

## **Supporting Information for**

Oxidative stress drives mutagenesis through transcription-coupled repair in bacteria

Juan Carvajal-Garcia, Ariana N. Samadpour, Angel J. Hernandez Viera, Houra Merrikh

Houra Merrikh Email: houra.merrikh@vancerbilt.edu

## This PDF file includes:

Figures S1 to S3 Tables S1 to S2



**Fig. S1.** a-c) OD600 measured every 10 mins for the indicated time in a cultures of *B. subtilis* (a), *S. aureus* (b), and *S. enterica* serovar Typhimurium ST19 (c), with and without 50 mM thiourea in the media. 1 mM IPTG was added to the *katA* OE strain. n=12 biological replicates. Error bars represent the standard deviation d) OD600 measured every 10 mins for the indicated time in a

culture of *P. aeruginosa* with and without 10 mM thiourea in the media, n=12 biological replicates. Error bars represent the standard deviation e-h) Survival of the indicated strain to the indicated concentration of rifampicin after 16 hours of growth at 37 °C. The same concentrations of thiourea as in panels a-d were added when indicated. 1 mM IPTG was added to the *katA* OE strain. n=12 biological replicates. Error bars represent the standard deviation i) Normalized katA cDNA detected by qPCR in wild-type and katA overexpressing cells in the presence of 1 mM IPTG, n=5 biological replicates. Statistical significance was assessed by a two-tailed t-test, \*p<0.05 j-k) Cells of the indicated species were mixed with equal volumes of 1% Triton X-100 and 30% H<sub>2</sub>O<sub>2</sub> to assay global catalase activity. The formation of oxygen bubbles (arrows) is directly proportional to the amount of catalase activity I) Percent *S. enterica* cells that are ROS<sup>+</sup> as determined by flow using the dye DHR123 in the absence of antibiotic, 5 µg/ml of kanamycin or 4 µg/ml rifampicin



**Fig. S2.** a-d) Median concentration of antibiotic that allows for growth in the indicated strains at each sampled timepoint. 50 mM thiourea was included in the media where indicated. 1mM IPTG was added for *katA* overexpression. n=24 (wt – thiourea, kanamycin), 11 (wt + thiourea, kanamycin), 12 (*katA* overexpression, kanamycin), 12 (wt – thiourea, trimethoprim), 12 (wt + thiourea, trimethoprim), 12 (*katA* overexpression, trimethoprim), and 12 for all *S. aureus* experiments. e-h) Survival of the indicated species to the indicated concentration of the indicated antibiotics after 16 hours of growth at 37 °C. 50 mM thiourea was added when indicated. 1 mM IPTG was added to the *katA* OE strain. n=12 biological replicates. Error bars represent the standard deviation



**Fig. S3.** a) Mutation rates of *Bacillus subtilis* strains of the indicated genotype to rifampicin, n=51 (wt), 59 ( $\Delta mutY$ ), 21 ( $\Delta mutY$ ,  $\Delta mutM$ ) b) Mutation rates of *S. enterica* serovar Typhimurium strain ST19 measured using rifampicin. n=54 (wt), 40 ( $\Delta uvrB$ ), 48 ( $\Delta mfd$ ). c) SDS-PAGE of purified *B. subtilis* PolA and PolA- $\Delta$ SID. d) Mutation rates of *Bacillus subtilis* strains of the indicated genotype to rifampicin. n=40 ( $\Delta polY1 \ \Delta polY2 \ \Delta uvrA$ ), 40 ( $\Delta polY1 \ \Delta polY2 \ \Delta uvrA$ ), 30 ( $\Delta polY1 \ \Delta polY2 \ \Delta uvrA$ ), 36 ( $\Delta polY1 \ \Delta polY2 \ \Delta uvrA$ ), 36 ( $\Delta polY1 \ \Delta polY2 \ \Delta uvrA$ ), 36 ( $\Delta polY1 \ \Delta polY2 \ \Delta uvrA$ ), 36 ( $\Delta polY1 \ \Delta polY2 \ \Delta uvrA$ ), 36 ( $\Delta polY1 \ \Delta polY2 \ \Delta uvrA$ ), 36 ( $\Delta polY1 \ \Delta polY2 \ \Delta uvrA$ ), 36 ( $\Delta polY1 \ \Delta polY2 \ \Delta uvrA$ ), 36 ( $\Delta polY1 \ \Delta polY2 \ \Delta uvrA$ ), 36 ( $\Delta polY1 \ \Delta polY2 \ \Delta uvrA$ ), 36 ( $\Delta polY1 \ \Delta polY2 \ \Delta uvrA$ ), 36 ( $\Delta polY1 \ \Delta polY2 \ \Delta uvrA$ ), 36 ( $\Delta polY1 \ \Delta polY2 \ \Delta uvrA$ ), 36 ( $\Delta polY1 \ \Delta polY2 \ \Delta uvrA$ ), 36 ( $\Delta polY1 \ \Delta polY2 \ \Delta uvrA$ ), 36 ( $\Delta polY1 \ \Delta polY2 \ \Delta uvrA$ ), 36 ( $\Delta polY1 \ \Delta polY2 \ \Delta uvrA$ ), 36 ( $\Delta polY1 \ \Delta polY2 \ \Delta uvrA$ ), 36 ( $\Delta polY1 \ \Delta polY2 \ \Delta uvrA$ ), 36 ( $\Delta polY1 \ \Delta polY2 \ \Delta uvrA$ ), 36 ( $\Delta polY1 \ \Delta polY2 \ \Delta uvrA$ ), 36 ( $\Delta polY1 \ \Delta polY2 \ \Delta uvrA$ ), 36 ( $\Delta polY1 \ \Delta polY2 \ \Delta uvrA$ ), 36 ( $\Delta polY1 \ \Delta polY2 \ \Delta uvrA$ ), 36 ( $\Delta polY1 \ \Delta polY2 \ \Delta uvrA$ ), 36 ( $\Delta polY1 \ \Delta polY2 \ \Delta uvrA$ ), 36 ( $\Delta polY1 \ \Delta polY2 \ \Delta uvrA$ ), 36 ( $\Delta polY1 \ \Delta polY2 \ \Delta uvrA$ ), 36 ( $\Delta polY1 \ \Delta polY2 \ \Delta uvrA$ ), 36 ( $\Delta polY1 \ \Delta polY2 \ \Delta uvrA$ ), 36 ( $\Delta polY1 \ \Delta polY2 \ \Delta uvrA$ ), 36 ( $\Delta polY1 \ \Delta polY2 \ \Delta uvrA$ ), 36 ( $\Delta polY1 \ \Delta polY2 \ \Delta uvrA$ ), 36 ( $\Delta polY1 \ \Delta uvrA$ ), 36 ( $\Delta uvrA \ uvrA \ uvrA$ ), 36 ( $\Delta uvrA \ uvrA \ uvrA$ ), 36 ( $\Delta uvrA \ uvrA \ uvrA$ ), 36 ( $\Delta uvrA \ uvrA \ uvrA \ u$ 

| Strain | Species     | Genotype                                                       | Reference           | Figure                    |  |
|--------|-------------|----------------------------------------------------------------|---------------------|---------------------------|--|
| HM1    | B. subtilis | wt                                                             | Brehm 1973          | 1, 2, 3, 4,<br>S1, S2, S3 |  |
| HM2521 | B. subtilis | mfd::MLS                                                       | Million-Weaver 2015 | 2, 3                      |  |
| HM2633 | B. subtilis | uvrA::MLS                                                      | This study          | 2, 3                      |  |
| HM2634 | B. subtilis | uvrB::MLS                                                      | This study          | 2                         |  |
| HM2635 | B. subtilis | uvrC::MLS                                                      | This study          | 2                         |  |
| HM2472 | B. subtilis | mfd::markerless<br>uvrA::MLS                                   | This study          | 2                         |  |
| HM2473 | B. subtilis | mfd::markerless<br>uvrB::MLS                                   | This study          | 2                         |  |
| HM2474 | B. subtilis | mfd::markerless<br>uvrC::MLS                                   | This study          | 2                         |  |
| HM4640 | B. subtilis | mfd::kan<br>thrC::Pspank(hy) mfd                               | This study          | 2                         |  |
| HM4648 | B. subtilis | uvrB::kan<br>thrC::Pspank(hy) uvrB                             | This study          | 2                         |  |
| HM3533 | B. subtilis | polA::MLS                                                      | This study          | 4                         |  |
| HM4449 | B. subtilis | uvrA::markerless<br>polA::MLS                                  | This study          | 4                         |  |
| HM3550 | B. subtilis | mfd::markerless<br>polA::MLS                                   | This study          | 4                         |  |
| HM391  | B. subtilis | polY1::Cm                                                      | Million-Weaver 2015 | 4                         |  |
| HM345  | B. subtilis | polY2::Cm                                                      | Million-Weaver 2015 | 4                         |  |
| HM2632 | B. subtilis | polY1::MLS polY2::Cm                                           | This study          | 4                         |  |
| HM3567 | B. subtilis | polY1::markerless<br>polY2::Cm polA::MLS                       | This study          | 4                         |  |
| HM3116 | B. subtilis | mutY::MLS                                                      | This study          | S3                        |  |
| HM3123 | B. subtilis | mutY::markerless<br>mutM::MLS                                  | This study          | S3                        |  |
| HM2666 | B. subtilis | polY1::markerless<br>polY2::Cm uvrA::MLS                       | This study          | S3                        |  |
| HM2667 | B. subtilis | polY1::markerless<br>polY2::Cm uvrB::MLS                       | This study          | S3                        |  |
| HM2668 | B. subtilis | polY1::markerless<br>polY2::Cm uvrC::MLS                       | This study          | S3                        |  |
| HM2669 | B. subtilis | polY1::markerless<br>polY2::Cm mfd::MLS                        | This study          | S3                        |  |
| HM4488 | B. subtilis | polY1::markerless<br>polY2::Cm<br>mfd::markerless<br>polA::MLS | This study          | S3                        |  |
| HM4482 | B. subtilis | polY1::markerless<br>polY2::Cm                                 | This study          | S3                        |  |

Table S1. Strains used.

|        |                       | uvrA::markerless<br>polA::MLS                    |                             |              |
|--------|-----------------------|--------------------------------------------------|-----------------------------|--------------|
| HM4502 | B. subtilis           | thrC::Pspank(hy) katA                            | This study                  | 1, S1, S2    |
| HM2212 | P. aeruginosa         | CF127                                            | Wolfgang 2003               | 1, S1        |
| HM4318 | S. aureus             | penicillin, oxacillin,<br>erythromycin resistant | This study                  | 1, S1, S2    |
| HM1996 | S. enterica<br>ST19   |                                                  | Hayden et al., 2016         | 1, S1        |
| HM4315 | S. enterica<br>SL1344 |                                                  | Hoiseth and Stocker<br>1981 | 1, 2, S1, S3 |
| HM4500 | S. enterica           | mfd::Cm                                          | This study                  | S3           |
| HM4510 | S. enterica           | uvrB::Kan                                        | This study                  | S3           |
| HM4554 | B. subtilis           | PolA-ASID                                        | This study                  | 4            |

Table S2. Oligonucleotides used

|                         | 1                       | 1        |                                |
|-------------------------|-------------------------|----------|--------------------------------|
| PCR/substrate           | Species                 | Oligo    | Sequence (5'->3')              |
| unu 1mankonlogg         | B. subtilis             | Fwd      | GGAGCTTCGCGATTTACTTTTAG        |
| uvrAmarkeriess          |                         | Rev      | GCTTGCCTGCTAAGCCC              |
|                         | B. subtilis             | Fwd      | CGAAATCCGCATTACCACGA           |
| mja::markeriess         |                         | Rev      | TTAGGAATCACGACCCGACC           |
| wolV1                   | B. subtilis             | Fwd      | TGTTACGGCGCTGTGTATC            |
| pol 11: markerless      |                         | Rev      | CGAATTCATGCGGAAGACTTTAC        |
|                         | B. subtilis             | Fwd      | TCGTACTGTGCCCTTAGTGT           |
| mull:markerless         |                         | Rev      | TGGAAGAACAGTGAACTCGC           |
|                         |                         | Fwd      | TACACCCCTGCCCGCTCACTCCTTCAGGT  |
|                         |                         |          | AGCCGCTCATGTATGGACAGCAAGCGAAC  |
| uvrB                    | S. enterica             |          | CG                             |
| recombineering          |                         |          | CCATGGTAACGATGACTCGCTGGCGATCG  |
|                         |                         | Rev      | ACACATTGTCATCAGAAGAACTCGTCAAG  |
|                         |                         |          | AAG                            |
|                         |                         |          | GACGCCCGGCCTGACGCTTATGCAATAGC  |
|                         |                         | Fwd      | GTTTTCTTCCAGTGTAGGCTGGAGCTGCTT |
| mfd                     | S enterica              |          | С                              |
| recombineering          | 5. emerieu              | Rev      | GTGCGGCGTAAAACAAAAGAGATACTG    |
|                         |                         |          | ACAACCGTTATGCATATGAATATCCTCCT  |
|                         |                         |          | TAG                            |
| <i>uvrB</i> check       | S enterica              | Fwd      | GCAATATTCACCGTCGAGAG           |
|                         | S. enterieu             | Rev      | CTATTGCACTGAAATTCTCAAAAGC      |
| mfd check               | S. enterica<br>In vitro | Fwd      | AGAATTTGTAAAGATTAGGCCGG        |
| туи спеск               |                         | Rev      | TGAAGCAGCCTGAAGGG              |
|                         |                         | Top left | Cy5-GCCTAGCTCTGCCATGCATA       |
|                         |                         | Тор      | TACACCTGTCTATCATTAGT           |
| Gan substrate           |                         | right    |                                |
| Sup substrate           |                         | Bottom   | ACTAATGATAGACAGGTGTAGTACGGAA   |
|                         |                         |          | ATCTTCTACGTTTATGCATGGCAGAGCTA  |
|                         |                         |          | GGC                            |
| Primer extension        |                         |          | Су5-                           |
| substrate, template     | In vitro                | Тор      | ATTCTGGTGGAAATGGCGCGCTGCTAT    |
| without abasic site     |                         |          |                                |
| Primer extension        | _                       | -        | GTGGAACGCTATATGTGCCATATAGCAGC  |
| substrate, template     | In vitro                | Bottom   | GCGCCATITCCACCAGAAT            |
| with abasic site        |                         |          | ~ -                            |
|                         | In vitro                | Тор      |                                |
| Abasic site             |                         | Bottom   |                                |
| substrate               |                         |          | GIGGAACGCTA[dU]ATGTGCCATATAGCA |
|                         |                         |          |                                |
| <i>polA</i> for cloning | B. subtilis             | Fwd      | AAGGAICCACGGAACGAAAAAAATTAGT   |
| 1nto pET28a             |                         |          | GUIIGIAGAU                     |

|                                                      |             | Rev | AAGAATTCTTATTTCGCATCGTACCAAGA<br>TGGGC            |
|------------------------------------------------------|-------------|-----|---------------------------------------------------|
| <i>katA</i> for cloning                              | B. subtilis | Fwd | TTAAGCTTATGAGTTCAAATAAACTGACA<br>ACTAGCTGGG       |
| into pCAL838                                         |             | Rev | TTGCTAGCTTAAGAATCTTTTTTAATCGGC<br>AATCCAAGGC      |
| <i>uvrB</i> for cloning                              | B. subtilis | Fwd | TTGCTAGCCGGACATAATGAATATAAAGA<br>CTG              |
| into pCAL838                                         |             | Rev | TTGCATGCTTGTTCATCATCCTTCCG                        |
|                                                      | B. subtilis | Fwd | GAGTCACCTGAGGATAAGCAAG                            |
| <i>KatA</i> qPCR                                     |             | Rev | GGCTTGAGTGTAGTGATCGTAG                            |
| 16C DNA aDCD                                         | B. subtilis | Fwd | GACATCCTCTGACAATCCTAGAG                           |
| TOS KIVA QPCK                                        |             | Rev | GGCAGTCACCTTAGAGTGCCCAAC                          |
| nol 1 for cloning                                    | B. subtilis | Fwd | AAGGATCCACGGAACGAAAAAAATTAGT                      |
| into nET28a                                          |             |     | GCTTGTAGAC                                        |
|                                                      |             | Rev | AAGAATTCTTATTTCGCATCGTACCAAGA<br>TGGGC            |
| $polA^{\Delta SID}$ for                              |             | Fwd | 5' Phos-CTCTTGAACGAGCTTTTCCCGAAG                  |
| cloning into<br>pET28a                               | B. subtilis | Rev | 5' Phos-GAAGAGCTGGAAATGCCTCTTGC                   |
| Left <i>polA<sup>ΔSID</sup></i><br>homology arm for  | B. subtilis | Fwd | CCTGCAGGTCGACTCTAGAGAACGACAGT<br>TGCCATTACGAGAAAG |
| cloning into<br>pMiniMAD2                            |             | Rev | AGAGGCATTTCCAGCTCTTCCTCTTGAAC<br>GAGCTTTTCCCG     |
| Right <i>polA<sup>ASID</sup></i><br>homology arm for | B. subtilis | Fwd | GGGAAAAGCTCGTTCAAGAGGAAGAGCT<br>GGAAATGCCTCTTG    |
| cloning into                                         |             | Rev | GAGCTCGGTACCCGGGGATCTTATTTCGC                     |
| pMiniMAD2                                            |             |     | ATCGTACCAAGATGGG                                  |
| $polA^{\Delta SID}$ check                            | B. subtilis | Fwd | AGGAGCAAAACGGGCAGTGC                              |
| Pour check                                           |             | Rev | ACGCCAGTTGATTCCATTTCGC                            |