
Supplementary Material

List of nucleosome positioning-related scores

We implemented an off-target cleavage prediction model that takes into account the following features, as
well as the literature-standard epigenetic features DNase I, RRBS, CTCF, H3K4me3 from crisprSQL [1] (data
not shown):

� W/S Scheme: predictor of rotational nucleosome positioning, available on the online database nuMap [2]

� YR Scheme: predictor of translational nucleosome positioning, available on the online database nuMap
[2]

� LeNup (H3Q85C) [3]: CNN-based predictor of nucleosome positioning

� NuPoP [4]: Hidden Markov Model-based predictor of nucleosome positioning, yields histone binding
affinity, nucleosome occupancy and Viterbi scores

� nuCpos [5]: Hidden Markov Model-based predictor of nucleosome positioning, building on NuPoP, yields
histone binding affinity, nucleosome occupancy and Viterbi scores

� VanDerHeijden [6]: statistical mechanics-based method for predicting nucleosome positioning

� GC147: GC content of the 147 bp sequence around each nucleotide

� Nucleotide BDM: applying the block decomposition method [7] on the 147 bp sequence around each
nucleotide

� Strong-Weak BDM: Nucleotide BDM starting from the sequence which has G/C replaced with S and
A/T replaced with W

Neural network architectures

As described above, our CNN model is based on the architecture described in [8]. Instead of a dropout
layer, we use a Gaussian noise layer after the first convolutional layer in each encoder since we found this
to improve validation set prediction benchmarks. Having batch normalisation layers only before and after
the Siamese layers increased training stability without compromising training performance. The same was
true for applying (leaky) ReLU activation functions after the last (first) three convolutional layers. The last
three also contained a dimension-preserving max-pooling layer in between the convolution and ReLU layers.
Furthermore, we found that in our case, removing the 256-filters convolutional layer before concatenation of
the Siamese channels did not considerably affect training performance but reduced training time. We then
adjusted the downstream network accordingly, which involved removing the penultimate convolutional layer
and halving the number of filters in the remaining convolutional layers.

The RNN models are initially trained for 120 epochs, as described above. Replicating the transfer learning
approach taken in [9], we then freeze the network up to and including the second fully connected layer on both
sequence and epigenetics branch and train the remaining layers for a further 25 epochs. Dropout probability
was 0.2 and the Adam learning rate was 10−3.
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Supplementary Figures
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Figure S1: Receiver operating (left) and precision-recall (right) curves underlying Figure 3.

Pairwise training When combining various experimental studies, care must be taken as to their interac-
tion during training. We therefore devised the notion of a pairwise training performance of two studies, which
we define as the training performance when training on the larger and testing on the smaller of these studies.
We did this for all studies in the crisprSQL dataset and visualised the result in a force-directed graph (Figure
S2, Figure S3) where the force between nodes is proportional to the third power of the Spearman r obtained
by pairwise training and testing.

Figure S2 shows that even though studies using the same cell lines show some bunching in a force-directed
2D graph where distance is proportional to generalisation from one study to the other, bunches heavily
overlap between cell lines and experimental conditions. This supports the mixing of training data across
studies despite differing experimental parameters. Experimental studies conducted on HEK293 cells appear
to generalise best. Three distinct studies appear to generalise comparatively poorly to other studies, one of
which was gained on HAP1 cells. Study [10] which has been gained on synthetic DNA appears to generalise
to other studies about as well as studies on K562 cells.
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Figure S2: Left panel: 2D distance network representation of pairwise training performance using a Fruchterman-
Reingold force-directed algorithm. The force between two nodes (studies) is proportional to the third power of the
Spearman correlation when training on the larger and testing on the smaller of these studies. Study labels are
abbreviated for better visibility. Edge width represents pairwise training performance of the two adjacent studies
alone; bubble size indicates ’study importance’, i.e. the overall summed performance of a study. Close positioning
indicates good pairwise training performance. Studies have been coloured by majority cell line; all data has been
gained using a CNN model which was shown to generalise fastest in terms of Spearman r in a separate experiment
(data not shown). Right panel: Composition of the cell lines making up each individual study (colours as in left
panel) with sizes proportional to the number of data points per study, including non-validated data points. Black
circles act as a size legend.

Figure S7 shows that the RNN model is considerably influenced by the Nucleotide BDM feature which
is calculated from the 147 base pair region around each nucleotide of the (off-)target DNA. This stands in
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Figure S3: Spearman r data underlying Figure S2. Data has been gained using the CNN model.

contrast to the implicit assumption in most cleavage prediction models that sequence context only has a minor
effect on cleavage. Our results emphasise the value of the said 147bp sequence context for prediction, since
the feature has been shown to carry valuable information relevant to primary chromatin structure [7].

Sequence features pertaining to mismatched interfaces have a negative effect on cleavage activity for almost
all interface types, supporting the notion from [14] that PAM-distal and PAM-proximal mismatches reduce
cleavage activity due to cleavage inactivation and abrogation of DNA binding, respectively. We attribute
the fact that this model gives little importance to energy features to the nature of recurrent neural networks
penalising constant features across the recurrence dimension.

Figure S8 shows a strong dependence of the SHAP value for the ECRISPRoff feature on the value of the
feature itself. Small free energies of the DNA-RNA heteroduplex appear to favour cleavage activity, whilst
very strong binding is not optimal for cleavage activity.
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Figure S4: Performance comparison between piCRISPR models when tested on held out studies [11, 12, 13] whilst
omitting certain sets of features. piCRISPR then uses default values for these features, leading to slightly reduced
prediction accuracy.
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Figure S5: SHAP values for the 16× 23 CNN classification model (Figure 4) in bar chart representation. The upper
and middle bar plots refer to matched and mismatched interfaces, respectively. The different bar colours represent the
respective nucleotides on the target protospacer DNA strand.
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Figure S6: Base-pair resolved global SHAP values for the 6× 23 CNN classification model. Training and test set are
identical to Figure 4. The heatmap shows that after sequence features, the NuPoP Affinity channel contributes the
most to the model prediction, with PAM-distal nucleotides less important than PAM-proximal ones.
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Figure S7: Base-pair resolved global SHAP values for the 16 × 23 RNN classification model. Training and test set
are identical to Figure 4. The heatmap shows that after sequence features, the Nucleotide BDM channel contributes
the most to the model prediction, with PAM-distal nucleotides less important than PAM-proximal ones.
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Figure S8: SHAP dependence plot for the ECRISPRoff feature. The horizontal axis is in arbitrary units as provided
by CRISPRoff [15]. Data has been gained using the 16 × 23 CNN classification model (Figure 4). For energy scores
ECRISPRoff > −1.15, the RNA-DNA heteroduplex is weakly bound and opens easily, hence favouring cleavage (positive
SHAP value), whereas for smaller ECRISPRoff it becomes more tightly bound.
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Figure S9: Distributions underlying Table 1.
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