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Commentary on context-specificity 
Much of our analysis was done in a context-agnostic manner, aggregating signals across 
available experimental systems. As such, our rankings prioritized TR targets with recurrent, 
rather than context-specific, evidence.  

While analyzing context-specific patterns of regulation is desirable as well, this is currently 
challenging as there are few contexts for which there are sufficient data to apply our 
aggregation approach. Even when there are multiple data sets for a context (leaving aside the 
tricky question of how to define “the same context”), these were often generated by the same 
research group, which weakens their value as independent evidence. Still, it is of interest to get 
a sense of whether aggregating by context would lead to substantially different results than a 
generic aggregation. Therefore, in this section we report on a single context with multiple data 
sets to explore such analyses. We stress that with the data we provide (Supplementary Data 
S2) others can determine their own definition of a context and perform their own analyses. 

In our corpus there are three perturbation and four ChIP-seq experiments for RUNX1 in the 
context of the K-562 cell line. Much like comparing the similarity of experiments assaying the 
same versus different TRs, we can contrast experiments for the same TR but in different 
contexts. The hypothesis is that results from the same context would have greater agreement, 
pointing to reproducible regulatory profiles. However, it is also expected that considerations 
such as laboratory protocols or perturbation strategy will contribute significant technical 
variation.  

The K-562 subset of ChIP-seq experiments showed elevated (yet still moderate) similarity to 
one another relative to other RUNX1 experiments (Supplemental Fig. S22). RUNX1 K-562 
ChIP-seq experiment binding scores had a median Pearson’s correlation (r) of 0.36 with one 
another (median 90/500 overlap) and r = 0.20 (46/500) with non-K-562 RUNX1 experiments, 
while non-K-562 RUNX1 experiments had r = 0.23 (52/500) with one another. The highest 
correlation a RUNX1 K-562 experiment had with a RUNX1 non-K-562 experiment involved a 
fetal liver CD34+ HSPCs experiment (r = 0.36, 147/500). The most similar non-RUNX1 
experiments were also carried out using K-562 cells, targeting NEUROD1 and HES1. 

All three RUNX1 K-562 perturbation experiments were loss-of-functions, although their 
similarities aligned with the weak global patterns we observed (Supplemental Fig. S22A). In 
particular, two of the three experiments showed greater similarity with each other relative to the 
third, which may be attributable to differences in the experimental designs beyond the 
perturbation. Finally, the most similar (by p-value overlap) pairing of a K-562 experiment with a 
non-K-562 context was with a RUNX1 knockdown conducted in an acute myeloid leukemia cell 
line, suggestive of potential commonalities in RUNX1 regulatory profiles in different leukemic 
systems.  In sum, these comparisons exemplified our conclusions from the full corpus: elevated 
similarity among experiments targeting the same TR suggests commonalities in targets, but with 
a degree of noise that motivates aggregation to prioritize the consistent signals.  
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We next re-calculated the gene rankings, separately aggregating RUNX1 K-562 and non-K-562 
experiments. We aimed to gain at least a relativistic sense of the specificity of the RUNX1 K-562 
rankings. The K-562 and non-K-562 integrated rankings had a correlation of 0.48, while the 
perturbation rankings had r = 0.34 and r = 0.55 for the binding lists. More specifically, cutting the 
two integrated lists at 1000 revealed 221 common genes (Supplemental Fig S22B). Next, we 
performed the same comparison, this time comparing the top 1000 genes from the RUNX1 K-
562 integrated rankings with the top 1000 genes from each of the human TR integrated 
rankings. As expected, the ranking generated from all human RUNX1 data (which includes the 
K-562 experiments) had the greatest overlap (300/1000), while the remaining seven TRs ranged 
from 55/1000 (MECP2) to 126/1000 (HES1). Thus we observed that the RUNX1 K-562 ranking 
had some divergence from the RUNX1 non-K-562 ranking, but was still more similar than the 
rankings generated for the other TRs. This suggests that the K-562 ranking might be recovering 
at least some context-specific information that isn’t obscured by noise due to aggregating fewer 
data sets. 

We now highlight a handful of the identified targets, and again caution against interpreting 
differences as being purely biological in nature. The top candidate from the RUNX1 K-562 list 
was LGALS12 (Supplemental Fig. S22C), which encodes a galectin and whose expression is 
considered to be enriched in leukemic cell lines by the Human Protein Atlas resource (HPA; 
Uhlén et al., 2015). This gene was also fairly highly ranked in the non-K562 integrated rankings 
(607th) and thus also the full RUNX1 integrated ranking (262nd).  

Examples of genes that were more specifically prioritized in the K-562 list include TBX19 (K-562 
rank = 58th, non-K-562 rank = 16,900th; Supplemental Fig. S22D), EXOC3L2 (K-562 rank = 
41st, non-K-562 rank = 16,008th), and ALX4 (K-562 rank = 49th, non-K-562 rank = 15,754th). 
CR1 was a RUNX1 curated target much more strongly prioritized in the K-562 analysis (260th) 
relative to the non-K-562 list (14,060th; Supplemental Fig. S22E), and encouragingly the 
corresponding low-throughout experiment (a reporter assay) was conducted in an acute myeloid 
leukemia system (Kim et al., 1999). However, neither of the RUNX1 subset integrated lists 
outperformed the full RUNX1 integrated ranking in the low-throughput benchmark. Lastly, 
TGFBR2 was the gene most prioritized in the non-K-562 ranking (43rd) relative to the K-562 
ranking (17,883rd; Supplemental Fig. S22F).  
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Commentary on aggregate ranking 
Our ultimate gene rankings aggregate signals across experiments. Correspondingly, this means 
that a TR-gene interaction with appreciable signal in only a single experiment is likely to be 
lower ranked than interactions with signals across experiments. If the aggregation combines 
multiple contexts, a highly context-specific interaction will receive a worse ranking than one that 
is common across the contexts. An obvious way to address this is to have sufficient data from 
one context to do the analysis, as discussed in the previous section. An alternative, suggested 
by a reviewer, is to use a ranking scheme that prioritizes genes with a single positive finding in 
any experiment (“winner takes all”), in an attempt to identify context-specific targets. 

We first ranked genes within experiments by their strength of evidence (binding scores for ChIP-
seq, and p-values and absolute fold changes for perturbation). Next, for each TR, we assigned 
genes to their lowest (best) rank achieved across TR-specific experiments. For example, across 
eight human ASCL1 perturbation experiments, MYPOP had a ranking ranging from 2 to 14,383, 
and thus it was assigned rank 2 in the “minimum ranking”. This scheme introduces many ties as 
each experiment typically had a unique gene at any given rank i. Thus, to break ties we applied 
the same heuristic used on the aggregated perturbation rankings: genes with identical ranks 
were re-ordered using their average absolute fold change (or average binding score) across TR-
specific experiments. The integrated ranking was then calculated from these “minimum 
rankings” in the same manner as the “aggregate rankings.”  

In summary, the minimum ranking places greater importance on evidence in individual 
experiments compared to the aggregate ranking, but still uses information across experiments 
to resolve ties in a non-arbitrary manner.  

We next used the low-throughput resource to identify curated targets that were especially 
prioritized by the minimum ranking and were performed in comparable biological contexts. A 
notable example was G6pc2, a pancreatic gene with curated mouse NEUROD1 evidence in a 
pancreatic cell line (Martin et al., 2013) that had a better minimum integrated ranking (4th) than 
the aggregated ranking (2,623rd). Correspondingly, the NEUROD1 ChIP-seq and perturbation 
experiments in which G6pc2 achieved its “best” ranking were both in pancreatic systems. This 
instance suggests that the minimum ranking scheme has the potential to find relevant context-
specific interactions.  

However, we regularly found that the biological contexts of the “best” genomic experiments and 
the low-throughput experiments were not comparable. This does not preclude these genes from 
being true targets: it is of course possible that a real TR-target interaction could have strong 
evidence in individual genomic experiments from highly distinct tissues. But we argue that the 
interpretation of these “mismatched” cases from the minimum ranking (a gene is prioritized in a 
single perturbation and a single ChIP-seq experiment from distinct contexts) is less intuitive than 
the aggregate ranking (a gene is prioritized because it generally has evidence across 
experiments). More concretely, when we applied the low-throughput benchmark to the minimum 
rankings, they failed to outperform the aggregate rankings in general ‒ 12/16 aggregated 
integrated rankings outperformed the minimum integrated rankings. 
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Furthermore, while the minimum ranking may potentially reward true context-specific targets 
relative to the aggregate rankings, it will also reward outlier behavior that is technical in nature, 
or simply captures noise. As an example, one of the eight human ASCL1 perturbation 
experiments had no DEGs (Figure 4B). SLC9C2 was ranked 21st in this experiment, and thus 
this gene had a very high minimum ranking for ASCL1, despite not being DE in any of the eight 
ASCL1 perturbation experiments. Correspondingly, SLC9C2 outranked genes that did have 
recurrent DE evidence across experiments but were not exceptionally high in any individual 
experiment.  

Given these caveats, ideally context-specific analysis would be based on aggregation of 
multiple experiments from the same context, as we performed above for RUNX1 K-562 
experiments. We believe this strategy would enrich for specific interactions in a more robust 
manner than the minimum ranking. However, this requires having sufficient data for each 
context. 

Despite the concerns about whether the minimum ranking approach is heavily contaminated by 
technical outliers or noise, we make available all effect size matrices used for analysis 
(Supplemental Data S2), which allows ready ordering of individual experiment evidence. We 
also provide the summarized rankings with the minimum ranking strategy, which also records 
the “best” genomic experiment for each ranked gene (Supplemental Data S6). 
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Low-throughput curated target resources 

Our evaluation of the genomic rankings was facilitated by resources that curated biochemical 
assays probing TR-target interactions. These include low-throughput perturbation assays (such 
as qPCR), binding assays (ChIP, EMSA), and reporter assays (such as luciferase reporters). 
The majority of the curated interactions (60%) are uniquely identified from our previous work, 
Chu et al., 2021 (here, Chu2021), along with additional interactions that have been curated 
since original publication. For simplicity these interactions are also noted as originating from 
Chu2021 (a manuscript reporting the increased coverage is in preparation). Additionally, we 
include targets that have been curated by other resources, which was organized in Chu2021. 
TRRUST (Han et al., 2018) was by far the largest of these resources. Interactions curated by 
Chu2021 and/or TRRUST comprise 95% of the low-throughput TR-target relationships in this 
study. In decreasing order of prevalence, the remaining resources that were included are TFe 
(Yusuf et al., 2012), ENdb (Bai et al., 2020), CytReg (Carrasco Pro et al., 2018), HTRIdb 
(Bovolenta et al., 2012), InnateDB (Lynn et al., 2008), TFactS (Essaghir et al., 2010), and 
ORegAnno (Lesurf et al., 2016). 

We further note that multiple of the TCF4 interactions found when combining all of the curated 
resources were actually regarding TCF7L2, which is frequently referred to as TCF4 (T-Cell 
Factor 4) in the literature. We took care to remove errors in the resources used arising from 
confusion between TCF4 and TCF7L2. 

We also want to clarify that we made the decision to include all non-curated targets as 
“negatives” as all of our comparisons are based on relative rather than absolute AUPRCs. We 
note that Garcia-Alonso et al., (2019) also performed an AUPRC analysis (benchmarking using 
perturbation data), but for negatives they down-sampled the “non-target/negative” group to 
match the size of the “target/positive” group in order to (artificially) balance the group sizes. We 
explored this and found that it provided much higher AUPRCs (in line with what they report) 
than using the entire list. However, we felt that this framework creates high AUPRCs while 
suffering from the same biases (the sampled negative set still assumes lack of current evidence 
means it is a true negative), which we felt would risk misleading readers. 
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Fold change Purity 

To quantify whether a gene was predominantly up/down-regulated across the different types of 
perturbation experiments, we adopted the Purity metric used in clustering analysis to determine 
cluster quality. We treated gain-of-function (GoF – overexpressions) and loss-of-function (LoF – 
knockdowns and knockouts; mutants were excluded) experiments as two clusters in which 
genes are classified as either up-regulated (FC > 0) or down-regulated (FC < 0): 

𝑃𝑢𝑟𝑖𝑡𝑦!,# =	
1
𝑁
+
$

%&'

𝑚𝑎𝑥	#/𝑐% ∩	𝑡#/	

Where g indexes genes, j indexes TRs, N is the number of non-mutant experiments in which 
gene g is measured for TR j, K is the number of clusters (two – GoF and LoF), ck is a cluster, 
and tj is the dominant classification within that cluster. For example, if gene g has FC < 0 in 3/4 
GoF experiments (GoF is dominantly down-regulated) and FC < 0 in 4/4 LoF experiments (LoF 
is dominantly down-regulated) for TR j, then Purityg,j = (3 + 4) / 8 = 0.875.  

We further define Signed purity, which considers the dominant class/direction across both 
clusters: If the dominant direction is the same for GoF and LoF, we multiply Purity by -1 (thus 
the above example becomes -0.875), otherwise Purity is preserved. In this manner we can 
distinguish genes that show consistent changes in direction across experiments but unexpected 
convergence across the perturbation types. In this study, we arbitrarily define consistent genes 
as having Purity > 0.8. 

Supplemental Fig. S12 provides a demonstration of the distribution FC Purity. We stress that 
this metric is sensitive to sample sizes, and that the sparsity of data (having balanced GoF and 
LoF experiments in a consistent context) for many TRs warrants a conservative interpretation. 
Nevertheless, the frequency in which we observed divergent FC directions motivated us to 
explore this trend and we believe it is an area worthy of further investigation. 
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Figure S1. Overview of ChIP-seq experiment count of reproducible peaks. (A) Count of peaks 
by TR and coloured by species; dashed line represents minimum peaks required for analysis. 
(B) Count of peaks by presence of at least one input control. (C) Count of peaks by averaging 
de-duplicated and mapped reads across samples within an experimental unit. 
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Figure S2. Distribution of the count of overlapping genes when selecting the top 500 genes by 
binding score when comparing ChIP-seq experiments targeting the same TR (intra-TR) or a 
different TR (inter-TR) for (A) human, (B) mouse, and (C) both species when using only high-
confidence 1:1 orthologous genes. Abbreviations in C: TR+ (intra-TR), S+ (within-species), S- 
(cross-species), Out (collapsing inter-TR & intra-species with inter-TR & cross-species). 
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Figure S3. ChIP-seq experiment similarity of orthologs with and without RUNX1. (A) Left panel: 
As in Figure 2C, the distribution of binding score correlations between ChIP-seq experiments 
targeting the same TR (intra-TR) versus different TRs (inter-TRs), considering only orthologous 
genes. Right panel: The same comparison, except excluding all RUNX1 experiments. (B) Same 
as in A, except showing the density plots of the count of top 500 overlapping genes by binding 
score between pairs of experiments. 
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Figure S4. Specifically bound genes in mouse. (A) Log2 fold changes of binding scores for the 
top eight ranked genes (by p-value) for each TR in mouse experiments using a mixed effect 
linear model. (B) Distribution of binding scores for the most significant gene for each TR 
extracted from the same model as in (A). Note that Hes6 was the most significant gene in both 
the Ascl1 and the Neurod1 contrast. 
 



12 
 

 
Figure S5. Demonstration of genes with high aggregated scores in the current ChIP-seq 
corpus. (A) Left panel scatter plot: every point is a gene, where the y-axis shows the proportion 
of human ChIP-seq experiments that had a peak within 25 kbp of the gene TSS (binary binding 
assignment), and the x-axis shows the mean of the continuous binding score across all 
experiments. Right panel: distribution of binding scores for the top gene by proportion bound 
(GSAA1) and by mean binding score (GSE1). (B) Same as in (A), but for mouse experiments. 
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Figure S6. ASCL1 frequently bound loci. (A) Each point represents a human ASCL1-bound 
region, restricted to regions bound in at least half of ASCL1 experiments. The x-axis is the 
proportion of human ASCL1 experiments (n=16) in which that region is bound, and the y-axis is 
this proportion for non-ASCL1 experiments (n=113). Points are colored by ENCODE cCRE 
definitions, binning each enhancer or promoter subgroup (seen in legend of Figure 3A), and 
designating non-ELS/PLS elements as ‘Other.’ Mixed refers to regions straddling two cCRE 
groups. (B) Trackplot highlighting an intronic region of SHB, indicated with an arrow in (A), that 
had a peak in all ASCL1 experiments and only in 2/113 non-ASCL1 experiments. Left panel 
shows all ASCL1 experiments, right panel shows two sampled experiments for the other TRs, 
as well as the two TCF4 experiments in which this region had a peak called. Note that the left 
panel has variable y-axes limits (reflecting read enrichment) to fit all the peaks, while the right 
panel y-axes limits are fixed to the median of the maximum ASCL1 intensities to demonstrate 
the relative lack of signal and to fit the two TCF4 peaks. 
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Figure S7. TR perturbation experiment overview. (A-B) Histograms of the count of genes 
measured in human and mouse perturbation experiments. For microarray platforms, genes that 
were not measured are not on the platform or were filtered in QC. For RNA-sequencing, genes 
that were not measured were not appreciably detected in the tested context. (C-D) Binary 
heatmap of genes measured across human (C) and mouse (D) experiments; blue = measured, 
black = not measured. (E-F) Barcharts for the count of experiments by perturbation strategy (E) 
or expression technology (F). 
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Figure S8. TR perturbation experiment similarity. (A-C) Density plots of the count of overlapping 
genes between perturbation experiments, selecting for the top 500 mutually-measured genes 
sorted by p-value from the differential expression analysis. (D) Distribution of the counts from 
(A) broken down by TR. (E) Distribution of the counts from (B) broken down by TR. 
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Figure S9. Perturbation effect sizes. (A) Each point represents the log2 fold change of the 
perturbed TR in mouse and human perturbation experiments, coloured by TR and grouped by 
perturbation strategy. (B-C) Relationship between the effect size of the perturbed TR and the 
count of differentially expressed genes in that experiment. (B) The fold change of the perturbed 
TR is shown, while (C) shows the percentile rank of the absolute fold change of the perturbed 
TR (where 1.0 = the gene with the highest absolute fold change in that experiment). 
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Figure S10. Count of differentially expressed genes (DEG). (A) Count of DEGs by perturbation 
strategy, either including experiments with no DEGs (left panel) or excluding experiments with 
no DEGs (right panel). (B) Left panel: histogram of the count of times a gene was measured as 
DE across human experiments (n=77); Right panel: instead of raw counts, the histogram shows 
the proportion of DE measurements relative to the number of experiments in which the gene 
was measured. (C) Same as in (B), except for mouse experiments (n=165). 
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Figure S11. Frequently DE genes. (A) Relationship between the count of times a gene was DE 
across all human experiments for the eight TRs, and the DE prior ranking, as in Figure 5A. 
Highlighted are the two genes with the highest DE counts. (B) FC distributions for the genes 
highlighted in (A), coloured by DE status. 
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Figure S12. Genes typically show variable changes in FC direction across TR perturbation 
experiments. Purity is a measurement of the consistency of a gene’s FC direction within TR 
gain/loss of function experiments. (A) Demonstrates the TR-specific distributions of gene Purity 
scores, stratified by how often the genes were measured as DE across each set of TR 
perturbation experiments. Only TRs with at least eight non-mutant experiments were kept to 
alleviate issues of sample size. Genes with consistent FC direction were arbitrarily defined as 
having Purity > 0.8 (green background). (B) Shows three genes with strong human ASCL1 DE 
evidence (DE > 4/8 ASCL1 experiments), as in Figure 5D. PCLAF has low Purity (0.57) due to 
variation in its FC direction. CABP7 has perfect Purity and Signed purity (1.00), while PDGFRA 
has a Signed purity of -1.00 as the FC direction is the same for gain/loss of function 
experiments. 
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Figure S13. Top scoring gene overlap between ChIP-seq and TR perturbation experiments. (A-
C) Density plots of the count of intersecting genes between ChIP-seq and perturbation 
experiments, selecting for the top 500 genes by binding score (ChIP-seq) or by p-value from the 
DE analysis (perturbation). (D) Distribution of the counts from (A) broken down by TR. (E) 
Distribution of the counts from (B) broken down by TR. 
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Figure S14. Human aggregate scores by curation status. Boxplots show the aggregated 
genomic experiment gene scores for gene status in the low-throughput evidence resource. P-
values are from the Wilcoxon rank sum test. 
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Figure S15. Mouse aggregate scores by curation status. Boxplots show the aggregated 
genomic experiment gene scores for gene status in the low-throughput evidence resource. P-
values are from the Wilcoxon rank sum test. 
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Figure S16. Detailed evaluation metrics for TR target prediction. For evaluation we accepted all 
low-throughput modes of evidence and included orthologous gene targets conducted in either 
species. (A) Left panel: Count of unique targets in the low-throughput target resource. Right 
panel: Count of unique experiments in the low-throughput resource. A single interaction may be 
supported by multiple experiments. Unknown refers to experiments recorded by external 
resources like TRRUST. (B) Left panel: AUPRC values are as demonstrated in Figure 6A,B. Mid 
panel: The proportion of sampled targets whose AUPRC exceeded the observed aggregated 
AUPRC, as in Figure 6C. 1000 samples, size matched to each TR’s curated targets, were 
drawn from the entire curated resource and evaluated with the integrated ranking. Right panel: 
The percentile of the aggregated AUPRCs relative to the distribution of AUPRCs generated by 
treating each contributing experiment as its own ranking, as in Figure 6D. 
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Figure S17. Distribution of cCRE overlap for a well-represented context. Left panel: cCRE 
overlap for n=11 RUNX1 ChIP-seq experiments in the Kasumi-1 cell line. Right panel: The 
same distributions for all other n=58 RUNX1 experiments. The Kasumi-1 experiments have a 
comparable range of overlap compared to all other experiments combined. This suggests 
technical variability is a factor, but other biological details beyond the cell line may be relevant 
as some of the Kasumi-1 studies include additional treatments. 
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Figure S18. Point estimates and bootstrapped 95% confidence intervals (CIs) of experiment 
similarity. Relevant to Supplemental Figs S2 and S8. Experiment similarities were calculated as 
the average absolute fold change between experiments (left-hand panels), or the average top 
500 overlap of genes sorted by p-values from the DE analysis (right-hand plots). The 
corresponding sample sizes (number of comparisons) are given in the right-hand column (A) 
Gene binding scores compared between ChIP-seq experiments. Comparisons are grouped by 
experimental pairs targeting the same TR (TR+), the same TR but different species (TR+ S-), or 
different TRs regardless of species (TR-). (B) The same as in (A) but for perturbation 
experiments.  
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Figure S19. ChIP-seq experimental designs have minimal effect on the overlap of ChIP-seq 
and perturbation experiments. Relevant to Supplemental Fig. S13. The top 500 overlap of 
genes between mouse ChIP-seq (sorted by binding scores) and mouse perturbation (sorted by 
DE analysis p-values) experiments, split by ChIP-seq experiments without input controls (- 
inputs), with input controls (+ inputs), without replicates (- reps), and with replicates (+ reps). 
Mouse comparison shown due to prevalence of perturbation data relative to human. 
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Figure S20. Relative comparisons of top-overlaps are insensitive to choice of threshold. The 
average count of overlapping genes between experiments as a function of the cutoff of top N 
genes. Results for human and mouse are in the left and right columns respectively. (A) ChIP-
seq experiments, with genes sorted by binding scores. (B) Perturbation experiments, with genes 
sorted by p-values from the DE analysis. (C) Pairing ChIP-seq and perturbation experiments. 
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Figure S21. Filtering ChIP-seq experiments for cCRE overlap does not change experiment 
similarity structure. ChIP-seq experiments were represented as binary vectors representing 
whether genomic regions were bound or unbound. The Jaccard coefficient was calculated 
between every pair of binding vectors as a measure of binding region similarity (distinct from the 
gene binding score similarities used in the rest of this study). This process was repeated, except 
considering only the bound regions that also overlapped an ENCODE cCRE. Each point in the 
plot represents an experiment pair whose Jaccard was calculated with or without the cCRE 
filter. 
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Figure S22. Context-specific analysis of RUNX1 in the K-562 context. (A) Top panel shows 
similarity for human RUNX1 ChIP-seq experiments (n=4), grouped by pairs in the K-562 cell 
line, K-562 experiments paired with other cell types (Mixed), or non-K-562 pairs. Perturbation 
experiments (n=3) are shown in the bottom panel. (B) Count of common genes between the 
RUNX1 K-562 integrated rankings and other rankings as a function of list cutoff. The dashed 
line shows the RUNX1 non-K-562 ranking. (C-F) Gene binding scores and absolute fold 
changes across RUNX1 experiments in or out of the K-562 cell type for (C) the top ranked gene 
for K-562; (D) the top ranked gene in K-562 relative to non-K562; (E) the top ranked curated 
gene in K-562 relative to non-K-562; (F) the top ranked gene in non-K-562 relative to K-562. 
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Overview of TR-targets 
In the following section, we provide examples of candidate targets identified for each TR and the 
corresponding integrated ranking in mouse and human. We draw attention to the curated 
targets with the highest rankings, as well as examples of genes with strong evidence but limited 
representation in our search of the literature. Each TR is accompanied by the same style of plot 
as Fig. 6G, with the left panel showing human targets and mouse in the right panel. Each point 
is a gene, where blue points represent curated targets, and gold points represent curated 
targets that also have a high integrated ranking (here arbitrarily selected as those within the top 
500). 
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RUNX1 was the best represented TR overall, with many of the data sets from this collection 
coming from either blood progenitors or blood cancer cell lines. Correspondingly, we found 
examples of hematopoietic genes with curated evidence and a high integrated ranking, such as 
the erythroid TF NFE2 (human: 109th, mouse: 15th; Wang et al., 2010) and immune adhesion 
subunit ITGB2 (human: 179th, mouse: 26th; Puig-Kröger et al., 2003). We also found many 
genes involved in cellular motility and cytoskeletal functionality among the top ranked. Some, 
like myosin heavy chain 9 (MYH9; human: 282nd, mouse: 230th), had curated evidence 
(Bluteau et al., 2012). Most however did not, such as plectin (PLEC; human: 2nd, mouse: 24th), 
noted to be frequently implicated in cancer (Perez et al., 2021), as well as lamin A/C (LMNA; 
human: 1,387th, mouse: 34th), vimentin (VIM; human: 6th, mouse: 17th), and paxillin (PXN; 
human: 129th, mouse: 321st).  
 
We caution that the aggregate rankings did not always prioritize curated interactions, such as 
the important hematopoietic TF SPI1 (human: 2,378th, mouse: 1,544th; Huang et al., 2008). 
SPI1 had moderately elevated RUNX1 binding in both species, but weaker perturbation 
evidence lowered its integrated rankings. SPI1 was also not prioritized in the minimum ranking 
implementation (human: 1,160th, mouse: 3,107th). We further note that RUNX1 was ranked first 
as its own target in both species. While autoregulatory functionality has been shown for this TR 
(Nottingham et al., 2012), the rankings will prioritize each respective TR by virtue of these genes 
being frequently DE in their perturbation experiments. Nevertheless, the rankings also 
highlighted orthologous genes that had strong evidence in both species but are rarely studied, 
such as MOB3A (human: 11th, mouse: 104th), believed to be involved in the angiogenic Hippo 
pathway-YAP/TAZ (Boopathy and Hong 2019; Dutchak et al., 2022). Finally, we highlight that 
PHF19 (human: 5th) was recently identified in a crowd-sourced competition as an aggressive 
marker of multiple myeloma (Mason et al., 2020), suggesting further potential oncogenic activity 
of RUNX1 misregulation. 
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MECP2 was the next most represented TR and had the most brain-relevant experiments. While 
the TSS-based logic of the binding score metric is likely better suited to the TFs, the rankings 
still provided relevant examples. SDK1 (human: 1,877th, mouse: 10th) and AUTS2 (human: 
6,905th, mouse: 15th) both ranked highly in mouse. A recent murine MECP2 study 
demonstrated that these genes are in a contacting chromosomal domain enriched for 
methylated cytosines (Clemens et al., 2020), adding a further line of evidence beyond the scope 
of this study. SDK1 has been studied for its role in retinal development and cocaine addiction 
behavior (Scobie et al., 2014; Yamagata and Sanes 2019), while the connection between 
MECP2 and AUTS2 in particular has garnered interest for its involvement in 
neurodevelopmental and psychiatric outcomes (Pang et al., 2021).  
 
The top curated target by human rankings was BDNF (human: 38th, mouse: 3,234th; 
Abuhatzira et al., 2007), although this was driven almost exclusively by the perturbation 
evidence. In mouse it was AFF1 (human: 16,547th, mouse: 26th; Urdinguio et al., 2008), which 
was well supported by both data types. We also note that the curated target IRAK1 (Urdinguio 
et al., 2008), which neighbours the MECP2 loci, had excellent perturbation evidence in mouse 
but essentially no binding evidence in our framework. It has been posited that MECP2 regulates 
IRAK1 through both indirect (Urdinguio et al., 2010) and direct (Kishi et al., 2016) means. 
Examples of candidates without curated evidence include the rarely studied CDS1 (human: 
77th, mouse: 68th), which is involved in lipid droplet growth (D'Souza et al., 2014; Xu et al., 
2019). Interestingly, aberrant lipid growth has been documented in murine Rett syndrome 
models (Vashi et al., 2021). Examples of high ranking candidates that are relevant to brain 
health but lack curated evidence include SHANK2 (human: 778th, mouse: 222nd; Zaslavsky et 
al., 2020), PLXNA2 (human: 81st, mouse: 308th; Kong et al., 2016; Pijuan et al., 2021), 
CNTNAP2 (human: 1,566th, mouse: 81st; Xing et al., 2019), TENM2 (human: 2,588th, mouse: 
257th; Wray et al., 2018), and TENM3 (human: 6,614th, mouse: 14th; Singh et al., 2019). 
 

 



33 
 

ASCL1 experiments can be broadly characterized as deriving from embryonic systems (some 
from primary tissues) in mouse, while human experiments were overwhelmingly carried out in 
cancer cell lines. Highly ranked and previously described targets include Notch pathway 
effectors DLL1 (human: 1st, mouse: 7th), DLL3 (human: 96th, mouse: 9th), DLL4 (human: 36th, 
mouse: 1,218th), HES6 (human: 73rd, mouse: 4th) and JAG2 (human: 9th, mouse: 4,720th) 
(Castro et al., 2006; Henke et al., 2009; Johansson et al., 2009; Nelson et al., 2009; Castro et 
al., 2011; Augustyn et al., 2014; Misra et al., 2014). Notch effector LFNG was also highly ranked 
(human: 13th, mouse: 96th) but was not in the curated resources. Similarly, the cell-cycling 
CDC25B had robust evidence in both data types for both species (human: 5th, mouse: 2nd); 
this gene was not in the curated resource but previously had been noted as a candidate target 
(Castro et al., 2006; Castro et al., 2011).  
 
Other examples of candidates lacking curated evidence but have been putatively linked to 
ASCL1 include the repressive TFs ID1 (human: 14th, mouse: 27th) and ID3 (human: 19th, 
mouse: 14th) (Jorstad et al., 2020), as well as ZBTB18 (human: 33rd, mouse: 18th) (Wapinski 
et al., 2013). Our work supports previous connections made between ASCL1 and the 
transcription repressor CBFA2T3 (human: 524th, mouse: 3rd) (Alishahi et al., 2009; Aaker et al., 
2010), and novelly links ASCL1 to the epilepsy-implicated potassium channel gene KCNH2 
(human: 7th, mouse: 113th) (Bagnall et al., 2016 & 2017). 
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NEUROD1 experiments were typically conducted in embryonic stem cells, pancreatic tissues, or 
cancer cell lines. This TR had the second fewest targets in the curated resource, and only a 
handful of these also had high integrated ranks in one species alone, such as ISNM1 (human: 
5,556th, mouse: 90th; Breslin et al., 2003). This gene is active in both neural and endocrine 
systems, and we found other examples of candidate targets that implicate NEUROD1’s multi-
tissue activity. SRRM4 (human: 137th, mouse: 36th) encodes a crucial neurodevelopmental 
splicing factor recently implicated as contributing to dysregulated splicing in islets cells in a 
murine diabetic model (Quesnel-Vallières et al., 2015; Wilhelmi et al., 2021). Congenital 
disorders in Golgi functionality gene COG1 (human: 312th, mouse: 53rd) are associated with 
hypoglycemia and neurological impairment (Climer et al., 2018; Zhang et al., 2018; Huang et al., 
2021). CXXC4 (human: 5,465th, mouse: 4th) has evidence supporting roles in beta cell 
differentiation and neuronal stem cell proliferation (Ahn et al., 2004; Guan et al., 2020), while 
STXBP1 (human: 1,478th, mouse: 146th) has been linked to encephalopathies and 
enteroendocrine functionality (Stamberger et al., 2016; Campbell et al., 2020). 
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MEF2C heavily skewed towards mouse for both data types, with none of the human 
experiments conducted in neuronal contexts. Only a single curated target in human had a high 
integrated ranking, which was MEF2C itself (human: 3rd, mouse: 276th; Escher et al., 2011), 
while the top curated target in mouse was NR4A1 (human: 1,458th, mouse: 10th; Nagel et al., 
2008). HDAC5 (human: 165th, mouse: 92nd), HDAC9 (human: 59th, mouse: 95th), and MEF2D 
(human: 26th, mouse: 165th) were ranked highly in both species. Prior work has well 
established the interplay between HDACs and MEF2 TFs across multiple systems (Haberland 
et al., 2009), adding further support that our framework can prioritize known biology. Kruppel-
like factors KLF6 (human: 22nd, mouse: 5th) and KLF2 (human: 135th, mouse: 41st) were 
similarly highly ranked in both species, while KLF4 was high in mouse (human: 3,640th, mouse: 
73rd). While absent from the curated resources, prior studies have nominated these interactions 
(Salma and McDermott 2012; Xu et al., 2015; Lu et al., 2021). Finally, we highlight ARID1A 
(human: 2nd, mouse: 281st) which encodes a DNA-binding SWI/SNF chromatin remodeler that 
was recently demonstrated to physically interact with MEF2C and regulate embryonic cardiac 
versus neuronal differentiation (Liu et al., 2020). Our work further suggests that MEF2C 
regulates expression of ARID1A in addition to interacting with its protein product. 
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PAX6 also had more data in mouse than human, with experiments generally derived from 
retinal, cortical, or pancreatic tissues. After PAX6 itself (Sun et al., 2015), high ranking curated 
targets included MAB21L1 (human: 6th, mouse: 5th; Sun et al., 2015), which encodes a 
nucleotidyltransferase noted for its “exceptional” conservation and role in eye development (de 
Oliveira Mann et al., 2016). MAB21L2 meanwhile was a curated target (Wolf et al., 2009) that 
ranked highly in human (68th) but not mouse (9,157th). Retinaldehyde binding protein 1 
(RLBP1; human: 119th, mouse: 7th; Boppana et al., 2012) was another highly ranked and 
curated target with defined functionality in the eye. 
 
Examples of top human candidates absent from the curation resource includes EPHA3 (human: 
21st, mouse: 4,613th), which encodes an ephrin receptor kinase involved in retinotectal 
mapping (Lemke and Reber 2005), and DNAJB6 (human: 1st, mouse: 2,342nd), which 
produces a chaperone found to play a critical role in preventing neuronal protein aggregation  
(Thiruvalluvan et al., 2020). The lead mouse target was the biliverdin reductase-encoding 
BLVRA (human: 14,453rd, mouse: 2nd), with contributions from pancreatic as well as neuronal 
experiments. BLVRA was also the most significant gene in the mouse binding specificity 
analysis (Fig. S4B). Other uncurated candidates include the neuronal marker MAP2 (human: 
143rd; mouse: 71st), the poorly characterized ZNF608 (human: 50th, mouse: NA), and ABHD4 
(human: 685th, mouse: 65th), whose lysophospholipase product was described as protective 
against the inappropriate delamination and migration of Pax6-expressing murine radial glial 
progenitor cells (László and Lele et al., 2020).  
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TCF4 perturbation experiments for both species covered a range of neuronal contexts, as well 
as experiments in blood and kidney systems. Only a single mouse Tcf4 ChIP-seq experiment 
was identified (a neural stem cell line; Moen et al., 2017), while the human ChIP-seq 
experiments tended to be from blood cancer and neuroblastoma cell lines. TCF4 was the most 
difficult TR to curate given the widespread prevalence of the TCF4 symbol being used for 
TCF7L2 (also known as T-Cell Factor 4), a TF commonly studied in Wnt signalling and colon 
cancer. A warning of this potential for confusion is also found in Papes et al., 2022. We 
suspected that this naming “contamination” affected other literature curated resources, and after 
screening all candidates only eleven TCF4 targets were recovered.  
 
TCF4 (human: 8th, mouse: 943rd) has been shown to have autoregulatory functionality in 
murine dendritic cell differentiation (Grajkowska et al., 2017). However, binding was low in 
human and not detected in the single mouse Tcf4 ChIP-seq data set, unlike for the curated 
target and cyclin-dependent kinase inhibitor encoding CDKN1A (human: 21st, mouse: 369th; 
Deliri et al., 2011). Lead human candidates include DEPP1 (human: 1st, mouse; 10,999th), an 
autophagy regulator gene, while the microfibril-associated MFAP4 (human: 3rd, mouse: 19th) 
ranked highly in both species, as did the neurodevelopmental TF gene ZBTB18 (human: 4th, 
mouse: 35th). Noting that the binding was driven by a single experiment, mouse was led by 
Gpsm2 (human: 5,569th, mouse: 1st), affiliated with a human hearing phenotype (Doherty et al., 
2012), and the melanocortin receptor Mc4r (human: 15,179th, mouse: 2nd), commonly studied 
in appetite control (Asai et al., 2013). Finally, TLCD1 (human: 27th, mouse: 3rd) was a top 
candidate in both species, with the sparse literature for this gene pointing to its role in 
membrane fluidity regulation (Ruiz et al., 2018).  
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HES1 ChIP-seq data was scarce and the perturbation experiments had relatively few DE genes 
(only 223 genes were DE at least once across all 9 experiments in both species; Fig. 4B), 
leading to less consistent aggregated evidence. Lymphotoxin beta LTB (human: 8th, mouse: 
3,213th) was the only gene to be DE more than once in the human HES1 experiments, with 
binding signal in the K562 but not HepG2 or MCF7 ChIP-seq experiments. HES1 (human: 1st, 
mouse: 1st) was the top curated target in both species, and has been characterized as having 
auto-repressive functionality (Havrda et al., 2008). ATOH1 (human: 50th, mouse: 4,923th) was 
a curated target that was also the most significant gene in the HES1 specific binding analysis 
(Fig. 2B), but the perturbation evidence was negligible.  
 
Of the human genes with one DE count, the mitochondrial lipid transporter-encoding STARD7 
(human: 2nd, mouse: 7,311th) had the strongest binding score, while TF gene E2f5 (human: 
1,085th, mouse: 4th) had the strongest bind score among mouse genes with one DE count. The 
neurodegenerative-associated Prolifin (Pfn1; human: 134th, mouse: 5th; Yang et al., 2016) had 
the strongest binding signal in mouse – while it was not DE in the mouse studies, PFN1 was DE 
once in human. Finally, BAHCC1 (human: 34th, mouse: 327th), which encodes a repressive 
histone mark reader (Fan et al., 2020), was highly bound in both species, as was the cell-cycle-
associated FBXO31 (human: 48th, mouse: 129th). 
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