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eMethods 
 
Stroke patients and brain lesions 
 
Stroke patients 
We retrospectively studied lesion locations from 76 patients with new onset post-stroke epilepsy (ischemia) that were 
part of a previous study. A description of this dataset has been posted on medRxiv1, but this paper does not include 
any of the analyses or results presented here. In this previous study, a systematic hospital wide medical record search 
was performed to select patients with an age ≥ 18 years old, a brain MRI with a visible ischemic stroke, and a diagnosis 
of symptomatic epilepsy made between 2004 and 2017 at the Turku University Hospital, Turku, Finland. A diagnosis 
of post-stroke epilepsy was made by retrospective review of diagnosis codes, clinical charts, semiology, EEG and 
neuroimaging. All included patients had: (i) a diagnosis of new onset epilepsy associated with ischemic stroke 
according to current ILAE criteria, including at least two unprovoked seizures occurring more than 24 hours apart, 
more than seven days after stroke onset (i.e. late seizures), (ii) brain MRI obtained three months prior or after epilepsy 
diagnosis (iii) one or more focal ischemic stroke lesions visible on MRI, (iv) no other brain lesions or structural 
abnormalities, and (v) no history of seizures prior to their stroke. Patients with a single seizure, evoked seizures, or 
only seizures within seven days after stroke onset (i.e., early seizures) were excluded. Patients with unclear etiology, 
secondary brain lesions after their first stroke or other likely causes of epilepsy such as intracranial surgery or 
electrolyte disturbances were excluded. In total, 76 patients fulfilled all criteria and were included in the study. 
 
Brain lesions 
Lesion locations were previously manually segmented on high-resolution patient-specific MRI scans using FSLeyes2 
software (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLeyes). All slices in the coronal, sagittal and horizontal planes were 
examined and the lesion location was segmented in all three planes on T1 or T2 weighted sequences. Lesioned voxels 
were assigned a 1 and non-lesioned voxels were assigned a 0, resulting in a three-dimensional binary lesion mask. 
Each patient’s lesion mask was subsequently spatially normalized to a common atlas (Montreal Neurological Institute 
(MNI) space, Figure 1A) using FMRIB’s linear image registration tool (FLIRT) implemented in FSL. Linear 
registration was used as opposed to non-linear registration because structural brain lesions such as stroke may affect 
the gross brain anatomy leading to bias in lesion location.3,4  

To control for the normal distribution of stroke lesions, two independent and previously published datasets of 
consecutive stroke patients with lesion locations not associated with epilepsy were used as controls (n = 1355, n = 
4906) as in our prior work.16,20 The first control dataset included 135 lesion masks, part of the Washington University 
Stroke Project5. The second control dataset included 490 lesion masks, part of the Genes Associated with Stroke Risk 
and Outcomes Study (GASROS) collected at Massachusetts General Hospital6. Investigating the relationship between 
lesion location and epilepsy was not a goal of these studies and therefore information on whether patients developed 
post-stroke epilepsy was not collected.  The prevalence of epilepsy in these control cohorts is expected to be 5-10%,7 
much less than the 100% in our post-stroke epilepsy cohort. However, the presence of some patients with epilepsy in 
these control cohorts may bias us against finding significant differences. See eTable 1 for patient demographics 
(discovery dataset).  

 
 
Lesion location mapping  
 
Traditional lesion location mapping methods were used to test whether lesions associated with post-stroke epilepsy 
map to a common brain region. 
 
A priori region of interest analysis 
First, we assessed the maximum lesion overlap across any voxel in the whole brain. Second, we calculated the lesion 
volume and assessed the overlap (or damage) of each lesion to masks of a priori regions of interest (ROIs): the cerebral 
cortex, subcortex, cortical lobes (including mesial temporal lobe), and vascular territories. The cerebral cortex mask 
was defined by combining all cortical lobe masks from the Harvard-Oxford Cortical Atlas8 (masks were thresholded 
and binarized at 25% probability). The subcortex mask was defined by subtracting the cerebral cortex mask from the 
MNI brain mask. The lobar masks of the frontal, parietal, occipital, and temporal lobes were defined by the MNI 
Structural Atlas9, as this atlas is more liberal and includes the adjacent white matter in contrast to only the gray matter 
included in the Harvard Oxford Cortical Atlas8. The mesial temporal lobe mask was defined by adding and binarizing 
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the hippocampus and amygdala masks from the Harvard-Oxford SubCortical Atlas8 (masks were thresholded and 
binarized at 25% probability). The vascular territories masks were defined by the ‘Vascular Territory template and 
atlas in MNI space’.10 Damage to these a priori ROIs was quantified by calculating the number of lesioned voxels 
intersecting with each mask and dividing by the number of voxels in each brain region mask, resulting in the 
percentage of the brain region damaged by the lesion. Association between percentage damage to these regions and 
epilepsy diagnosis was analyzed with an Aspin-Welch test, assessed using permutations, while controlling for lesion 
volume as a covariate (i.e. nuisance variable) and correcting for multiple testing. A two-tailed family wise error 
corrected p-value < 0.05 was considered significant. The Aspin-Welch test, implemented in the tool PALM 
(Permutation Analysis of Linear Models, https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/PALM)11, does not assume identical 
variances, thus accommodating different distributions between the groups. 
 
Voxel-based lesion symptom mapping analysis 
To identify any lesioned brain voxels associated with epilepsy, we used univariate voxel-based lesion-symptom 
mapping (VLSM) in NiiStat (https://github.com/neurolabusc/NiiStat)12,13 and multivariate VLSM14,15 in the  SVR-
LSM toolbox (https://github.com/atdemarco/svrlsmgui)16.  

NiiStat is a Matlab software package that performs univariate VLSM, with a general linear regression model and 
permutation test, controlling for covariates. We limited our analysis to voxels occurring in at least 5% of lesions, 
assessed with Freedman-Lane permutations (the default setting of 2000 permutations was used), while controlling for 
lesion volume as a covariate and correcting for multiple testing. These parameters were chosen based on published 
best-practice recommendations12,13,17. A two-tailed family wise error corrected p-value < 0.05 was considered 
significant. SVR-LSM is a Matlab software package that performs multivariate voxel- and cluster-based LSM with a 
machine learning regression, termed the support vector regression (SVR). In contrast to univariate VLSM, which 
considers neighboring voxels as independent. Multivariate SVR-VLSM simultaneously considers many voxels at once 
when determining whether damaged brain regions contribute to behavioral deficits15,16. These multivariate LSM 
approaches can identify complex dependences that traditional univariate VLSM approaches cannot. In line with the 
univariate VLSM analysis in NiiStat, we limited our analysis for multivariate VLSM to voxels occurring in at least 
5% of lesions, assessed with permutations (default setting of 10,000 permutations was used), while controlling for 
lesion volume using the standard “direct total lesion volume control” (dTLVC) approach and correcting for multiple 
testing. A two-tailed family wise error corrected p-value < 0.005 was considered significant. These parameters were 
chosen based on published best-practice recommendations14–16.  

Additionally, we explored univariate and multivariate VLSM results using liberal statistical cutoffs and assessed 
their alignment with our findings from lesion-network mapping by overlapping statistically significant VLSM voxels 
with lesion network mapping results.  
 
 
Lesion network mapping  
 
Lesion network mapping combines the lesion location associated with a specific symptom or neuropsychiatric disease 
with the human brain connectome to estimate the brain network connected to each lesion location. In this method, the 
lesion location is commonly derived from the structural brain images of a patient, while the human brain connectome 
is derived from functional MRI (fMRI) data of healthy participants. The term “network” in lesion network mapping 
refers to “voxels that show a temporal correlation in spontaneous fMRI fluctuations with the lesion location”.18  
 
Lesion network mapping was performed to test whether lesions associated with post-stroke epilepsy map to a specific 
brain network. As described previously,19,20 we performed seed-based functional connectivity analyses between each 
lesion location and all other brain voxels using the resting state functional connectivity data (2 × 2 × 2 mm resolution) 
from 1000 healthy participants (human brain connectome: https://dataverse.harvard.edu/dataverse/GSP).21,22 This 
process results in a lesion network for each lesion location (Figure 2A-B, eFigure 1). More details are described below.  
 
The human brain connectome 
Resting state functional connectivity was obtained from 1000 healthy participants, using a high-resolution 3T MRI 
scanner in the ‘Open Access’ Brain Genomics Superstruct Project (GSP) 
(https://dataverse.harvard.edu/dataverse/GSP). MRI data acquisition was performed at Harvard University and 
Massachusetts General Hospital using a 12-channel phased-array head coil. Structural data included a high-resolution 
(1.2mm isotropic) multi-echo T1-weighted magnetization-prepared gradient-echo image. Functional imaging data 
with whole-brain coverage in the resting state (still, stay awake, and keep their eyes open while blinking normally) 
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were acquired on a gradient-echo echo-planar imaging (EPI) sequence sensitive to blood oxygenation level-dependent 
(BOLD) contrast. BOLD runs consisted of 47 interleaved slices, with 124 measurements collected for each BOLD 
run (TR = 3000 msec; 4 initial TRs collected to allow for T1-stablization and 120 valid measurements). One or two 
BOLD runs were acquired per subject (72.6% of sessions included two runs). Preprocessing of these scans has been 
fully described elsewhere,21,22 and included regression of noise variables derived from motion, CSF, white matter, and 
the global signal.  
 
Computing lesion networks from lesion locations using the human brain connectome 
To compute a lesion-network map, each lesion location was used as a seed in resting state functional connectivity 
analysis of the data collected from each of the 1000 participants included in the human connectome (see methods 
flowchart in eFigure 1). The time series for voxels within the lesion location were correlated with the time series from 
all other brain voxels and results were statistically combined across the 1000 participants to create a voxel-based T-
map, as described before.19,20 The resulting T-map, also termed a lesion-network map, represents the strength and 
consistency of functional connectivity for each lesion location between all other brain voxels (Figure 2A-B). Positive 
functional connectivity (warm colors) refers to a positive correlation of blood-oxygen-level-dependent (BOLD) 
timeseries between the lesion location and all other brain voxels, while negative functional connectivity (cool colors) 
refers to a negative correlation (i.e. anticorrelation) of BOLD timeseries between lesion location and all other brain 
voxels. In other words, when the BOLD activity in the lesion location goes up, BOLD activity will also go up in the 
brain regions positively correlated to the lesion location but will go down in the regions negatively correlated and vice 
versa.  
 
Identifying the functional connections associated with epilepsy 
To identify functional connections associated with epilepsy, we performed a whole-brain voxel-based permutation 
test using the software Permutation Analysis of Linear Models (PALM) (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/PALM), 
while controlling for lesion volume as a covariate and correcting for multiple testing, in line with previous lesion 
network mapping studies.23,24 We used an Aspin-Welch test at each voxel, allowing for unequal variance between 
groups, 2000 permutation and the p-values were computed using a generalized Pareto distribution fitted to the tail of 
the permutation distribution.11 The resulting output is a spatial map of voxels more positively or negatively connected 
(“anticorrelated)25 to lesion locations associated with epilepsy (Figure 2C). A two-tailed family wise error corrected 
p-value < 0.05 was considered significant, however higher statistical thresholds were often used to highlight the most 
significant findings (see Figure legends).  
 
Consistency of results with and without global signal regression 
It is worth highlighting that our normative connectome (GSP) was preprocessed using global signal regression, which 
greatly reduces the influence of non-specific variance, but may complicate interpretation of negative 
correlations.26,27 To ensure our results were similar between connectome preprocessing methods, we repeated our 
lesion network mapping analysis using a different 100-subject functional connectivity dataset generated without using 
global signal regression, similar to prior studies.19,28 Resting state functional MRI data were processed using the 
aCompCor strategy as implemented in the Conn Toolbox (www.nitrc.org/projects/conn),29,30 which includes 
regression of noise variables derived from motion, CSF, and white matter, but not the global signal. All settings for 
preprocessing and regression were kept as default/recommended. 
 
Consistency of results after controlling for covariates  
To test whether lesion network mapping results were similar after controlling for variables such as age, sex, acute 
seizyre and lesion volume or known epilepsy risk factors (damage to the cortex, subcortex and MCA territory7), we 
repeated our lesion network mapping analyses including these variables as a covariate (nuisance variables) in the 
PALM design matrix. To ensure our results were similar across multiple stroke lesion datasets, seizure type (focal 
only or focal to bilateral tonic clonic), delay to first seizure after stroke (within or after 6 months), EEG abnormalities 
(epileptiform / slowing or only clinical evidence of seizures), and patients using different antiseizure drugs, we 
repeated our lesion network mapping analysis in PALM for these subgroups of patients.  
 
Consistency of results in a matched subgroup analysis 
To test whether lesion network mapping results were similar comparing epilepsy lesions to a subgroup of controls that 
were matched for lesion volume and damage to the cortex and subcortex, we used propensity score matching 
(https://github.com/kosukeimai/MatchIt)31–34. Propensity score matching is a validated method used to account for 
confounds in observational studies which allows one to precisely generate two matched groups that are equivalent 
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across multiple confounds/covariates except for the independent variable of interest. Specifically, a propensity score 
was calculated for each subject by fitting a logistic regression model where the response variable is group membership 
(epilepsy vs. control) and the explanatory variables are the confounds (damage to the cortex and subcortex). A matched 
control subject (n = 76 of 625 original controls) for each epilepsy subject (n = 76) was selected, based on the closest 
propensity score. We performed this matched group analyses twice, first matching groups based on lesion volume 
(model: epilepsy ~ lesion volume), and second, matching groups on damage to the cortex and subcortex (model: 
epilepsy ~ percentage damage to the cortex + percentage damage to the subcortex). After matching groups, we 
performed a lesion-network mapping analysis in PALM on this subset. We tested whether the primary findings from 
our full ischemic stroke cohort persisted in this smaller matched subset.  
 
Mediation analysis to assess the relationship between independent and dependent variables  
To assess the relationship between lesion connectivity, lesion volume, damage to the cortex and subcortex, and 
epilepsy diagnosis, we performed statistical mediation analyses using the lavaan R package 
(https://github.com/yrosseel/lavaan.git),35 with the recommended 5000 bootstrap samples to calculate significance of 
the indirect pathway via confidence intervals. 
 
Lesion network mapping using a structural connectome 
We repeated our lesion network mapping analysis in PALM using structural connectivity derived from BCBtoolkit, a 
widely implemented software package to assess white matter tract disconnection of brain lesions. We used a similar 
method as described in one of our previous papers.36  
 
First, we performed lesion network mapping analysis using structural connectivity instead of functional connectivity. 
We calculated the probability of a given voxel to be disconnected on a whole-brain level, resulting in a structural 
lesion network for each lesion location (n=701 of which 76 with epilepsy). We identified the structural connections 
associated with epilepsy with PALM, using an identical method as used in our functional connectivity analyses. 
Second, we explored convergence / divergence between structural and functional lesion network mapping by testing 
whether disconnection of structural connections to our functional lesion network nodes differed between epilepsy and 
control lesions. Specifically, we computed structural connectivity with each lesion location, then computed the overlap 
of this structural connectivity map with our functional lesion network nodes (“disconnectome score”). Finally, 
disconnectome scores of lesions associated with epilepsy or control were compared using an Aspin-Welch test.  
 
 
Generalizability across different lesion types   
 
Other lesion type datasets 
To test for generalizability, we studied four validation datasets of other lesion etiologies: brain hematoma locations in 
patients with hemorrhagic stroke (n = 320, 7% with epilepsy),37 brain injury locations in Vietnam war veterans with 
penetrating head trauma in (n = 197, 44% with epilepsy),38 brain tumor locations in patients with glioblastoma 
multiforme (n = 132, 46% with epilepsy),39 and cortical tuber locations in children with Tuberous Sclerosis Complex 
(n = 123, 81% with epilepsy).40  These lesion datasets were selected for inclusion in the current study because 1) they 
were used in prior publications relating lesion locations to epilepsy, 2) lesion locations were made available to us for 
analyses, and 3) a control dataset of similar lesions not associated with epilepsy was also available. All datasets 
meeting these criteria were included in the current study. No datasets were included or excluded after analysis. For 
each dataset, we used either a validated segmentation algorithm (https://github.com/msharrock/deepbleed)41 to outline 
the lesion locations (hemorrhagic stroke) or used the previously published lesion outlines (penetrating heat trauma, 
glioblastoma multiforme, tuberous sclerosis complex) to avoid any potential risk of bias. See eTable 2 for patient 
demographics and details on each dataset (validation datasets).  
 
Generalizability of post-stroke epilepsy network findings to other lesion types 
Using the connections derived from ischemic stroke lesions as an a priori region of interest (ROI, Figure 2A-B), we 
tested the hypothesis that each of the other lesion types would show similar connectivity differences between epilepsy 
and control lesions. We repeated the same voxel-based permutation test in PALM controlling for lesion volume that 
we used in our primary analysis but limited our search space to our a priori ROI derived from the ischemic stroke data 
and used a more liberal statistical cutoff given the reduced sample size (one-tailed false discovery rate corrected p-
value < 0.05). Note that we have previously reported on a subset of these connections in tubers associated with infantile 
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spasms54 (a specific infantile epilepsy syndrome) but are extending these results here to epilepsy diagnosis and other 
lesion types.  
 
Estimating risk of lesion-related epilepsy 
 
A brain network for lesion-related epilepsy 
Using the lesion network nodes derived from post-stroke epilepsy (Figure 2C), we computed a distributed brain 
network map with regions of increased and decreased risk of epilepsy (Figure 4A). The whole-brain functional 
connectivity of each lesion network node (GPi, SN, or cerebellum) was computed separately by running these nodes 
as a weighted seed in the same human connectome used for the lesion network mapping analysis (GSP). The whole-
brain functional connectivity maps of these three separate nodes were then averaged into one whole-brain map and 
inverted so that lesion locations at increased risk of epilepsy are represented in warm colors and lesion locations at 
decreased risk of epilepsy are represented in cool colors (Figure 4A). Intersection of lesions on this distributed brain 
network map thus provides a convenient tool to visualize epilepsy risk based on lesion location (Figure 4B and C) 
 
Leave-one-dataset-out analysis 
For the leave-one-dataset-out-analysis, the five lesion types were defined as five datasets and we iteratively used four 
datasets to test the left-out dataset. We combined these four datasets, and identified the lesion network nodes 
significantly associated with epilepsy across different lesion types (leaving out ischemic stroke lesions). This whole-
brain PALM analysis was identical to our primary lesion network mapping analysis in ischemic stroke but controlled 
for lesion type to identify the connections specific to epilepsy across different lesion types, while correcting for lesion 
volume as a covariate and correcting for multiple testing. Significance was assessed with permutations, and controlled 
for batch effects using exchangeability blocks to permute within each lesion dataset / type.42 As in our primary analysis 
in ischemic stroke, a two-tailed family wise error corrected p-value < 0.05 was considered significant. Next, we 
computed the functional connectivity between each lesion from the left-out dataset to the lesion network nodes 
generated from the other four datasets, by correlating the average functional MRI (fMRI) signal between these two 
regions (ROI-to-ROI connectivity), using the same normative connectome (n=1000) used for the lesion network 
mapping analysis. This leave-one-dataset-out process was repeated five times, each time leaving out a different lesion 
type. To evaluate the potential prognostic relevance of this network, association between post-stroke epilepsy and this 
out-of-sample lesion connectivity value was tested using logistic regression, controlling for lesion volume and known 
epilepsy risk factors (damage to the cortex, subcortex, and MCA territory).  
 
Estimating risk of lesion-related epilepsy 
These lesion connectivity values were then used to stratify patients into three risk categories similar to previous work24: 
high-fc (functional connectivity one SD above the mean), low-fc (functional connectivity one SD below the mean) 
and moderate-fc (patients in between the high and low risk groups). A Chi-squared test was performed to compare the 
proportion of epilepsy across the different risk groups. To ensure our results were not biased by lesion type, we 
repeated this risk stratification by categorizing subjects within each lesion type instead of across lesion types. To 
ensure results were independent of our risk group cutoffs, we repeated this analysis using receiver operating 
characteristics (ROC) and computed the area under the curve (AUC). 
  
Power analysis for risk stratification  
The achieved power was calculated using the software G*Power43. Power was 1 for risk stratification of all datasets 
(Figure 4D left panel)  assuming a Chi2= 205.3, n=1473, df = 2, α = 0.05, and Cramer’s V effect size = 0.264. 
Power was 0.86 for risk stratification of post-stroke epilepsy (Figure 4D right panel), assuming a Chi2= 22.5, n=701, 
df = 2, α = 0.05, and Cramer’s V effect size = 0.127.  
 
Therapeutic relevance for deep brain stimulation  
 
DBS patients  
To evaluate the potential therapeutic relevance of this network, we analyzed the DBS electrode locations of 30 patients 
with drug resistant epilepsy who received DBS of the anterior nucleus of the thalamus (ANT), the FDA approved 
DBS target for focal epilepsy.44 Patient demographics are presented in eTable 3. We tested whether improved clinical 
outcome was associated with DBS sites that are more connected to our lesion network nodes. Clinical outcome was 
measured by the percentage of change in seizure frequency, obtained from standard seizure diaries.  
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DBS electrode localization and computing stimulation sites 
Each patient’s DBS electrode locations and stimulation sites were localized in MNI space using Lead-DBS 
(https://www.lead-dbs.org)45 and patient specific stimulation parameters, similar to previous studies.46 Briefly, pre-
operative T1 / T2 MRI sequences and post-operative MRI / CT images were linearly co-registered using SPM 
(https://www.fil.ion.ucl.ac.uk/spm/software/spm12/47). Co-registration was further refined using the ‘brainshift 
correction48’ option and images were normalized to MNI space using the Advanced Normalization Tool 
(http://stnava.github.io/ANTs/49). DBS electrode trajectories and contacts were automatically pre-localized and 
manually refined using Lead-DBS. Each patient’s stimulation site (also termed volume of activated tissue or VAT) 
was modeled in MNI space using patient specific stimulation settings and a finite element approach in an adapted 
version of the Fieldtrip/Simbio pipeline included in Lead-DBS (http://www.fieldtriptoolbox.org/; 
https://www.mrt.unijena.de/simbio/50).  
 
Calculating DBS site connectivity to lesion network nodes  
We then calculated the functional connectivity of each patient’s stimulation site to the lesion network nodes (Figure 
2C) using ROI-to-ROI connectivity. Functional connectivity between these regions was calculated using the same 
normative connectome dataset (n=1000) used in the lesion network mapping analysis described above. We tested for 
correlation between this connectivity value and seizure frequency with a Pearson correlation (r) and permutation 
testing. To control for the effect of stimulation amplitude, we repeated this correlation using DBS amplitude (V) and 
VAT volume (voxels) as a covariate. To test whether these results were robust to outliers, we repeated this correlation 
excluding an outlier with worsened seizure control after DBS. DBS parameters such as frequency (Hz) and pulse 
width (μs) were also correlated with clinical outcome. The achieved power for DBS site connectivity correlation with 
clinical outcome was 0.97, assuming a two-tailed r(H0) = 0, r(H1) = -0.63, n = 30, α = 0.05.    
 
DBS network mapping analysis 
We performed a voxel-based DBS network mapping analysis using PALM to identify connections significantly 
associated with DBS response within the a priori ROI of the lesion network nodes derived from the ischemic stroke 
data (Figure 2A-B). A two-tailed false discovery rate corrected p-value < 0.05 was considered significant, similar to 
the analyses for voxel-based testing of generalizability to other lesion types (Figure 3). Finally, clusters of connections 
significantly associated with DBS response outside this a priori ROI were defined using a whole-brain PALM analyses 
with threshold-free cluster enhancement. A two-tailed family wise error corrected p-value < 0.05 was considered 
significant.  
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eTable 1 

Discovery data Post-stroke epilepsy Control dataset 1 Control dataset 2 
Reference Nordberg et al. 20211 Corbetta et al. 20155 Wu et al. 20156 
N 76 135 490 
Sex (male/female) 39 / 37 63 / 72 303 / 187 
Age at scan (years)  61 [14.6] 53.6 [10.8] 65 [14.9] 
Time between stroke and first seizure 
(days) 

978 [2162] NA NA 

Seizure type, n (%)  NA NA 
Focal seizures only 31 (40.8%)   
Focal to bilateral tonic clonic seizures 45 (59.2%)   

EEG abnormalities, n (%)  NA NA 
Normal 23 (30.3%)   
Epileptiform 25 (32.9%)   
Focal slowing 20 (26.3%)   
Unknown 8 (10.5%)   

Antiepileptic drugs (AEDs), n (%)  NA NA 
0 2 (2.6%)   
1 66 (86.8%)   
2 7 (9.2%)   
3 1 (1.3%)   

Brain scan MRI MRI MRI 
MRI field strength 1.5 or 3T 3T 1.5 or 3T 
MRI sequence T1 and T2 T1, T2 and Flair DWI 
Lesion locations were available in MNI 
space 

Yes Yes Yes 

Lesion segmentation Manual Manual Manual 
Follow-up  6.7 [2.0] years 3 – 12 months 3 – 6 months 

eTable 1. Patient demographics of the discovery dataset. Patients with post-stroke epilepsy (ischemia) and two independent consecutive stroke 
cohorts (control datasets 1 and 2). Values are presented as means and standard deviations [SD], intervals or percentages as appropriate. Note 
that while descriptions of these lesion datasets have been previously published, all analyses and results are unique to the present paper.  
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eTable 2 
 

Validation data Hemorrhagic stroke Penetrating head trauma Glioblastoma multiforme  Tuberous Sclerosis Complex 
Reference Greef et al 201437 Raymont et al. 201038 Cayuela et al. 201839 Cohen et al. 202140 
N total 320 197 132 123 
N with epilepsy 23 (7%) 87 (44%) 61 (46%) 100 (81%) 
N without epilepsy 297 (93%) 110 (56%) 71 (54%) 23 (19%) 
Sex (male/female) 172 / 148 197 / 0 83 / 49 63 / 51 
Age at scan (years) 71.1 [13.6]  58.3 [3.1] 60.7 [11.6] 2.66 [0.947] 
Brain scan CT CT MRI MRI 
MRI field strength NA NA 1.5T 3T 
MRI sequence NA NA T1 with contrast T1. T2 and Flair 
Lesion locations 
were  
available in MNI 
space 

No* Yes Yes Yes 

Lesion 
segmentation 

Automatic Manual Manual Automatic with manual correction 

Follow-up   up to 8 years  30 – 35 years up to 2 years 3 years 
eTable 2. Patient demographics of the validation datasets. Values are presented as means and standard deviations [SD] or percentages, as 
appropriate. Note that while descriptions of these lesion datasets have been previously published, all analyses and results are unique to the 
present paper. *This previously published study on hemorrhagic stroke locations associated with epilepsy did not outline the precise lesion 
location, but identified the gross neuroanatomical involvement of each lesion by clinical judgement (cortical or subcortical, lobe, vascular territory). 
We therefore requested the data of this study and used a validated deep-learning segmentation algorithm (DeepBleed: 
https://github.com/msharrock/deepbleed) to segment the lesion location and transform the lesions to MNI space. 
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eTable 3 

Subject Sex 
Age at 

surgery 
(years) 

Epilepsy 
duration 
(years) 

Seizure-
onset 
zone 

Previous 
resection 

or VNS 

MRI 
findings 

DBS  
Active 

contacts 

DBS 
amplitude 

(V) 

DBS 
freque

ncy 
(Hz) 

DBS 
pulse 
width 
(μs) 

Δ Seizure 
frequency 
after DBS 

(%) 
Left Right Left Right Bilateral Bilateral 

1 Male 
Early 
40s 

20 Temporal 
Left 

temporal 
resection 

Post-
surgery 

1-C+ 1-C+ 6 6 140 90 -100 

2 Female Mid 30s 33 
Bilateral 
temporal 

VNS 
Mesial 

temporal 
sclerosis 

1-C+ 1-C+ 6 6 145 60 -48 

3 Male Mid 60s 51 
Left 

frontal 

Left 
temporal 
resection 
and VNS 

Post-
surgery 

0-1+ 0-1+ 5 5 125 90 -42 

4 Male Mid 40s 23 
Right 

Parietal 
VNS 

Occipito-
temporal 
cortical 

dysplasia 

2-C+ 1-C+ 6 6 145 90 -19 

5 Male 
Late 
40s 

39 
Left 

temporal 
None 

Mesial 
temporal 

tumor 
1-C+ 0-C+ 5.5 5.5 145 90 -100 

6 Male Mid 30s 13 
Bilateral 
temporal 

VNS 
Mesial 

temporal 
sclerosis 

1-C+ 1-C+ 7 7 145 90 +82 

7 Female 
Early 
30s 

12 
Bilateral 
temporal 

Left 
temporal 
resection 
and VNS 

Post-
surgery 

1-C+ 1-C+ 6.2 6.2 90 90 -66 

8 Male 
Early 
40s 

30 Frontal None 
Mesial 

temporal 
sclerosis 

1-C+ 1-C+ 6 6 145 90 -47 

9 Male 
Late 
30s 

29 Multifocal VNS 
MRI-

negative 
2-C+ 1-C+ 5 5 145 90 -49 

10 Male 
Early 
40s 

29 
Bilateral 
parietal 

VNS 
Parietal 
cortical 

dysplasia 
1-C+ 1-C+ 5.4 5.4 160 60 -70 
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11 Female 
Early 
20s 

19 
Left 

frontal 
VNS 

MRI-
negative 

1-C+ 1-C+ 2 2 145 90 -100 

12 Male Mid 30s 32 Multifocal VNS 
MRI-

negative 
1-C+ 1-C+ 5.5 5.5 140 90 -100 

13 Male 
Early 
20s 

14 Multifocal VNS 

Parietal 
lesion of 
unknown 

origin 

1-2+ 1-2+ 3.5 3.5 145 90 +7 

14 Male 
Early 
50s 

48 
Left 

frontal 
VNS 

Frontal 
cortical 

dysplasia 
2-C+ 2-C+ 6.15 6.15 145 90 -41 

15 Male Mid 40s 18 
Left 

frontal 

Left 
frontal 

resection 
and VNS 

Post-
surgery 

2-C+ 2-C+ 3 3 145 90 -77 

16 Male 
Late 
20s 

20 Parietal 
Left 

parietal 
resection 

Post-
surgery 

1-C+ 1-C+ 5.7 5.7 160 90 -83 

17 Male Mid 50s 37 
Left 

temporal 
VNS 

MRI-
negative 

0-C+ 1-C+ 4 4 145 90 -63 

18 Male 
Early 
60s 

46 
Right 
frontal 

VNS 
MRI-

negative 
2-C+ 1-C+ 4.5 4.5 145 90 -44 

19 Female Mid 30s 26 Parietal VNS 
MRI-

negative 
1-C+ 0-C+ 5.8 5.8 160 90 -89 

20 Male Mid 30s 18 Multifocal VNS 
MRI-

negative 
0-1+ 1-C+ 3 5.5 120 90 +7 

21 Male Mid 20s 9 Temporal VNS 
MRI-

negative 
1-2+ 1-2+ 3.5 3.5 145 90 -3 

22 Male 
Early 
20s 

18 
Bilateral 
temporal 

None 
MRI-

negative 
2-C+ 1-C+ 5 5 145 90 -50 

23 Female 
Early 
50s 

31 
Bilateral 
temporal 

VNS 
MRI-

negative 
1-C+ 1-C+ 5.7 5.7 145 90 -58 

24 Male 
Late 
30s 

31 
Bilateral 
parieto-
occipital 

None 
Perinatal 
ischemic 

injury 
0-1+ 0-1+ 3.5 3.5 160 90 +33 

25 Female Mid 30s 18 Multifocal VNS 
MRI-

negative 
1-C+ 1-C+ 3 3 145 90 -67 

26 Female 
Early 
20s 

11 Multifocal None 
MRI-

negative 
1-C+ 1-C+ 2.5 2.5 145 90 +100 
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27 Male 
Late 
50s 

40 
Bilateral 
temporal 

None 
MRI-

negative 
1-C+ 2-C+ 5.5 5.5 145 90 -50 

28 Male 
Early 
50s 

50 Multifocal None 
MRI-

negative 
1-C+ 1-C+ 2.5 2.5 145 90 0 

29 Female Mid 40s 39 Multifocal None 
MRI-

negative 
1-C+ 1-C+ 5.9 5.9 145 90 -75 

30 Female 
Late 
40s 

22 
Bilateral 
frontal 

VNS 
MRI-

negative 
1-C+ 1-C+ 5 5 145 90 -25 

eTable 3. Patient demographics of the DBS dataset. Note that while a description of this DBS dataset (including 20 of these 30 patients) has been 
previously published44, all analyses and results are unique to the present paper. Abbreviations: VNS, vagal nerve stimulation.
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eTable 4 

 Epilepsy Control Total 
Reference Nordberg et al. 

20211 
Corbetta et al. 20156 
and Wu et al. 20157 

 

Patients, n 76 625 701 
% Damage to brain region    

Brain (i.e. lesion volume) 3.4% [4.3] 2.0% [3.5] 2.1% [3.6] 
Cortex / Subcortex    

Cortex 3.8% [4.8] 1.7% [3.7] 2.0% [3.9] 
Subcortex 3.5% [4.7] 2.6% [4.0] 2.7% [4.1] 

Lobes    
Frontal lobe  3.0% [5.3] 1.5% [4.7] 1.6% [4.8] 
Occipital lobe  3.1% [6.2] 1.4% [4.4] 1.6% [4.7] 
Parietal lobe 4.7% [6.9] 2.1% [4.7] 2.4% [5.0] 
Temporal lobe 4.6% [8.5] 1.9% [5.4] 2.2% [5.8] 
Mesial temporal lobe 1.7% [4.7] 1.6% [5.2] 1.7% [5.1] 

Vascular territories    
Anterior cerebral artery  1.8% [3.4] 1.0% [3.4] 1.1% [3.4] 
Middle cerebral artery  5.6% [7.8] 3.1% [6.0] 3.4% [6.3] 
Posterior cerebral artery 2.0% [3.7] 1.2% [2.9] 1.3% [3.0] 

Frequency of involvement of brain region, n 
(%) 

   

Cortex / Subcortex    
Cortex 68 (89%) 447 (72%) 515 (74%) 
Subcortex 76 (100%) 622 (99%) 698 (99%) 

Lobes    
Frontal lobe  45 (59%) 305 (49%) 350 (50%) 
Occipital lobe  35 (46%) 187 (30%) 222 (32%) 
Parietal lobe 54 (71%) 349 (56%) 403 (57%) 
Temporal lobe 46 (61%) 290 (46%) 336 (48%) 
Mesial temporal lobe 17 (22%) 166 (27%) 183 (26%) 

Vascular territories    
Anterior cerebral artery  54 (71%) 395 (63%) 449 (64%) 
Middle cerebral artery  72 (95%) 522 (84%) 594 (85%) 
Posterior cerebral artery 51 (67%) 417 (67%) 468 (67%) 

eTable 4. Lesion distribution. Values are presented as means and standard deviations [SD] or 
percentages as appropriate. Note that lesions with at least one voxel overlapping with the mask of an a 
priori brain region were considered to involve that region.  
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eFigure 1 
 

 
eFigure 1. Lesion network mapping methods flowchart. A lesion network is computed for each lesion 
location by performing seed-based functional connectivity analyses between the lesion location and all 
other brain voxels, using the resting state functional connectivity data (2 × 2 × 2 mm resolution) from 1000 
healthy participants (human brain connectome: https://dataverse.harvard.edu/dataverse/GSP). First, the 
correlation (R) between each lesion location’s average time course and the time course of every other brain 
voxel is calculated using the functional connectivity data from each of the 1000 subjects included in the 
human brain connectome.19,20 Second, a Fisher’s z transformation is applied to each of the 1000 functional 
connectivity correlation maps to normalize the distribution of values at each voxel. Finally, a T-score is 
calculated at each voxel (T-map) which represents the statistical relationship of each voxel’s functional 
connectivity to the lesion location, resulting in a lesion network.   
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eFigure 2 
 

 
eFigure 2. Lesion overlap. All lesions (A), post-stroke epilepsy lesions (B), and control stroke lesions (C).  
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eFigure 3  

 
eFigure 3. Distribution of lesion damage to the cortex, subcortex, lobes and vascular territories, with and without correcting for lesion volume.  
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eFigure 4  
  

 
eFigure 4. Distribution of lesion damage to the mesial temporal lobe with and without controlling for lesion volume. Abbreviations: mTLE, mesial temporal lobe.    
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eFigure 5 

 
eFigure 5. Lesion network mapping control and subgroup analyses. Our primary lesion network mapping result (A) implicating nodes in the cerebellum and basal 
ganglia (white outline) are similar with different control datasets (B), connectome pre-processing methods (C), after controlling for patient characteristics (D), seizure 
type (E), known epilepsy risk factors (F), delay to first seizure after stroke (G), and presence of EEG abnormalities or only clinical evidence of seizures (H).
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eFigure 6 

 
eFigure 6. Lesion network mapping results are similar in subgroups of patients with different antiseizure 
drugs.  
 
 

  



© 2023 Schaper FLWVJ et al. JAMA Neurol. 

eFigure 7 
 

eFigure 7. Lesion network mapping results with matched subgroups. Subgroups were equally matched on 
lesion volume (A) and damage to the cortex and subcortex (B). Lesion network mapping results of matched 
subgroups were consistent with results identified in the total ischemic stroke dataset (white outline). Note 
that the strength of the relationship (T-values) between connectivity and epilepsy drops consistent with the 
smaller subgroup (n = 76) compared to our original control (n = 625), but the direction and topography 
remain the same. 
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eFigure 8 

 
eFigure 8. Temporal signal to noise ratio (SNR) of different brain regions in the functional connectome. 
Given that our functional connectivity findings mapped to the basal ganglia and cerebellum, we further 
investigated the temporal SNR within this region of interest (ROI, lesion network nodes in the above figure) 
to ensure the presence of reliable BOLD signal in this region. We calculated the voxel-wise mean SNR from 
the Brain Genomics Superstruct Project used in the analyses in the manuscript.22 fMRI data from each 
subject was processed through fmriprep, applying standard fMRI preprocessing steps.51 The SNR (mean 
of BOLD time series / standard deviation of BOLD time series) was then calculated for each subject using 
a python script: fmri_SNR.py available here: (https://gist.github.com/alexlicohen/). The group average SNR 
for the entire brain, the lesion network nodes ROI, and other brain regions were calculated using FSL 
command line tools.52 We found that the SNR of the lesion network nodes ROI is similar to the average 
SNR across the entire brain. Furthermore, the basal ganglia, cerebellum and our specific lesion network 
nodes within these regions had a SNR > 50 which is considered relatively robust, as prior reports have 
suggested that SNRs > 20 provide consistent and reproducible functional connectivity results.53  
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eFigure 9 

  
eFigure 9. Statistical mediation analyses. Mediation analysis identified that the relationship between lesion 
volume and epilepsy diagnosis was fully mediated by lesion connectivity (indirect effect = 0.006, boot 
standard error [SE] = 0.001, 95% CI = 0.004 to 0.008, A). Similarly, the relationship between damage to 
the cortex and subcortex was also fully mediated by lesion connectivity (indirect effect = 0.005, boot 
standard error [SE] = 0.001, 95% CI = 0.003 to 0.007, B). *P < 0.05 
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eFigure 10 

 
eFigure 10. Voxel-based lesion symptom mapping (VLSM). VLSM results with more liberal statistical 
cutoffs (Puncorr<0.05) using both univariate (A) and multivariate (B) methods. VLSM results aligned with 
lesion network mapping results (C) but only identified part of the network. 
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eFigure 11 

 
eFigure 11. Lesion network mapping results using a structural connectome. Lesion network mapping 
results using a structural connectome identified a similar network as using a functional connectome (A). 
In a complimentary analysis, we computed structural disconnection between each lesion location and the 
lesion network nodes in the basal ganglia and cerebellum (white outlines), and found a significant 
different between lesions associated with epilepsy (B, single example shown) and control lesions (C, 
single example shown). Panels B and C display the lesion location (red, left panel), structural connectivity 
with the lesion location (green, middle panel), and intersection with our functional lesion network nodes 
derived using the functional connectome (orange/yellow, right panel). This intersection was used to 
compute a “disconnectome score” for each lesion, which was significantly different between groups (D, 
Welch’s two-sided test with unequal variances, p < 0.001). Data in panel D are presented as mean (bar) 
and SD (whiskers) with individual patient values (dots). 
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eFigure 12 

 
eFigure 12. Lesion network mapping results of each individual dataset and lesion etiology. Note that while 
there are differences between lesion etiologies, all lesion etiologies show negative functional connectivity 
(“anticorrelation”) to the basal ganglia and cerebellum (primary result, white outlines). 
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eFigure 13. 

 
eFigure 13. Whole-brain lesion network mapping results in discovery and validation datasets. To test 
whether we would identify the same functional connections associated with epilepsy in our validation 
datasets, as were identified in ischemic stroke (A), we combined the four validation datasets (leaving out 
ischemic stroke data) and repeated the voxel-based PALM analysis on a whole-brain level, controlling for 
lesion volume and lesion type. The lesion network nodes significantly associated with epilepsy across these 
four validation datasets were nearly identical to the initial results from our discovery dataset (B). We then 
repeated this leave-one-dataset-out analysis five times, each time leaving out a different dataset and 
identifying functional connections significantly associated with epilepsy across four different lesion types. 
We identified a high overlap across these 5 different analyses in these same nodes in the basal ganglia 
and cerebellum (C). P-values are shown after family wise error rate correction for multiple testing. 
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eFigure 14 

 
eFigure 14. Receiver operating characteristics (ROC) curves. ROC curves show an association between 
post-stroke epilepsy (A, P<0.001) or across all lesion types (B, P<0.001)) and lesion connectivity. To avoid 
circularity, connectivity was computed between each lesion location and the lesion network nodes derived 
from the four other lesion type datasets.  
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eFigure 15 

 
eFigure 15. Proportion of epilepsy in categories based on lesion connectivity. Lesion connectivity 
categories are associated with the proportion of epilepsy (χ2 = 38.2, df = 2, P < 0.001). Connectivity was 
computed from each lesion location to the nodes derived from the other four lesion type datasets (leave-
one-lesion-type-out). Note that this analysis is similar to the analysis presented in main text (see Figure 
4B), but risk was assessed within each lesion type rather than across all lesion types.     
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eFigure 16 

 
eFigure 16. Correlation between DBS site connectivity and clinical outcome. DBS site connectivity to the 
lesion network nodes derived from lesion network mapping correlated with a reduction in seizure frequency 
after DBS. Correlation was computed with (A) and without (B) an outlier that had worsened seizure control 
after DBS. DBS parameters were not significantly correlated with seizure frequency, including amplitude (r 
= -0.22, P = 0.24), VAT volume (r = -0.31, P = 0.11), frequency (r = 0.001, P = 0.99) or pulse width (r = 0.1, 
P = 0.62). 
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eFigure 17 

 
eFigure 17. Whole-brain DBS network mapping results. DBS network mapping on a whole-brain level 
implicates the same nodes in the cerebellum and basal ganglia (Pcorr<0.05) as shown within the restricted 
ROI (see main manuscript text and Figure 5D). Results are shown after family-wise error correction for 
multiple testing and threshold free cluster enhancement.  
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