiemeier H,				
60	561		Koudstaal PJ, Klaver CC, Ikram MK: Association of retinal neurodegeneration on				

1			
2			
5 4	562		optical coherence tomography with dementia: a population-based study. JAMA
5	563		neurology 2018, 75 (10):1256-1263.
6	564	16.	Masuzzo A, Dinet V, Cavanagh C, Mascarelli F, Krantic S: Amyloidosis in retinal
7	565		neurodegenerative diseases. Frontiers in Neurology 2016, 7:127.
8	566	17.	Reitz C, Brayne C, Mayeux R: Epidemiology of Alzheimer disease. Nature Reviews
9 10	567		Neurology 2011, 7 (3):137-152.
10	568	18.	Lambert J-C, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C, Jun G,
12	569		DeStefano AL, Bis JC, Beecham GW: Meta-analysis of 74,046 individuals identifies
13	570		11 new susceptibility loci for Alzheimer's disease. Nature genetics 2013,
14	571		45 (12):1452-1458.
15	572	19.	Norton S, Matthews FE, Barnes DE, Yaffe K, Brayne C: Potential for primary
10 17	573		prevention of Alzheimer's disease: an analysis of population-based data. The
18	574		Lancet Neuroloav 2014. 13 (8):788-794.
19	575	20.	Larsson SC. Travlor M. Malik R. Dichgans M. Burgess S. Markus HS: Modifiable
20	576		pathways in Alzheimer's disease: Mendelian randomisation analysis. <i>bmi</i> 2017.
21	577		359
22	578	21	Bowen M. Zutshi H. Cordiner M. Crutch S. Shakespeare T. Qualitative, exploratory
24	579		nilot study to investigate how people living with posterior cortical atrophy, their
25	580		carers and clinicians experience tests used to assess vision BMI open 2019
26	581		9 (3):e020905
27	582	22	Chua SVI Thomas D. Allen N. Lotery A. Desai P. Patel P. Muthy 7. Sudlow C. Peto T.
28 29	583	22.	Khaw PT: Cohort profile: design and methods in the eve and vision consortium of
30	584		IK Biohank BMI open 2019 9(2):e025077
31	585	23	Littleighns TL Sudlow C Allen NF. Collins B: LIK Bighank: opportunities for
32	586	23.	cardiovascular research European heart journal 2019 40 (11):1158-1166
33	587	24	Bycroft C Freeman C Petkova D Band G Elliott LT Sharn K Motver A Vukcevic D
35	588	۲.	Delaneau O. O'Connell I: The LIK Biobank resource with deen phenotyning and
36	580		genomic data Nature 2018 562(7726):203-209
37	500	25	Littleights TL Helliday L Gibson LM Carratt S Opsingmann N Alfaro Almagro E Boll
38	501	25.	ID Boultwood C Collins P. Conroy MC: The LIK Biobank imaging onbancoment of
39	502		100 000 participants; rationale, data collection, management and future directions
40 41	502		Nature communications 2020 11 (1):1 12
42	504	26	Nuture communications 2020, 11(1).1-12.
43	505	20.	Huber R, Wojtkowski W, Fujihoto JG, Jiang J, Cable A. Three-unnensional and C-
44	595 506		Ortice overroos 2005, 12 (20):10522, 10528
45	590	27	Oplics express 2005, 13 (26):10523-10538.
40 47	597	27.	Reane PA, Grossi CM, Foster PJ, Yang Q, Reisman CA, Chan K, Peto T, Thomas D, Patel
48	598		PJ, Consortium UBEV: Optical concrence tomography in the UK biobank study-
49	599		rapid automated analysis of refinal thickness for large population-based studies.
50	600		<i>PLoS One</i> 2016, 11 (10):e0164095.
51	601	28.	Cruz-Herranz A, Balk LJ, Oberwahrenbrock T, Saidha S, Martinez-Lapiscina EH,
52 53	602		Lagreze WA, Schuman JS, Villoslada P, Calabresi P, Balcer L: The APOSTEL
55	603		recommendations for reporting quantitative optical coherence tomography
55	604	_	studies. Neurology 2016, 86(24):2303-2309.
56	605	29.	Welikala R, Fraz M, Habib M, Daniel-Tong S, Yates M, Foster P, Whincup P, Rudnicka
57	606		AR, Owen CG, Strachan D: Automated quantification of retinal vessel morphometry
58 59	607		in the UK Biobank Cohort. In: 2017 Seventh International Conference on Image
60	608		Processing Theory, Tools and Applications (IPTA): 2017: IEEE; 2017: 1-6.

2			
3	609	30.	Welikala R. Fraz M. Foster P. Whincup P. Rudnicka AR. Owen CG. Strachan D. Barman
4	610		SA: Automated retinal image quality assessment on the LIK Biobank dataset for
5	611		enidemiological studies. Computers in hiology and medicine 2016. 71:67-76
0 7	612	21	Fraz MM Welikala R. Rudnicka AR. Owen CG. Strachan D. Barman SA: OLARTZ:
, 8	613	51.	Quantitative Analysis of Petinal Vessel Tenelogy and size-an automated system for
9	614		quantitative Analysis of Nethal vessel ropology and size-an automated system for
10	615		quantification of retinal vessels morphology. Expert systems with Applications 2015,
11	616	22	42(20).7221-7234. Walikala B. Faster D. Whinsun D. Budnicka A.B. Queen CC. Streshan D. Barman S.
12	617	32.	Weirkala R, Foster P, Whincup P, Rudnicka AR, Owen CG, Strachan D, Barman S.
14	01/ (10		Automated arteriole and venue classification using deep learning for retinal
15	618		images from the UK Biobank conort. Computers in biology and medicine 2017,
16	619		
17	620	33.	Tapp RJ, Owen CG, Barman SA, Welikala RA, Foster PJ, Whincup PH, Strachan DP,
18	621		Rudnicka AR, UK Biobank Eye VC: Retinal vascular tortuosity and diameter
19	622		associations with adiposity and components of body composition. Obesity 2020,
20 21	623		28 (9):1750-1760.
22	624	34.	Tapp RJ, Owen CG, Barman SA, Welikala RA, Foster PJ, Whincup PH, Strachan DP,
23	625		Rudnicka AR: Associations of Retinal Microvascular Diameters and Tortuosity With
24	626		Blood Pressure and Arterial Stiffness: United Kingdom Biobank. Hypertension 2019,
25	627		74(6):1383-1390.
26 27	628	35.	Rudnicka AR, Welikala R, Barman S, Foster PJ, Luben R, Hayat S, Khaw KT, Whincup P,
28	629		Strachan D, Owen CG: Artificial intelligence-enabled retinal vasculometry for
29	630		prediction of circulatory mortality, myocardial infarction and stroke. Br J
30	631		Ophthalmol 2022.
31	632	36.	, McGrory S, Taylor AM, Pellegrini E, Ballerini L, Kirin M, Doubal FN, Wardlaw JM,
32	633		Doney AS, Dhillon B, Starr JM: Towards standardization of quantitative retinal
33 34	634		vascular parameters: comparison of SIVA and VAMPIRE measurements in the
35	635		Lothian Birth Cohort 1936 Translational vision science & technology 2018 7(2):12-
36	636		12
37	637	37	Perez-Rovira A MacGillivray T Trucco E Chin K Zutis K Lunascu C Tegolo D
38	638	57.	Giachetti A. Wilson PI. Doney A: VAMPIRE: vessel assessment and measurement
39 40	630		national Conference of the BEtina In: 2011 Annual International Conference of the
40 41	640		IEEE Engineering in Medicine and Piology Society: 2011; IEEE: 2011; 2201 2204
42	640	20	Remend D. Antol F. Cunnas D. Labarara I. Dalambi K. Danin L. Dallat Villard F. Llaga
43	041 642	58.	Kemonu P, Apter F, Cunnac P, Labarere J, Palombi K, Pepin J-L, Ponet-Vinaru F, Hogg
44	04 <i>2</i>		S, Wang R, MacGillivray T: Retinal vessel phenotype in patients with nonarteritic
45	643		anterior ischemic optic neuropathy. American journal of ophthalmology 2019,
46 47	644		
48	645	39.	Azanan MS, Chandrasekaran S, Rosli ES, Chua LL, Oh L, Chin TF, Yap TY, Rajagopal R,
49	646		Rajasuriar R, MacGillivray T: Retinal Vessel Analysis as a Novel Screening Tool to
50	647		Identify Childhood Acute Lymphoblastic Leukemia Survivors at Risk of
51	648		Cardiovascular Disease . Journal of pediatric hematology/oncology 2020, 42 (6):e394-
52 52	649		e400.
53 54	650	40.	Ko F, Muthy ZA, Gallacher J, Sudlow C, Rees G, Yang Q, Keane PA, Petzold A, Khaw
55	651		PT, Reisman C: Association of retinal nerve fiber layer thinning with current and
56	652		future cognitive decline: a study using optical coherence tomography. JAMA
57	653		neurology 2018, 75 (10):1198-1205.
58	654	41.	Cornelis MC, Wang Y, Holland T, Agarwal P, Weintraub S, Morris MC: Age and
59	655		cognitive decline in the UK Biobank. PloS one 2019, 14(3):e0213948.
00			- · · · ·

1			
2 3	(5(40	Chus CV Lessenates C. Aten D. Zhang D. Deisman C. Khow DT. Smith CM Matthews
4	030 657	42.	Chud SY, Lascaratos G, Atan D, Zhang B, Reisman C, Knaw PT, Smith SW, Matthews
5	658		brain volumes in the LIK Biobank cohort. European Journal of Neurology 2021
6 7	650		
8	660	13	20(3).1430-1430. Lyall DM Cullen B. Allerhand M. Smith DL Mackay D. Evans I. Anderson I. Eawns-
9	661	45.	Ritchie C. McIntosh AM. Deany II: Cognitive test scores in LIK Richark: data
10	662		reduction in A80 A16 participants and longitudinal stability in 20 346 participants
11 12	663		$PloS one 2016$ 11 (Λ)·e015/222
12	664	11	Riley RD Spell KI Ensor I Burke DL Harrell Ir EF Moons KG Collins GS: Minimum
14	665	44.	sample size for developing a multivariable prediction model: PART II-binary and
15	666		time-to-event outcomes Statistics in medicine 2019 38(7):1276-1296
16	667	45	Petermann-Rocha E Lvall DM Grav SR Esteban-Corneio I Quinn TI Ho EK Pell IP
17 18	668	45.	Celis-Morales C: Associations between physical frailty and dementia incidence: a
19	669		prospective study from LIK Biobank. The Lancet Healthy Longevity 2020 1(2):e58-
20	670		P68
21	671	46	Standard B ¹ Test charts for determining distance visual acuity: BS 4274-1968 British
22	672	40.	Standards Institute 1968
24	673	47.	Tikkanen E. Gustafsson S. Ingelsson E: Associations of fitness, physical activity.
25	674	.,.	strength, and genetic risk with cardiovascular disease: longitudinal analyses in the
26	675		UK Biobank Study. Circulation 2018. 137 (24):2583-2591.
27	676	48.	Perez-Cornago A, Key TJ, Allen NE, Fensom GK, Bradbury KE, Martin RM, Travis RC:
20	677		Prospective investigation of risk factors for prostate cancer in the UK Biobank
30	678		cohort study . <i>British journal of cancer</i> 2017. 117 (10):1562-1571.
31	679	49.	Allen NE, Sudlow C, Peakman T, Collins R, biobank U: UK biobank data: come and get
32	680		it. In., vol. 6: American Association for the Advancement of Science; 2014: 224ed224-
33 34	681		224ed224.
35	682	50.	Ntuk UE, Gill JM, Mackay DF, Sattar N, Pell JP: Ethnic-specific obesity cutoffs for
36	683		diabetes risk: cross-sectional study of 490,288 UK biobank participants. Diabetes
37	684		care 2014, 37 (9):2500-2507.
20 39	685	51.	Millett ER, Peters SA, Woodward M: Sex differences in risk factors for myocardial
40	686		infarction: cohort study of UK Biobank participants. bmj 2018, 363.
41	687	52.	Gallacher KI, McQueenie R, Nicholl B, Jani BD, Lee D, Mair FS: Risk factors and
42	688		mortality associated with multimorbidity in people with stroke or transient
43 44	689		ischaemic attack: a study of 8,751 UK Biobank participants. Journal of comorbidity
45	690		2018, 8 (1):1-8.
46	691	53.	Ma H, Li X, Sun D, Zhou T, Ley SH, Gustat J, Heianza Y, Qi L: Association of habitual
47	692		glucosamine use with risk of cardiovascular disease: prospective study in UK
48 ⊿0	693		Biobank. <i>bmj</i> 2019, 365 .
	694	54.	Gao L, Li P, Cui L, Wong PM, Johnson-Akeju O, Lane J, Saxena R, Scheer F, Hu K: Sleep
51	695		disturbance and incident Alzheimer's disease: A UK Biobank study of 502,538
52	696		middle-aged to older participants: Biomarkers (non-neuroimaging): Alzheimer's
53 54	697		disease incidence, risk factors and biomarkers. Alzheimer's & Dementia 2020,
55	698		16 :e044575.
56	699	55.	Veronese N, Yang L, Piccio L, Smith L, Firth J, Marx W, Giannelli G, Caruso MG,
57	700		Cisternino AM, Notarnicola M: Adherence to a healthy lifestyle and multiple
58 50	701		sclerosis: a case-control study from the UK Biobank. Nutritional neuroscience
60	702		2020:1-9.

2			
3	703	56.	Petzold A, Chua SY, Khawaja AP, Keane PA, Khaw PT, Reisman C, Dhillon B,
4	704		Strouthidis NG, Foster PJ, Patel PJ: Retinal asymmetry in multiple sclerosis. Brain
5 6	705		2021. 144 (1):224-235.
7	706	57.	Petzold A. Fraser CL, Abegg M. Alroughani R. Alshowaeir D. Alvarenga R. Andris C.
8	707	071	Asgari N. Barnett Y. Battistella R [.] Diagnosis and classification of optic neuritis. The
9	708		I ancet Neurology 2022
10	709	58	Cumberland PM Rahi IS: Visual function social position and health and life
11	710	50.	chances: the LIK biobank study JAMA anhthalmology 2016 134(9):059-066
12	711	50	Chan MD Grossi CM Khawaja AD Vin II. Khaw K T. Datal DI. Khaw DT. Morgan IE
14	712	55.	Vornon SA Eastor DI: Associations with intraocular prossure in a large cohort:
15	712		results from the UK Biohank, Onbthalmology 2016 122 (4):771 792
16	717	60	Shah DL Cugganhaim IA: Conome wide association studies for corneal and
17	/14	60.	shan RL, Guggenneim JA: Genome-wide association studies for corneal and
18 10	/15		retractive astigmatism in UK Biobank demonstrate a shared role for myopia
20	/16		susceptibility loci. Human genetics 2018, 137 (11):881-896.
21	717	61.	Wood A, Guggenheim JA: Refractive error has minimal influence on the risk of age-
22	718		related macular degeneration: a Mendelian randomization study. American journal
23	719		of ophthalmology 2019, 206 :87-93.
24 25	720	62.	Craig JE, Han X, Qassim A, Hassall M, Cooke Bailey JN, Kinzy TG, Khawaja AP, An J,
25 26	721		Marshall H, Gharahkhani P: Multitrait analysis of glaucoma identifies new risk loci
20	722		and enables polygenic prediction of disease susceptibility and progression. Nature
28	723		genetics 2020, 52 (2):160-166.
29	724	63.	de Jong FJ, Schrijvers EM, Ikram MK, Koudstaal PJ, de Jong PT, Hofman A, Vingerling
30	725		JR, Breteler MM: Retinal vascular caliber and risk of dementia: the Rotterdam
31	726		study. Neurology 2011, 76(9):816-821.
32 33	727	64.	Mutlu U, Cremers LG, De Groot M, Hofman A, Niessen WJ, Van Der Lugt A, Klaver CC,
34	728		Ikram MA, Vernooij MW, Ikram MK: Retinal microvasculature and white matter
35	729		microstructure: the Rotterdam Study. Neurology 2016, 87(10):1003-1010.
36	730	65.	Mutlu U, Bonnemaijer PW, Ikram MA, Colijn JM, Cremers LG, Buitendijk GH,
37	731		Vingerling JR, Niessen WJ, Vernooij MW, Klaver CC: Retinal neurodegeneration and
38 30	732		brain MRI markers: the Rotterdam Study. Neurobiology of aging 2017, 60:183-191.
40	733	66.	Sudlow C. Gallacher J. Allen N. Beral V. Burton P. Danesh J. Downey P. Elliott P. Green
41	734		J. Landray M: UK biobank: an open access resource for identifying the causes of a
42	735		wide range of complex diseases of middle and old age. PLoS medicine 2015.
43	736		12 (3):e1001779
44 45	737	67	Biobank U: LIK Biobank ethics and governance framework In : 2015
45 46	738	07.	biobank 0. Ok biobank etnies and governance namework. m., 2015.
47	150		
48			
49			
50			
51 52			
53			
54			
55			
56			
57			

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml