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Supplementary Section 1: Basic properties of thermal chirality 
 

Thermal chirality is reflected in a Hall thermal conductivity tensor 𝜅 with the form of 

 𝜅 ൌ ቂ
𝜅୶୶ 𝜅୷୶
𝜅୶୷ 𝜅୷୷ቃ, [S1] 

with 𝜅୶୶ ൌ 𝜅୷୷ and 𝜅୶୷ ൌ െ𝜅୷୶. We consider a rotation operation described by the rotation matrix 𝑆, 

 𝑆 ൌ ൤
cos𝜃଴ െ sin𝜃଴
sin𝜃଴ cos𝜃଴

൨, [S2] 

where 𝜃଴ is anticlockwise rotation angle. The thermal conductivity tensor 𝜅ᇱ after rotation is 

 𝜅ᇱ ൌ ௌ఑⃡ௌ಩

ୢୣ୲ௌ
ൌ ቈ

𝜅୶୶ᇱ 𝜅୷୶ᇱ

𝜅୶୷ᇱ 𝜅୷୷ᇱ
቉, [S3] 

where the components take the form of 
 𝜅୶୶ᇱ ൌ 𝜅୶୶ cosଶ 𝜃଴ ൅ 𝜅୷୷ sinଶ 𝜃଴ െ ൫𝜅୶୷ ൅ 𝜅୷୶൯ cos𝜃଴ sin𝜃଴, [S4] 
 𝜅୷୷ᇱ ൌ 𝜅୷୷ cosଶ 𝜃଴ ൅ 𝜅୶୶ sinଶ 𝜃଴ ൅ ൫𝜅୶୷ ൅ 𝜅୷୶൯ cos𝜃଴ sin𝜃଴, [S5] 
 𝜅୶୷ᇱ ൌ 𝜅୶୷ cosଶ 𝜃଴ െ 𝜅୷୶ sinଶ 𝜃଴ ൅ ൫𝜅୶୶ െ 𝜅୷୷൯ cos𝜃଴ sin𝜃଴, [S6] 
 𝜅୷୶ᇱ ൌ 𝜅୷୶ cosଶ 𝜃଴ െ 𝜅୶୷ sinଶ 𝜃଴ ൅ ൫𝜅୶୶ െ 𝜅୷୷൯ cos𝜃଴ sin𝜃଴. [S7] 
Due to 𝜅୶୶ ൌ 𝜅୷୷ and 𝜅୶୷ ൌ െ𝜅୷୶, Eqs. (S4)-(S7) can be simplified as 
 𝜅୶୶ᇱ ൌ 𝜅୶୶, [S8] 
 𝜅୷୷ᇱ ൌ 𝜅୷୷, [S9] 
 𝜅୶୷ᇱ ൌ 𝜅୶୷, [S10] 
 𝜅୷୶ᇱ ൌ 𝜅୷୶. [S11] 
Any rotation operation does not change a Hall thermal conductivity tensor. 
 

Since there is no real-number solution to 𝜅୶୷ᇱ ൌ 𝜅୷୶ᇱ ൌ 0, a Hall thermal conductivity tensor 
cannot be diagonalized in the real-number field. For proof, we suppose 𝜆 is the eigenvalue and 
solve the following equation, 
 |𝜅 െ 𝜆𝐼| ൌ 0, [S12] 
where 𝐼 is the unit matrix. Equation (S12) can be expanded as 
 𝜆ଶ െ ൫𝜅୶୶ ൅ 𝜅୷୷൯𝜆 ൅ 𝜅୶୶𝜅୷୷ െ 𝜅୶୷𝜅୷୶ ൌ 0. [S13] 
We can further derive 

 ∆ൌ ൫𝜅୶୶ െ 𝜅୷୷൯
ଶ
൅ 4𝜅୶୷𝜅୷୶ ൌ െ4𝜅୶୷ଶ ൏ 0. [S14] 

∆൏ 0 indicates no real-number solution to 𝜆. If we solve the equation in the complex-number field, 
we can derive 

 𝜆േ ൌ
఑౮౮ା఑౯౯

ଶ
േ 𝑖ඥെ𝜅୶୷𝜅୷୶. [S15] 

 
We further explore the temperature and heat flux properties of thermal chirality by applying a 

longitudinal temperature gradient. The upper and lower boundaries are periodic, with continuous 
temperatures and heat fluxes. A transverse heat flux (the gray arrows in Fig. S1A) appears due to 
the nonzero off-diagonal components of a Hall thermal conductivity tensor. The periodic boundary 
conditions allow the transverse heat flux to flow out, so the temperature profile is the same as the 
case without thermal chirality, demonstrating a uniform longitudinal temperature gradient (Fig. S1A). 
The temperature and transverse heat flux profiles of an active thermal lattice are also presented in 
Fig. S1B and C. The artificial structure effectively has a Hall thermal conductivity, so thermal 
chirality appears definitely. 
 

In contrast, anisotropy with 𝜅୶୷ ൌ 𝜅୷୶ distinctly differs from thermal chirality because a rotation 
operation changes the thermal conductivity tensor; see Eqs. (S4)-(S7). The temperature profile of 
anisotropy is identical to thermal chirality in a longitudinal temperature gradient, but the difference 
appears when using other boundary conditions like point heat sources. The temperature profiles of 
Hall (or anisotropic) thermal conductivities are presented in Fig. S2A-C (or Fig. S2D-F). Since 
thermal chirality breaks the space inversion symmetry, the mirror symmetry of temperature 
distributions is not maintained (Fig. S2G) even at symmetric positions (e.g., the blue dashed lines 
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in Fig. S2A-C). However, anisotropy does not break the space inversion symmetry, so the 
temperature distributions at symmetric positions have mirror symmetry (Fig. S2G). Thus, thermal 
chirality inherently differs from anisotropy regarding rotation invariance and symmetry breaking. 
 
Supplementary Section 2: Description of solid heat transfer 
 

The governing equation of solid heat transfer in a unit cell containing a rotating particle is 

 𝜌𝐶 డ்

డ௧
൅ 𝜌𝐶𝑣∇𝑇 െ 𝜅∇ଶ𝑇 ൌ 𝑄, [S16] 

where 𝜌 is mass density, 𝐶 is heat capacity, 𝑣 is moving velocity, 𝜅 is thermal conductivity, and 𝑄 
is heat power. For a steady and passive case, Eq. (S16) is reduced to 
 𝑣∇𝑇 െ 𝐷∇ଶ𝑇 ൌ 0, [S17] 
where 𝐷 ൌ 𝜅/ሺ𝜌𝐶ሻ is thermal diffusivity. We can expand Eq. (S17) in the cylindrical coordinates 

ሺ𝑟,𝜃ሻ and derive ∇ൌ ப

ப௥
𝑟̂ ൅ ଵ

௥

ப

பఏ
𝜃෠  and ∇ଶൌ பమ

ப௥మ
൅ ଵ

௥

డ

డ௥
൅ ଵ

௥మ
பమ

பఏమ
, where 𝑟̂ and 𝜃෠  are the unit vectors. 

Equation (S17) can be rewritten as 

 𝛺 ப்

பఏ
െ 𝐷 ቀ

பమ்

ப௥మ
൅ ଵ

௥

డ்

డ௥
൅ ଵ

௥మ
பమ்

பఏమ
ቁ ൌ 0, [S18] 

where 𝛺 ൌ 𝑣/𝑟 is angular velocity. 
 

The temperature profile 𝑇୮ in the particle has the form of 
 𝑇୮ ൌ 𝐹ሺ𝑟ሻ𝐺ሺ𝜃ሻ, [S19] 
where 𝐹ሺ𝑟ሻ and 𝐺ሺ𝜃ሻ are the radial and angular distribution functions. The substitution of Eq. (S19) 
into Eq. (S18) yields 

 
ଵ

ி
ሺ𝑟ଶ𝐹ᇱᇱ ൅ 𝑟𝐹ᇱሻ ൌ ଵ

ீ
ቀ
ఆ௥మ

஽
𝐺ᇱ െ 𝐺ᇱᇱቁ, [S20] 

where the superscript denotes derivation. 𝐺ሺ𝜃ሻ is periodic regarding 𝜃 and can be expressed as 
𝐺ሺ𝜃ሻ ൌ 𝑒௜ఏ. Equation (S20) can be simplified as 

 𝑟ଶ𝐹ᇱᇱ ൅ 𝑟𝐹ᇱ െ ቀ
ఆ௥మ

஽
𝑖 ൅ 1ቁ 𝐹 ൌ 0. [S21] 

With a variable change 𝑥 ൌ ඥ𝛺/𝐷𝑟, Eq. (S21) can be rewritten as 
 𝑥ଶ𝑓ᇱᇱ ൅ 𝑥𝑓ᇱ െ ሺ𝑥ଶ𝑖 ൅ 1ሻ𝑓 ൌ 0. [S22] 
The general solution to Eq. (S22) is the first-order Kelvin function (1-4), 
 𝑓ሺ𝑥ሻ ൌ berሺ𝑥ሻ ൅ 𝑖beiሺ𝑥ሻ. [S23] 
Then we can derive 

 𝑇୮ሺ𝑟,𝜃ሻ ൌ 𝑀൫𝑥ሺ𝑟ሻ൯ cos ቀ𝜃 െ 𝜙൫𝑥ሺ𝑟ሻ൯ቁ, [S24] 

 
డ ౦்ሺ௥,ఏሻ

డ௥
ൌ ටఆ

஽
𝑀൫𝑥ሺ𝑟ሻ൯ cos ቀ𝜃 െ 𝜙൫𝑥ሺ𝑟ሻ൯ ൅

஠

ସ
ቁ, [S25] 

where 𝑀ሺ𝑥ሻ is the magnitude of 𝑓ሺ𝑥ሻ, and 𝜙ሺ𝑥ሻ reflects the rotation effect. 
 

We use a stationary particle with an effective thermal conductivity 𝜅୮∗  to replace the rotating 
particle. The heat conduction equation without rotation becomes 

 𝜅 ቀ
பమ்

ப௥మ
൅ ଵ

௥

డ்

డ௥
൅ ଵ

௥మ
பమ்

பఏమ
ቁ ൌ 0. [S26] 

The general solution to Eq. (S26) is 

 𝑇 ൌ 𝑇଴ ൅ ቀ𝐴𝑟 ൅
஻

௥
ቁ cos𝜃, [S27] 

where 𝑇଴ is a reference temperature set as zero for brevity, and 𝐴 and 𝐵 are two constants. The 
temperature distributions in the matrix 𝑇୫ and particle 𝑇୮∗ are 

 𝑇୫ ൌ ቀ𝐴୫𝑟 ൅
஻ౣ
௥
ቁ cos𝜃, [S28] 

 𝑇୮∗ ൌ 𝐴୮∗ 𝑟 cos𝜃, [S29] 
where 𝐵୫ and 𝐴୮∗  are two constants determined by the boundary conditions, and 𝐴୫ is the applied 
temperature gradient. The continuities of temperatures and heat fluxes on the boundary are 
described by 
 𝑇୫ሺ𝑟 ൌ 𝑅ሻ ൌ 𝑇୮∗ሺ𝑟 ൌ 𝑅ሻ, [S30] 



 
 
 

4 
 
 

 െ𝜅୫
డ்ౣ

డ௥
ሺ𝑟 ൌ 𝑅ሻ ൌ െ𝜅୮∗

డ ౦்
∗

డ௥
ሺ𝑟 ൌ 𝑅ሻ, [S31] 

where 𝜅୫ is the thermal conductivity of the matrix, and 𝑅 is the radius of the particle. Substituting 
Eqs. (S28) and (S29) into Eqs. (S30) and (S31), we can derive 
 𝐴୮∗ ൌ

ଶ఑ౣ
఑ౣା఑౦

∗ 𝐴୫, [S32] 

 𝐵୫ ൌ
൫఑ౣି఑౦

∗ ൯ோమ

఑ౣା఑౦
∗ 𝐴୫. [S33] 

 
Generally, 𝑇୮∗ is different from 𝑇୮, but we can find a specific condition to make their difference 

minimum. We define the difference as 

׬  ቀ𝑇୮ሺ𝑟 ൌ 𝑅ሻ െ 𝑇୮∗ሺ𝑟 ൌ 𝑅ሻቁ
ଶ
𝑑𝜃

ଶ஠
଴

, [S34] 

which can be rewritten as 

׬  ൬𝑀൫𝑥ሺ𝑅ሻ൯ cos ቀ𝜃 െ 𝜙൫𝑥ሺ𝑅ሻ൯ቁ െ
ଶ఑ౣ

఑ౣା఑౦
∗ 𝐴୫𝑅 cos𝜃൰

ଶ

𝑑𝜃
ଶ஠

଴
. ሾS35ሿ 

According to the minimum entropy production principle, 𝜙൫𝑥ሺ𝑅ሻ൯ ൌ π/4  should be satisfied. 
Equation (S35) takes the minimum value when 

 𝑀൫𝑥ሺ𝑅ሻ൯ cos ቀ𝜙൫𝑥ሺ𝑅ሻ൯ቁ ൌ
ଶ఑ౣ

఑ౣା఑౦
∗ 𝐴୫𝑅. ሾS36ሿ 

 
We reconsider the rotating particle, and the boundary conditions are 

 𝑇୫ሺ𝑟 ൌ 𝑅ሻ ൌ 𝑇୮ሺ𝑟 ൌ 𝑅ሻ, ሾS37ሿ 

 െ𝜅୫
డ்ౣ

డ௥
ሺ𝑟 ൌ 𝑅ሻ ൌ െ𝜅୮

డ ౦்

డ௥
ሺ𝑟 ൌ 𝑅ሻ. ሾS38ሿ 

Substituting Eqs. (S24) and (S28) into Eq. (S38), we can derive 

 െ𝜅୫ ቀ𝐴୫ െ
஻ౣ
ோమ
ቁ cos𝜃 ൌ െ𝜅୮ට

ఆ

஽
𝑀൫𝑥ሺ𝑅ሻ൯ cos ቀ𝜃 െ 𝜙൫𝑥ሺ𝑅ሻ൯ ൅

஠

ସ
ቁ. ሾS39ሿ 

The substitution of Eqs. (S33) and (S36) into Eq. (S39) yields 

 െ𝜅୫ ൬𝐴୫ െ
఑ౣି఑౦

∗

఑ౣା఑౦
∗ 𝐴୫൰ ൌ െ𝜅୮ට

ఆ

஽

ଶ఑ౣ
఑ౣା఑౦

∗ 𝐴୫𝑅
ଵ

ୡ୭ୱቀథ൫௫ሺோሻ൯ቁ
. ሾS40ሿ 

Equation (40) can be reduced to 

 𝜅୮∗ ൌ 𝜅୮ට
ଶఆோమ

஽
ൌ 𝜅୮√2𝛷, ሾS41ሿ 

where 𝛷 ൌ 𝛺𝑅ଶ𝐷ିଵ plays a similar role to the Peclet number. 
 
Supplementary Section 3: Effect of the thermal conductivity of the particles 
 

We know from Eq. (S32) that with the increment of 𝜅୮∗ , the temperature gradient 𝐴୮∗  in the 
particle decreases. Meanwhile, faster rotation enhances the effective thermal conductivity of the 
particles; see Eq. (S41). 
 

Since rotation distorts the direction of isotherms in the particle, it also reduces the temperature 
gradient. We perform finite-element simulations based on a unit cell to quantify the effect. The 
temperature profiles with different rotation velocities are presented in Fig. S3A-E. The rotation 
direction affects the distortion direction of isotherms, and a larger rotation velocity leads to more 
sparse isotherms. The average longitudinal temperature gradient 〈െ𝑇௫〉 in the particle is an even 
function of 𝛷 and is monotonically decreasing in the region 𝛷 ൐ 0 (Fig. S3F). Since the advantage 
of faster rotation is negated, the optimal rotation velocity exists for maximum thermal chirality. 
 

Then we discuss the quantitative impact of the thermal conductivity of the particles on thermal 
chirality. When 𝜅୮ ൌ 0.2 (Fig. S4A), the increment of 𝜅୶୷ becomes slow, and the values of 𝜅୶୶ with 
different 𝑅 are not identical at 𝛷 ൌ 0. The maximum value of 𝛾 appears at the identical position of 
𝛷 ൎ 21.4. We further consider the thermal conductivity of the particles larger than that of the matrix, 
i.e., 𝜅୮ ൌ 5 (Fig. S4B). The value of 𝜅୶୷ quickly reaches a peak and then decreases, and the curves 
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of 𝜅୶୶ does not overlap. The peak of 𝛾 appears at the identical position of 𝛷 ൎ 4.2, smaller than 
𝛷 ൎ 21.4 for 𝜅୮ ൌ 0.2. Finally, we keep the radius of the particles unchanged. With the increment 
of 𝜅୮, the maximum value of 𝛾 and the corresponding value of 𝛷 decrease (the arrow in Fig. S4C). 
For stronger thermal chirality (or larger 𝛾 ), a smaller 𝜅୮  is better because it leads to a more 
significant temperature gradient in the rotating particles, enhancing the net transverse heat flux. 
 
Supplementary Section 4: Size effect of the active thermal lattice 
 

The size effect means effective thermal conductivity relies on the number of unit cells. We 
discuss three typical cases with 1 ൈ 𝑁, 𝑁 ൈ 1, and 𝑁 ൈ𝑁 unit cells (Fig. S5A). The effective thermal 
conductivities 𝜅୶୷ and 𝜅୶୶ are plotted as a function of the size 𝑁 (Fig. S5B). For case I, the values 
of 𝜅୶୷ and 𝜅୶୶ are irrelevant to the size 𝑁, demonstrating no size effect. In contrast, the values of 
𝜅୶୷ and 𝜅୶୶ show size dependence in case II, where 𝜅୶୷ is decreasing and 𝜅୶୶ is increasing. These 
two values finally approach constants because the active lattice becomes large enough. The 
variation ranges are about 1.26% for 𝜅୶୷ and 0.54% for 𝜅୶୶, which are relatively small. Since the 
vertical stacking does not matter (case I), case III shows the same size effect as case II (Fig. S5B). 
 

The size effect originates from translation symmetry breaking. The periodic lattice has natural 
structure translation symmetry, but the boundary conditions do not necessarily have translation 
symmetry. We focus on the temperature gradient on the boundary (Fig. S5C). For case I, the 
longitudinal temperature gradients 𝜕௫𝑇  at different heights are the same due to the periodic 
boundary conditions at the upper and lower edges, so the translation symmetry of boundary 
conditions is maintained. The transverse stacking does not affect effective thermal conductivity. In 
contrast, for case II, the transverse temperature gradients 𝜕௬𝑇 at the left and right boundaries differ 
from elsewhere due to their constant temperatures. The translation symmetry of boundary 
conditions is broken, so the size effect appears in case II. Translation symmetry breaking is crucially 
related to thermal chirality. If the particles do not rotate, thermal chirality disappears, and translation 
symmetry can be maintained. 
 

We further present temperature profiles for intuitive understanding. The reference temperature 
profile with the Hall thermal conductivity is shown in Fig. S5D, demonstrating a uniform longitudinal 
temperature gradient. Figure S5E and F exhibits the temperature profile of an active thermal lattice 
with 𝑁 taking 4 or 20. We also plot the temperature deviation profile 𝛿 ൌ ሺ𝑇 െ 𝑇 ୣ୤ሻ/ሺ𝑇ୌ୭୲ െ 𝑇େ୭୪ୢሻ 
in Fig. S5G and H. With the increment of 𝑁, the longitudinal temperature gradient becomes more 
uniform. Translation symmetry breaking turns slight, so the size effect gradually vanishes (Fig. S5B). 
 
Supplementary Section 5: Ideal properties of the experimental setup 
 

We perform finite-element simulations based on the fabricated sample under the ideal 
condition without interfacial thermal resistance. The effective thermal conductivity and thermal 
chirality are presented in Fig. S6A. Since we use metals (i.e., copper and steel) with high thermal 
conductivities, the values of 𝜅୶୷ and 𝜅୶୶ are significantly enhanced, and they reach an unexpected 
order of magnitude 10ଶ W m-1 K-1. Nevertheless, thermal chirality does not strongly depend on 
specific materials. Due to the far smaller thermal conductivity of the particles than the matrix, 
thermal chirality is slightly enhanced and reaches a maximum value of 𝛾 ൌ 0.35 when 𝑅 ൌ 0.35. 
 

The temperature profiles with different 𝛷 are presented in Fig. S6B. The upper and lower 
boundaries are thermally insulating, so heat flux is forbidden to flow out at the edges, leading to 
the slant of isotherms. Thermal chirality is intuitively reflected in the slant of isotherms. We also 
perform finite-element simulations based on the effective parameters calculated from periodic 
boundary conditions (Fig. S6C). Despite temperature fluctuations, the slant of isotherms agrees, 
proving the validity of our calculation method. The detailed temperature deviation profiles are 
presented in Fig. S6D. 
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Supplementary Section 6: Basic properties of anisotropic thermal chirality 
 

Since there is no real-number solution to 𝜅୶୷ᇱ ൌ 𝜅୷୶ᇱ ൌ 0 , an anisotropic Hall thermal 
conductivity tensor is rotation-varying and cannot be diagonalized; see Eqs. (S4)-(S7). For the 
second best, we expect 𝜅ᇱ to be quasi-diagonalized, thus leading to two typical cases. The first 
case is 𝜅୶୶ᇱ ൌ 𝜅୷୷ᇱ  and 𝜅୶୷ᇱ ് 𝜅୷୶ᇱ , corresponding to Fig. 4C in the main text. Solving 𝜅୶୶ᇱ ൌ 𝜅୷୷ᇱ , we 
obtain 
 tanሺ2𝜃ଵሻ ൌ

఑౮౮ି఑౯౯
఑౮౯ା఑౯౮

. ሾS42ሿ 

The second case is 𝜅୶୷ᇱ ൌ െ𝜅୷୶ᇱ  and 𝜅୶୶ᇱ ് 𝜅୷୷ᇱ , corresponding to Fig. 4E in the main text. Solving 
𝜅୶୷ᇱ ൌ െ𝜅୷୶ᇱ , we derive 

 tanሺ2𝜃ଶሻ ൌ െ
఑౮౯ା఑౯౮
఑౮౮ି఑౯౯

. ሾS43ሿ 

With the rotation angle taking 𝜃ଵ  or 𝜃ଶ , a general thermal conductivity tensor can be quasi-
diagonalized. Due to tanሺ2𝜃ଵሻ tanሺ2𝜃ଶሻ ൌ െ1, we also derive 𝜃ଵ ൌ 𝜃ଶ ൅ േπ/4, agreeing with the 
results in Fig. 4C and E in the main text. 
 

The anisotropic feature makes thermal chirality depend on direction. We can still characterize 
thermal chirality by the transverse to longitudinal heat flux ratio. According to Eqs. (S4)-(S7), we 
can express thermal chirality 𝛾 as 

 𝛾 ൌ
௃౯
௃౮
ൌ

఑౮౯ᇲ

఑౮౮
ᇲ ൌ

఑౮౯ ୡ୭ୱమ ఏబି఑౯౮ ୱ୧୬మ ఏబା൫఑౮౮ି఑౯౯൯ ୡ୭ୱఏబ ୱ୧୬ఏబ
఑౮౮ ୡ୭ୱమ ఏబା఑౯౯ ୱ୧୬మ ఏబି൫఑౮౯ା఑౯౮൯ ୡ୭ୱఏబ ୱ୧୬ఏబ

. ሾS44ሿ 

If we start with a quasi-diagonalized case with 𝜅୶୶ ൌ 𝜅୷୷, anisotropic thermal chirality described by 
Eq. (S44) can be reduced to 

 𝛾 ൌ
఑౮౯ ୡ୭ୱమ ఏబି఑౯౮ ୱ୧୬మ ఏబ

఑౮౮ି൫఑౮౯ା఑౯౮൯ ୡ୭ୱఏబ ୱ୧୬ఏబ
. ሾS45ሿ 

When 𝜅୶୷ ൌ െ𝜅୷୶ , thermal chirality is further simplified as 𝛾 ൌ 𝜅୶୷/𝜅୶୶ , which features rotation 
invariance and demonstrates no anisotropy. 
 

By rotating a specific angle, we can construct an anisotropic Hall thermal conductivity from a 
quasi-diagonalized thermal conductivity. The two types of quasi-diagonalized thermal 
conductivities are designed with practical structures in Fig. 4 in the main text. The thermal 
conductivity of the matrix is diagonalizable with components of 𝜅୫୶ and 𝜅୫୷. The effective thermal 
conductivity of the active thermal lattice has the form of Eq. (S1). To obtain these four values from 
finite-element simulations (i.e., 𝜅୶୶, 𝜅୷୷, 𝜅୶୷, and 𝜅୷୶), we first apply a longitudinal temperature 
gradient by setting the left and right boundaries with constant temperatures. The upper and lower 
boundaries are periodic. Then we obtain 
 𝜅୶୶ ൌ

௃౮
ீ

, ሾS46ሿ 

 𝜅୶୷ ൌ
௃౯
ீ

, ሾS47ሿ 

where 𝐽୶ and 𝐽୷ are the longitudinal and transverse heat fluxes, and 𝐺 is the negative temperature 
gradient. We also use a transverse temperature gradient by setting the upper and lower boundaries 
with constant temperatures, and the left and right boundaries become periodic. Then we derive 

 𝜅୷୷ ൌ
௃౯
ீ

, ሾS48ሿ 

 𝜅୷୶ ൌ
௃౮
ீ

. ሾS49ሿ 
 

The effective thermal conductivity with different matrices is presented in Fig. S7. With a more 
anisotropic thermal conductivity of the matrix, 𝜅୶୶ ൌ 𝜅୷୷ is kept when 𝛼 ൌ π/4 (Fig. S7A and C), but 
𝜅୶୷ ൌ െ𝜅୷୶ is deviated when 𝛼 ൌ 0. Stronger anisotropy yields a larger deviation (Fig. S7B and D). 
 

The size effect becomes apparent when it comes to anisotropy. The thermal conductivity of 
the matrix is first set as diagሾ0.5, 2ሿ with the vertical thermal conductivity higher than the horizontal 
one (Fig. S8A). The value of 𝜅୶୷ is almost invariant with the increment of 𝑁, but the value of െ𝜅୷୶ 
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decreases. The value of 𝜅୶୶ is also invariant with the increment of 𝑁, and the value of 𝜅୷୷ increases. 
This phenomenon results from the larger 𝜅୫୷ than 𝜅୫୶. When we apply a horizontal thermal field, 
a larger 𝜅୫୷ tends to keep the isotherms vertically straight. Hence, the size effect is almost absent 
for 𝜅୶୷ and 𝜅୶୶. We also consider the temperature deviation 𝛿 between a practical structure and an 
ideal parameter. The global average temperature deviation 〈|𝛿|〉 is a reliable physical quantity to 
reflect the difference. With the increment of 𝑁, the value of 〈|𝛿|〉 decreases, indicating that the 
practical structure becomes homogeneous. We plot the case of 𝑁 ൌ 10 in the insets. With the 
enhancement of the anisotropy degree, the size effect becomes more crucial, especially for the 
values of െ𝜅୷୶ and 𝜅୷୷ (Fig. S8B and C). 
 

The size effect is related to the translation symmetry breaking of boundary conditions. On the 
one hand, anisotropy yields significant translation symmetry breaking. On the other hand, as the 
whole system becomes more homogeneous (with a larger 𝑁), translation symmetry breaking turns 
weaker. Thus, effective thermal conductivity finally becomes constant with the increment of 𝑁. 
 
Supplementary Section 7: Linking thermal chirality and transformation thermotics 
 

The transformation theory or transformation thermotics (5-8) still applies to Hall thermal 
conductivity. The transformed thermal conductivity is chiral and anisotropic. That is why we discuss 
the approach to anisotropic thermal chirality. For a coordinate transformation determined by the 
Jacobian matrix 𝐴, the transformed thermal conductivity 𝜅ᇱ is 

 𝜅ᇱ ൌ ஺఑⃡஺಩

ୢୣ୲஺
. ሾS50ሿ 

Since 𝜅 is a Hall thermal conductivity, 𝜅ᇱ is generally chiral, anisotropic, and inhomogeneous. 
 

We take Hall thermal cloaking, concentrating, and rotating as three typical examples of the 
calculation process. Coordinate transformations are usually written in cylindrical coordinates. We 
need to express the original isotropic Hall thermal conductivity from the Cartesian coordinates ሺ𝑥,𝑦ሻ 
to cylindrical coordinates ሺ𝑟,𝜃ሻ. The expression of the original isotropic Hall thermal conductivity 𝜅 
in the Cartesian coordinates (also denoted as 𝜅େୟ୰ for clarity) is 

 𝜅େୟ୰ ൌ ቂ
𝜅୶୶ 𝜅୷୶
𝜅୶୷ 𝜅୷୷ቃ. ሾS51ሿ 

Its expression in the cylindrical coordinates (denoted as 𝜅ୡ୷୪) is 

 𝜅ୡ୷୪ ൌ ቂ
𝜅୰୰ 𝜅஘୰
𝜅୰஘ 𝜅஘஘

ቃ, ሾS52ሿ 

where the components can be expressed as 
 𝜅୰୰ ൌ 𝜅୶୶ cosଶ 𝜃 ൅ 𝜅୷୷ sinଶ 𝜃 െ ൫𝜅୶୷ ൅ 𝜅୷୶൯ cos𝜃 sin𝜃, ሾS53ሿ 
 𝜅஘஘ ൌ 𝜅୷୷ cosଶ 𝜃 ൅ 𝜅୶୶ sinଶ 𝜃 ൅ ൫𝜅୶୷ ൅ 𝜅୷୶൯ cos𝜃 sin𝜃, ሾS54ሿ 
 𝜅୰஘ ൌ 𝜅୶୷ cosଶ 𝜃 െ 𝜅୷୶ sinଶ 𝜃 ൅ ൫𝜅୶୶ െ 𝜅୷୷൯ cos𝜃 sin𝜃, ሾS55ሿ 
 𝜅஘୰ ൌ 𝜅୷୶ cosଶ 𝜃 െ 𝜅୶୷ sinଶ 𝜃 ൅ ൫𝜅୶୶ െ 𝜅୷୷൯ cos𝜃 sin𝜃. ሾS56ሿ 
An isotropic case features 𝜅୶୶ ൌ 𝜅୷୷ and 𝜅୶୷ ൌ െ𝜅୷୶, so Eqs. (S53)-(S56) become 
 𝜅୰୰ ൌ 𝜅୶୶, ሾS57ሿ 
 𝜅஘஘ ൌ 𝜅୷୷, ሾS58ሿ 
 𝜅୰஘ ൌ 𝜅୶୷, ሾS59ሿ 
 𝜅஘୰ ൌ 𝜅୷୶. ሾS60ሿ 
For an isotropic Hall thermal conductivity, its expression in cylindrical coordinates is the same as 
in the Cartesian coordinates. 
 

Then we consider the coordinate transformation for thermal cloaking, 
 𝑟ᇱ ൌ 𝑎𝑟 ൅ 𝑏 ሺ0 ൑ 𝑟 ൑ 𝑅ଶሻ, ሾS61ሿ 
 𝜃ᇱ ൌ 𝜃 ሺ0 ൑ 𝑟 ൑ 𝑅ଶሻ, ሾS62ሿ 
with 𝑎 ൌ ሺ𝑅ଶ െ 𝑅ଵሻ/𝑅ଶ and 𝑏 ൌ 𝑅ଵ. 𝑅ଵ and 𝑅ଶ are the inner and outer radii of the cloak. ሺ𝑟ᇱ, 𝜃ᇱሻ are 
the coordinates in physical space, and ሺ𝑟,𝜃ሻ  are the coordinates in virtual space. The 
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transformation turns a solid circle into a hollow ring. The corresponding Jacobian transformation 
matrix is 

 𝐴 ൌ ቎

డ௥ᇲ

డ௥

డ௥ᇲ

௥డఏ
௥ᇲడఏᇲ

డ௥

௥ᇲడఏᇲ

௥డఏ

቏ ൌ ቈ
𝑎 0

0 ௔௥ᇲ

௥ᇲି௕

቉. ሾS63ሿ 

Then the transformed thermal conductivity is 

 𝜅ᇱ ൌ ஺఑⃡஺಩

ୢୣ୲஺
ൌ ቎

௥ᇲି௕

௥ᇲ
𝜅୶୶ 𝜅୷୶

𝜅୶୷
௥ᇲ

௥ᇲି௕
𝜅୷୷

቏. [S64] 

Compared with a familiar thermal cloak, the thermal conductivity of Hall thermal cloaking has two 
nonzero off-diagonal components being opposite constants. 
 

Thermal concentrating first compresses a solid circle with a radius of 𝑅୫ into a smaller one 
with a radius of 𝑅ଵ. Then the hollow ring with inner and outer radii of 𝑅୫ and 𝑅ଶ is stretched into a 
bigger one with inner and outer radii of 𝑅ଵ and 𝑅ଶ. The corresponding coordinate transformation is 
 𝑟ᇱ ൌ 𝑐𝑟 ሺ0 ൑ 𝑟 ൏ 𝑅୫ሻ, [S65] 
 𝑟ᇱ ൌ 𝑑𝑟 ൅ 𝑓 ሺ𝑅୫ ൑ 𝑟 ൑ 𝑅ଶሻ, [S66] 
 𝜃ᇱ ൌ 𝜃 ሺ0 ൑ 𝑟 ൑ 𝑅ଶሻ, [S67] 
with 𝑐 ൌ 𝑅ଵ/𝑅୫ , 𝑑 ൌ ሺ𝑅ଶ െ 𝑅ଵሻ/ሺ𝑅ଶ െ 𝑅୫ሻ , and 𝑓 ൌ 𝑅ଶሺ𝑅ଵ െ 𝑅୫ሻ/ሺ𝑅ଶ െ 𝑅୫ሻ . The Jacobian 
transformation matrix in the core is 𝐴 ൌ 𝑐𝐼, with 𝐼 being the second-order unit matrix. The Jacobian 
transformation matrix in the shell is 

 𝐴 ൌ ቈ
𝑑 0

0 ௗ௥ᇲ

௥ᇲି௙
቉. [S68] 

The thermal conductivity of the core is invariant after transformation, and that of the concentrator 
becomes 

 𝜅ᇱ ൌ ቎

௥ᇲି௙

௥ᇲ
𝜅୶୶ 𝜅୷୶

𝜅୶୷
௥ᇲ

௥ᇲି௙
𝜅୷୷

቏. [S69] 

 
The coordinate transformation for thermal rotating is 

 𝑟ᇱ ൌ 𝑟 ሺ0 ൑ 𝑟 ൑ 𝑅ଶሻ, [S70] 
 𝜃ᇱ ൌ 𝜃 ൅ 𝜑 ሺ0 ൑ 𝑟 ൏ 𝑅ଵሻ, [S71] 

 𝜃ᇱ ൌ 𝜃 ൅
ሺோమି௥ሻఝ

ோమିோభ
 ሺ𝑅ଵ ൑ 𝑟 ൑ 𝑅ଶሻ, [S72] 

where 𝜑 is the anticlockwise rotation angle. The Jacobian transformation matrix in the core is 𝐴 ൌ
𝐼 , making the thermal conductivity of the core invariant after transformation. The Jacobian 
transformation matrix in the shell is 

 𝐴 ൌ ቈ
1 0

െ
௥ᇲఝ

ோమିோభ
1቉. [S73] 

The corresponding thermal conductivity of the rotator is 

 𝜅ᇱ ൌ ൦
𝜅୶୶ െ ௥ᇲఝ

ோమିோభ
𝜅୶୶ ൅ 𝜅୷୶

െ ௥ᇲఝ

ோమିோభ
𝜅୶୶ ൅ 𝜅୶୷ ቀ

௥ᇲఝ

ோమିோభ
ቁ
ଶ
𝜅୶୶ ൅ 𝜅୷୷

൪. [S74] 

 
The simulation results are shown in Fig. S9. The temperature gradient is uniform when a 

uniform Hall thermal conductivity meets the periodic boundary conditions (Fig. S9A). Then we put 
a particle with opposite thermal chirality in the matrix. The interface effect induced by opposite 
thermal chirality distorts the temperature profile (Fig. S9B), making the object thermally visible. We 
design a conventional thermal cloak to remove the temperature distortion, but it fails (Fig. S9C) 
because a Hall parameter inevitably has the interface effect with a common parameter. The 
temperature distortion is removed (Fig. S9D) when we design a Hall thermal cloak with an 
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anisotropic Hall thermal conductivity described by Eq. (S64). Since the temperature profile in the 
background recovers, the object cannot be thermally detected, achieving the cloaking effect. 
 

Similarly, we demonstrate Hall concentrating (Fig. S9E) and rotating (Fig. S9F) functions, 
indicating that the density and direction of isotherms can be flexibly regulated. The insulating 
boundary conditions further replace the periodic boundary conditions, and the corresponding 
results are still satisfying (Fig. S9G-L). The main difference between the two boundary conditions 
lies in the reference temperature profiles (Fig. S9A and G). 
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Fig. S1. Basic properties of thermal chirality. (A) Temperature profile of a Hall thermal conductivity 
with 𝜅୶୷ ൌ െ𝜅୷୶ ൌ 0.4 and 𝜅୶୶ ൌ 𝜅୷୷ ൌ 1.3 W m-1 K-1. (B) Temperature profile of an active lattice 
composed of 20 ൈ 20 unit cells. (C) Transverse heat flux profile with upward net heat flux. The 
transverse heat flux in the particles is averaged. 
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Fig. S2. Comparison between Hall and anisotropic thermal conductivities whose diagonal 
components are 𝜅୶୶ ൌ 𝜅୷୷ ൌ 1.3  W m-1 K-1. 𝜅୶୷ ൌ െ𝜅୷୶  for the Hall case and 𝜅୶୷ ൌ 𝜅୷୶  for the 
anisotropic case. (A and D) 𝜅୶୷ ൌ 0.4 W m-1 K-1. (C and F) 𝜅୶୷ ൌ െ0.4 W m-1 K-1. The left and bottom 
boundaries are insulating. The upper and right boundaries have a constant low temperature. A 
constant high temperature appears at the left-bottom corner. (G) Temperature distributions on the 
dashed lines. 
  



 
 
 

12 
 
 

 
Fig. S3. Rotation influences on temperature profiles. (A-E) Temperature profiles with 𝑅 ൌ 0.35, 
𝜅୫/𝜅୮ ൌ 1 , and different 𝛷 . The external temperature gradient is 1. The upper and lower 
boundaries are periodic. (F) Average longitudinal temperature gradient 〈െ𝑇௫〉 in the particle as a 
function of 𝛷 with different 𝑅. 
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Fig. S4. Effect of the thermal conductivity of the particle. (A-C) Effective thermal conductivity of an 
active lattice with 20 ൈ 20 unit cells as a function of the dimensionless parameter 𝛷 ൌ 𝛺𝑅ଶ𝐷୮ିଵ. The 
thermal conductivity of the matrix is 𝜅୫ ൌ 1, and that of the particles is (A) 𝜅୮ ൌ 0.2 and (B) 𝜅୮ ൌ 5. 
(C) The radius of the particles is 𝑅 ൌ 0.35. The unit of thermal conductivity is 1 W m-1 K-1. 
  



 
 
 

14 
 
 

 
Fig. S5. Size effect of the active thermal lattice. (A) Three typical cases. (B) Effective thermal 
conductivity as a function of the size 𝑁 with 𝜅୫/𝜅୮ ൌ 1, 𝑅 ൌ 0.35, and 𝛷 ൌ 6.6. (C) Temperature 
gradient distributions with 𝑁 ൌ 4 . (D) Reference temperature profile 𝑇 ୣ୤  of a Hall thermal 
conductivity with 𝜅୶୷ ൌ 0.4 and 𝜅୶୶ ൌ 1.3 W m-1 K-1. (E and F) Temperature profiles 𝑇 of the active 
thermal lattices with 𝑁 ൌ 4 and 𝑁 ൌ 20 (scaled to the same size). (G and H) Temperature deviation 
profiles 𝛿 ൌ ሺ𝑇 െ 𝑇 ୣ୤ሻ/ሺ𝑇ୌ୭୲ െ 𝑇େ୭୪ୢሻ. 
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Fig. S6. Simulations of the experimental setup without interfacial thermal resistance. (A) Effective 
thermal conductivity of the fabricated sample with 6 ൈ 6 unit cells as a function of the dimensionless 
parameter 𝛷 ൌ 𝛺𝑅ଶ𝐷୮ିଵ. The matrix is copper with thermal conductivity of 400 W m-1 K-1, mass 
density of 8900 kg m-3, and heat capacity of 390 J kg-1 K-1. The particles are steel with thermal 
conductivity of 15 W m-1 K-1, mass density of 7930 kg m-3, and heat capacity of 500 J kg-1 K-1. (B) 
Temperature profiles with the area fraction of the particles being 0.38. From I to IV, 𝛷 takes െ100, 
0 , 100 , and 1000 , respectively. (C) Temperature profiles of corresponding ideal Hall thermal 
conductivities shown in (A). (D) Temperature deviation profiles between (B) and (C). 
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Fig. S7. Influences of the matrix with more anisotropic thermal conductivities. (A-D) Effective 
thermal conductivity of an active lattice with 20 ൈ 20 unit cells as a function of the dimensionless 
parameter 𝛷 ൌ 𝛺𝑅ଶ𝐷୮ିଵ  with 𝜅୮ ൌ 1  and 𝑅 ൌ 0.35 . The anisotropic thermal conductivity of the 
matrix is (A and B) 𝜅୫ ൌ diagሾ0.2, 5ሿ  and (C and D) 𝜅୫ ൌ diagሾ0.1, 10ሿ . The unit of thermal 
conductivity is 1 W m-1 K-1. 
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Fig. S8. Size effect of the anisotropic thermal lattice. Effective thermal conductivity and average 
temperature deviation 〈|𝛿|〉 as a function of the size 𝑁 with 𝜅୮ ൌ 1, 𝑅 ൌ 0.35, and 𝛷 ൌ 6.6. (A) 𝜅୫ ൌ
diagሾ0.5, 2ሿ . (B) 𝜅୫ ൌ diagሾ0.2, 5ሿ . (C) 𝜅୫ ൌ diagሾ0.1, 10ሿ . The insets in the last rows are the 
temperature and deviation profiles with 𝑁 ൌ 10 in a transverse temperature gradient. The unit of 
thermal conductivity is 1 W m-1 K-1. 
  



 
 
 

18 
 
 

 
Fig. S9. Applications of anisotropic thermal chirality. Three typical functions with (A-F) periodic and 
(G-L) insulating boundary conditions at the upper and lower edges. (A) Reference temperature 
profile with 𝛾 ൌ 4/13. (B) Interface effect induced by a particle with 𝛾 ൌ െ4/13 (opposite thermal 
chirality compared to the background). (C) Conventional cloak. (D) Hall cloak. (E) Hall concentrator. 
(F) Hall rotator. (G-L) Same as (A-F) with insulating boundary conditions replacing periodic 
boundary conditions at the upper and lower boundaries. 
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