Gene Expression Profiling Unveils the Temporal Dynamics of CIGB-300-Regulated Transcriptome in AML Cell lines

Dania Vázquez-Blomquist ^{1,*}, Ailyn C. Ramón ², Mauro Rosales ^{2,3}, George V. Pérez ², Ailenis Rosales ³, Daniel Palenzuela ¹, Yasser Perera ^{2,4,*} and Silvio E. Perea ^{2,*}

Supplementary Figures and Tables Captions

Figure S1. Diagnostic plots in control cells or CIGB-300 treated OCI-AML3 (O) and HL-60 (H) samples for 3h and 30min. (A) One dimensional hierarchical clustering of all samples (replicates 1, 2, 3), (B) ANOVA R-squared (^2) of covariates (Cell, Time and Treatment) in % (C), Multidimensional Scaling (MDS) of filtered data. Samples from HL60 (H) and OCI-AML3 (O) Untreated or treated with the peptide CIGB-300 for 30min and 3h are indicated.

Figure S2. Top 100 differentially up-regulated genes by CIGB-300. (A) Unsupervised Heatmap from the Top 100 most differentially up-expressed genes in HL-60 and OCI-AML3. (B) Pathways analysis in Top 100 up-regulated genes using Enrichr.

Figure S3. Top 100 enriched ontology clusters across AML cell lines treated with CIGB-300 for 30min and 3h using Metascape. The most 100 enriched biological processes (-log10(P)) in HL-60 (H) or OCI-AML3 (OCI) after CIGB-300 treatment for 30min and 3h are shown.

Figure S4. MCODE in network using Metascape. MCODE was used to identify neighborhoods where proteins are densely connected in network. Network nodes are displayed as pies, where colors in sectors represent the treatment groups according to the legend at the draw corner for HL-60 (H) and OCI-AML3 (OCI) treated with CIGB-300 for 30min and 3h.

Figure S5. Predicted Transcription factors from DEGs. TF predicted from regulatory motifs in DEGs in HL-60 and OCI-AML3 after 30min and 3h of CIGB-300 treatment are shown in both panels of the Figure. The Cytoscape on-net analysis plugin iRegulon was used and a NES>3.0 was selected.

Figure S6. qPCR validation of genes related to differentiation modulated by CIGB-300. HL-60 and OCI-AML3 cells were treated with 40 μ M of CIGB-300 for 30min and 3h. Histogram bars indicate relative mRNA levels ± standard error with respect to a time-matched untreated control, for two independent experiments analyzed in triplicate. All genes were normalized with ABL1, DDX5, and GAPDH genes. Asterisks represent statistically significant changes (p< 0.05) by REST 2009.

Figure S7. qPCR validation of the cell cycle related gene CDKN1A/P21 gene modulated by CIGB-300. HL-60 and OCI-AML3 cells were treated with 40 μ M of CIGB-300 for 30min, 2h and 8h. Histogram bars indicate relative mRNA levels \pm standard error with respect to a time-matched untreated control, for two independent experiments analyzed in triplicate. All genes were normalized with ABL1, DDX5, and GAPDH genes. Asterisks represent statistically significant changes (p< 0.05) by REST 2009.

Table S1 (Additional File 1). Oligonucleotides used for qPCR amplifications. Information of Gene name, oligonucleotide identifiers (ID), Sequence 5' to 3' (Sequence 5'...3'), number of bases (# Bases) and Function (Reference or Biomarker) is provided. All were synthesized in Oligonucleotide Synthesis Group (CIGB, Havana).

Table S2 (Additional File 2). DEGs for the treatment groups comparisons (p< 0.01;|FC|>=1.5). In independent sheets we have HL-60 *vs* Untreated control 30min & 3h, and OCI-AML3 *vs* Untreated control 30min & 3h. Column order: # number of gene, Gene SYMBOL, Fold Change, P value, adjusted (adj) P value, ENTREZ ID, Gene Name.

Figure S1.

Figure S2.

Figure S4.

Figure S5.

Figure S6.

Figure S7.

Table S1 (Additional File 1).

Gene Name	ID	Sequence 5'3'	# Bases	Function
ABL Proto-Oncogene 1, Non- Receptor Tyrosine Kinase	ABL1-F	ACGTCTGGGCATTTGGAGTATT	22	Reference
	ABL1-R	CTCCATGCGGTAGTCCTTCTCT	22	
DEAD (Asp-Glu-Ala-Asp) Box Helicase 5	DDX5-F	TAGAGGTCACAACTGCCCGAAG	22	Reference
	DDX5-R	GGCCATCCCTGAGCTTGAATAG	22	
Glyceraldehyde-3-Phosphate Dehydrogenase	GAPDH-F	GTCCACCACCCTGTTGCTGTAG	22	Reference
	GAPDH-R	ACTTCAACAGCGACACCCACTC	22	
Cyclin Dependent Kinase Inhibitor 1A (P21)	CDKN1A-F	CTTCAGTACCCTCTCAGCTCCA	22	Biomarker
	CDKN1A-R	AACTAGGGTGCCCTTCTTCTTG	22	
Early growth response 1	EGR1-F	CTTCAACCCTCAGGCGGACA	20	Biomarker
	EGR1-R	AAAGACTCTGCGGTCAGGTG	20	
Growth arrest and DNA damage inducible beta	GADD45B-F	ATCAACATCGTGCGGGTGTC	20	Biomarker
	GADD45B-R	GTGTGAGGGTTCGTGACCAG	20	
Mitogen-activated protein kinase kinase kinase 8	MAP3K8-F	GGCGTGTAAACTGATCCCAGTA	22	Biomarker
	MAP3K8-R	CCACAGGACTGCGCCATACA	20	
Colony stimulating factor 1 (CSF1)/M-CSF	MCSF-F	GTTGGTCTGTCTCCTGGCGA	20	Biomarker
	MCSF-R	TGGCACGAGGTCTCCATCTG	20	
Nuclear factor kappa B subunit 1 /p50	NFKB1-F	AGCCCAGTGAAGACCACCTCTC	22	Biomarker
	NFKB1-R	AAAGCTGAGTTTGCGGAAGGAT	22	
Nuclear factor kappa B subunit 2 /p52	NFKB2-F	AACCTCACCAACCACCTGCA	20	Biomarker
	NFKB2-R	AGTCTCCATGCCGATCCAGC	20	
NFKB inhibitor alpha /IKBA	NFKBIA-F	TGACTCAGTCCTGCACCACC	20	Biomarker
	NFKBIA-R	CCAAAAGCTCCACGATGCCC	20	
RELA proto-oncogene	RelA-F	CTGAATGCTGTGCGGCTCTG	20	Biomarker
	RelA-R	TCGGCAGATCTTGAGCTCGG	20	
REL proto-oncogene/c-REL	RelC-F	ACCTGGTCTCCTCGGTTCAA	20	Biomarker
	RelC-R	ACTTGAGATGGGCCCAGGTG	20	
TNF alpha	TNFA- F	AAGGACACCATGAGCACTGAAA	22	Biomarker
	TNFA- R	GAGAAGAGGCTGAGGAACAAGC	22	
TNF alpha induced protein 3 (A20)	TNFAIP3-F	GCGCTGAAAACGAACGGTGA	20	Biomarker
	TNFAIP3-R	ACAGCGCCTTCCTCAGTACC	20	