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All our ML works were completed using Scikit-learn (version 0.23) and
Tensorflow (version 2.0.0).? Accuracy, area under the receiver operating
characteristic curve (AUC), F1 score and confusion matrix are adopted in the
evaluation  criteria  of the  classification task. ~We chose 77K
(temperature of liquid nitrogen) as the dividing point between high superconducting
critical temperature (high-7,) and low superconducting critical temperature (low-T7¢),
and found the imbalance of data and different penalties for prediction errors, which is
a cost-sensitive ML classification task. We set the cost function as: = 41+

2 2, where 1 and 5 are the weights for judging the punishment of serious
errors and general errors. We aimed to reduce serious errors without compromising
the  accuracy,®* 1 and 5 can be  expressed  as

— 01

1=2+ 40, ,=-2+ y;where represent the data in the confusion matrix.
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Table S1. The basic influencing factors and the corresponding basic descriptors.

Prior Knowledge

Basic influencing factors Basic descriptors

Impact of Cu valence
and Jahn-Teller

RVB theory,
Zhang-Rice model
and #-J model

SO(5) super
symmetry theory

Impact of electronic and
magnetic structure

Polarons and Plasmon

valence electrons of element

angle, electronegativity,
radius and magnetic moment

space group, number
of various orbitals’ valence
electrons, covalent radius,

C . e
" column in the periodic table

number of d orbitals’

covalent radius, space
group, electronegativity,
magnetic moment,
volume of elemental,
pseudopotential radius

bond length and bond

of Cu ions

covalent radius,
electronegativity, number of
various orbitals’ valence
electrons

electron doping
concentration

magnetic moment,
number of various orbitals’
valence electrons

number of various
orbitals’ valence electrons,
1onic radius

covalent radius,
electronegativity, number of
various orbitals’ valence
electrons, space group,
pseudopotential radius

electron concentration,
crystal structure, lattice of
layered structure




Table S2. The setting conditions of the first part of creating a series of virtual samples
according to the distribution of the training samples. Here we take the cuprate as an
example and use the Hg-Pb-Ca-Ba-Cu-O element combination for virtual

high-throughput sample screening.

Element Interval Sampling Step
Hg [0.00,0.25] Uniformity 0.01
Pb [0.09,0.33] Uniformity 0.01

0.002
Ba [0.00,0.30]190% Local 0.018
[0.30,1.00]10 uniformity
%
0.048
Ca [0.00,0.27]76% Local 0.015
uniformity

[0.27,1.00]23%
Cu [0.20,0.50] Uniformity 0.01
O [1.00,1.00] Uniformity 1.00




According to the distribution of these elements in the dataset, we construct the
distribution range of each element and whether the distribution is uniform. We take
the content of O element as a reference point, i.e., setting the stoichiometric number
of O element to be always ‘1°, for constructing a virtual sample in the first part; in the
second part, we need to analyze the relationship between the ratio of metal elements
and oxygen elements in the dataset. From the distribution of the data set, the ratio of
metal elements to O elements should be greater than 0.7 and less than 2.7, so
candidate materials out of this range were deleted. The basic priority order of element
filling in this step is: Hg—Pb—Ba—Ca—Cu—0O. When the chemical formula is
generated, the priority of the element might be interchanged in the first place, while
the rest of the priority order remains unchanged. For example, in the virtual
high-throughput prediction with Pb as the independent variable, the order of element
filling was that: Pb—Hg—Ba—Ca—Cu—O0. Due to the different sequences of

elements, virtual samples with different preferences will be generated.
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Fig. S1. The T distribution statistics from the Supercon database.’
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Fig. S2. Predicted 7. distribution and some of the best candidates in the Materials

Project Database. ¢
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Fig. S3. Neural network training, testing and setup. a The convergence of a model

training. b Performance of the DNN trained by AFS-2 on a random test, the score of

R2, RMSE and MAE on the test set are used as the performance indicator of the




model. ¢ Deep neural network layer setting.

The first three layers have the activation function Rectified Linear Unit (ReLu)
fully connected layer, and these three layers are frozen, the only thing that can be
optimized is the number of neurons on each layer. Starting from the fourth layer,
adding the Batch Normalization (BN) layer and Dropout layer, until the output layer
of the last layer, the activation function of the output layer also selected ReLu and
these unfrozen layers are optimized not only neuron parameters but the number of
layers. Data are divided into three parts: training set, validation set and test set. The
training set and validation set were used for model training, and the test set was used
to evaluate model performance. In contrast, the validation set got converged if the
performance fluctuation is less than 107, and the training of the model will be stopped

for more than 50 times of such convergence condition.
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Fig. S4. Residual of DNN trained by AFS-1(S1), the absolute error is mostly within

5K and it is distributed within 20K.
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Fig. SS. Residual of DNN trained by AFS-2(S2), the absolute error is mostly within



10K, and it is distributed within 25K.

The trained models were saved as Slmodel, S2model folders, which can be

loaded via Tensorflow2.0, to get complete residual information.
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Fig. S6. In the interval of 0.44 £ 0.03, each threshold sliding step is set to 0.004. By

observing the confusion matrix, we find that by adjusting the threshold, the frequency

of serious errors can be reduced while maintaining other scores, thereby reducing the

model's serious errors in the classification task.
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Fig. S7. According to the order of a—b—c¢—d, the manifold learning methods of
principal component analysis (PAC), multidimensional scaling (MDS), t-distributed
stochastic neighbor embedding (t-SNE) and isometric feature mapping (Isomap) show

the dimensionality reduction visualization of the previous layer of the output layer of

the deep neural network.”
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Fig. S8. The virtual sample prediction results with a Hg, b Pb, ¢ Ca, d Ba, and e Cu as independent variables by DNN (trained by AFS-1), the

blue and orange curves represent the highest and lowest predicted values, respectively.
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Fig. S9. The virtual sample prediction the highest 7. with Ba by RF model (trained by
AFS-1), it also found a dip in the 0.2~0.25 interval of Ba weight, there may be a
mysterious physical effect or possible wrong data in the data set.

In our restricted interval, the highest critical temperature increases as the content
of the Pb element decreases and increases with the increase of Ba element; for Hg, Ca
and Cu elements, there is a suitable proportion of components that corresponds to the
highest T.. Interestingly, there is a dip in the curve of the highest value of the Ba
element. It is considered that there could be an outlier in the data, and an outlier is
also found in the Isomap (Fig S7d) dimensionality reduction visualization in manifold
learning. This outlier will not affect the performance of our model because of the

complex inter-layer weights of the DNN, weakening the sensitivity to outliers. We can

also use it to test whether there are suspicious data in other superconducting

experimental data.
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Fig. S10. The importance ranking of the AFS-1 descriptors extracted from the RF
model. The richness of the elements is shown in the high-resolution picture

“elem.jpg”.

The source of the basic physical characteristics of the elements is collected from
the Materials Agnostic Platform for Informatics and Exploration (MAGPIE),! see

‘FillFeature.csv’ for detail.
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