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Supplementary Note 1. Scaling law of PoCs. 

The scaling law in Fig. 1 was obtained by combining numerical simulation and fitting. Using 

the one for hyperbolic PoCs as an example, we first conducted numerical simulations to obtain 

the absorption spectra of PoCs with varied periodicies at certain directions. Resonance 

frequencies (𝜔
, j = x, y) were then extracted and compared with that of the square-type PoC 

with Px = Py = P0 (𝜔
) to obtained frequency shifts ∆𝜔

 = 𝜔
 – 𝜔

. Here we just focused on 

the strongest polariton resonant absorption peak instead of the periodicity-independent phonon 

absorption peak, as shown in Supplementary Figure 1a.  

We then fitted the numerical data based on the Rayleigh-Wood anomaly. At this condition,  

𝐤 = 𝐤∥ +𝑚𝐆௫ + 𝑛𝐆௬      (1) 

where 𝐤𝒑 = ට𝐤𝒙
𝟐 + 𝐤𝒚

𝟐  and 𝐤∥  represent the in-plane polariton wavevector and in-plane 

incident wavevector; 𝐆𝒙 =
ଶగ

ೣ
𝑥ො and 𝐆𝒚 =

ଶగ


𝑦ො are reciprocal lattice vectors for the periods Px 

and Py; m and n are diffraction orders. For normal incidence, 𝐤∥ = 0 , and the resonance 

frequency is solved to be 𝜔௫
 =



ටఌೣ




ೣ
 at the x direction and 𝜔௬

 =


ටఌ





 at the y direction. 

Here we calculate through the dispersion relation of surface polaritons 𝐤𝒑 =
ଶగఠ


ඥ𝜀 where 

εeff is the effective permittivity. For volume-confined polaritons, they can also be treated as 

two-dimensional surfaces with effective conductivities. Finally, we can reach the equation for 

the frequency shift: 
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for the x-packed arrays, and  
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for the y-packed arrays.  

As 


బටఌೣ


 and 


బටఌ


 are independent on Px and Py, we used a simple function 𝑦 = 𝐴(1 −

𝑥)/𝑥 to fit the numerical results and found a good agreement in Supplementary Figure 1b.  

We used this method to qualitatively describe the scaling laws of polaritonic crystals made 

from polaritonic materials with different permittivities and in-plane anisotropy. The normalized 

fitting curves were illustrated in Fig. 1.  



 

Supplementary Figure 1. a, Calculated absorption spectra of hyperbolic PoCs with a fixed Py 

but varied Px. b, Extracted frequency shifts and fitting results. 

 

 

Supplementary Figure 2. a, Optical image of prepared α-MoO3 slab and hyperbolic PoCs. b, 

SEM image. c, AFM image around the edge of the flake. d, Height profile extracted along the 

red dashed line in c. 

  



 

Supplementary Figure 3. Extraction of propagation length (L). We conducted near-field 

measurement at 892 cm−1 on the same flake but near the edge where hole arrays are absent. 

The extracted line trace along the gray dashed line in the near-field amplitude image (inset) 

was fitted using the equation 𝑠(𝑥) = 𝐴
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, where A and B are 

the parameters for tip- and edge-launched PhPs, x is the distance from edge, xc and xc
'  are phase 

shifts, λp is polariton wavelength. A propagation length of 6.7 ± 0.8 μm was obtained. 

 

 

 

Supplementary Figure 4. Reflectance spectra of the PoCs composed of 5×5 hole arrays with P 

= 2.3 μm.   



 

Supplementary Figure 5. Band structure of the PoC with P = 2.3 μm. The gray curves represent 

light lines. Yellow dashed rectangle sorrounds the frequency domain considered in the main 

text.  

 

 

 

 

Supplementary Figure 6. Near-field interference patterns and corresponding field distribution 

images of the PoC with P = 2.3 μm at 904 cm−1 (a), P = 1.8 μm at 904 cm−1 (b), the PoC with 

P = 1.3 μm at 904 cm−1 (c) and 987 cm−1 (d). 



 

Supplementary Figure 7. Simulated electric field distribution images (top) and corresponding 

FFT maps (bottom) of PoCs with P = 1.3 (a) and 1.5 μm (b) at resonance frequencies. Coloured 

curves in (c) and (d) represent IFC contours, respectively. Black and pink circles indicate 

reciprocal space points. 

 

 

 

Supplementary Figure 8. a, Absorption spectra of PoCs with varied d/P ratios. b, IFCs and 

normalized FFT amplitude maps at the conditions marked by coloured dots in a. 



 

Supplementary Figure 9. Band structures of PoCs with varied diameters and periodicities. The 

map intensity was normalized. The gray curces represent light lines at certain periodicities. 

 

 



 

Supplementary Figure 10. Calculated absorption coefficients of the PoCs tilted by different 

angles as a function of frequency and length-width ratio. 


