Optics EXPRESS

Tolerance to aberration and misalignment in a two-point-resolving image inversion interferometer: supplement

DAVID J. SCHODT,^{1,2,*} D PATRICK J. CUTLER,² FRANCISCO E. BECERRA,^{1,3} AND KEITH A. LIDKE¹

¹Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico, USA ²Teledyne Scientific & Imaging, LLC, USA

³Center for Quantum Information and Control, University of New Mexico, Albuquerque, New Mexico, USA *david.schodt@teledyne.com

This supplement published with Optica Publishing Group on 1 May 2023 by The Authors under the terms of the Creative Commons Attribution 4.0 License in the format provided by the authors and unedited. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Supplement DOI: https://doi.org/10.6084/m9.figshare.22665886

Parent Article DOI: https://doi.org/10.1364/OE.487808

Tolerance to Aberration and Misalignment in a Two-Point-Resolving Image Inversion Interferometer: supplemental document

Fig. S2. Intra-SLIVER phase tilt. (a) σ_d / σ_{qCRB} as a function of increasing horizontal tilt (*n*=1, *l*=1) in one arm of the interferometer for pixelated (solid lines) and bucket (dashed lines) SLIVER measurements. (b) MLE of the separation for a Zernike coefficient of 0.25 at varying signal levels when the model has complete knowledge of the aberration.

Fig. S3. Intra-SLIVER phase defocus. (a) σ_d / σ_{qCRB} as a function of increasing defocus (*n*=2, *l*=0) in one arm of the interferometer for pixelated (solid lines) and bucket (dashed lines) SLIVER measurements. (b) MLE of the separation for a Zernike coefficient of 0.25 at varying signal levels when the model has complete knowledge of the aberration.

Fig. S5. Intra-SLIVER phase coma. (a) σ_d/σ_{qCRB} as a function of increasing horizontal coma (*n*=3, *l*=1) (i.e., coma along the axis of separation) in one arm of the interferometer for pixelated (solid lines) and bucket (dashed lines) SLIVER measurements. (b) MLE of the separation for a Zernike coefficient of 0.25 at varying signal levels when the model has complete knowledge of the aberration.

Fig. S7. Extra-SLIVER phase tilt. (a) σ_d / σ_{qCRB} as a function of increasing horizontal tilt (*n*=1, *l*=1) at the interferometer entrance for pixelated (solid lines) and bucket (dashed lines) SLIVER measurements. (b) MLE of the separation for a Zernike coefficient of 0.25 at varying signal levels when the model has complete knowledge of the aberration.

Fig. S9. Extra-SLIVER phase astigmatism. (a) σ_d / σ_{qCRB} as a function of increasing vertical astigmatism (*n*=2, *l*=2) at the interferometer entrance for pixelated (solid lines) and bucket (dashed lines) SLIVER measurements. (b) MLE of the separation for a Zernike coefficient of 0.25 at varying signal levels when the model has complete knowledge of the aberration.

Fig. S10. Extra-SLIVER phase coma. (a) σ_d / σ_{qCRB} as a function of increasing horizontal coma (*n*=3, *l*=1) (i.e., coma along the axis of separation) at the interferometer entrance for pixelated (solid lines) and bucket (dashed lines) SLIVER measurements. (b) MLE of the separation for a Zernike coefficient of 0.25 at varying signal levels when the model has complete knowledge of the aberration.

Fig. S11. Extra-SLIVER spherical phase aberration. (a) σ_d / σ_{qCRB} as a function of increasing spherical aberration (*n*=4, *l*=0) at the interferometer entrance for pixelated (solid lines) and bucket (dashed lines) SLIVER measurements. (b) MLE of the separation for a Zernike coefficient of 0.25 at varying signal levels when the model has complete knowledge of the aberration.

Fig. S13. Interferometer arm energy asymmetry. (a) σ_d / σ_{qCRB} as a function of increasing energy asymmetry between the interferometer arms for pixelated (solid lines) and bucket (dashed lines) SLIVER measurements. (b) MLE of the separation for an energy asymmetry

 $|A_2(k_x, k_y)|^2 - |A_1(k_x, k_y)|^2$ of 0.1 when the model incorporates knowledge of the asymmetry.

Fig. S14. Pixel size comparison. σ_d/σ_{qCRB} as a function of increasing horizontal tilt (*n*=1, *l*=1) in one arm of the interferometer for pixelated (solid lines) and bucket (dashed lines) SLIVER measurements and at differing pixel sizes. The lines indicated by "hi. res." were computed with a pixel size $\delta x' = \delta x/4$ where δx is the pixel size used to produce all other results shown in the manuscript.