
Supplementary Table 1

Detailed comparison of g:Profiler with other enrichment analysis
tools.



Supplementary Materials

Description of the Novel Gene Ontology term filtering.

We propose a novel two-stage hybrid term list filtering algorithm for GO enrichment results that takes into account the
underlying topology of annotations, but without introducing additional hyperparameters to tune. The main objective for
developing this approach was to systematically reduce the term lists retrieved by g:Profiler.

The first step, once the list of significantly enriched GO functions is detected, is to reorganise the significant terms
based on their relations. That is, terms that share GO defined relation, i.e have connecting edges between the term
nodes, are grouped together. Therefore, instead of detecting ambiguous clusters of terms by using some, i.e.
semantic, similarity measure and a clustering algorithm, we use the reliable knowledge from the manually curated
resource of GO. Hereinafter, these term groups are referred to as connected components, and one can think of
them as sub-ontologies of GO. The components alone are already helpful for summarizing the results as the terms in
the same connected component describe similar biological contexts and most likely share a large part of the genes.
These components are shown in the ‘GO Context’ tab.

The next step is to detect the non-redundant terms from each of these components. We rely on the idea that every
component has its leading gene sets that give rise to other significant functions in the neighbourhood. That is, if a
child term is significantly enriched, the parent term might appear significant due to the fact that it also includes all the
genes from the child term. To detect these leading sets we developed a simple algorithm that greedily starts from the
term that has the smallest adjusted p-value and keeps it as a leading term. At the same time, the overlapping genes
between the term and the input gene list are remembered as marked genes.

As the GO annotations are propagated up the graph, we now exclude all the child and ancestor terms of the selected
term from further searches. We find these by recursively traversing the graph structure of GO. Then the search
continues with the next smallest p-value from the remaining functions in the component, but now we implement the
idea from the elim method (Alexa et al, 2006) and measure the significance of the term by excluding the marked
genes from the term and recalculating the cumulative hypergeometric p-value with the new parameters. With this, we
identify whether there are other relevant genes in the query that give rise to the terms representing different biological
functions. If this p-value remains significant, that is, it is below the originally set significance threshold, then we keep
the term as another leading term and include the overlapping genes to the list of marked genes. The recalculated
p-value is used as an indicator in the algorithm and is not reported to the user. Again, we exclude the child and
ancestor terms and continue these steps until there are no terms left to check. Since the components are
independent and do not share any terms, the greedy search can be applied to the connected components in parallel.
As a result, at least one function from every connected component is presented for further interpretation. Though it
may seem appealing to simply select only the term with the highest significance level for every component, there
might be several leading terms in a component.

Before implementing it for the g:Profiler users, we conducted a straightforward evaluation to assess the performance
of our Gene Ontology (GO) filtering algorithm, primarily comparing our in-house developed methods with various
parameter settings of the SUMER R package. The primary criteria under examination were: a) the reduction of
reported GO terms and b) the preservation of biological relevance within the query. While criterion a) is
straightforward to evaluate and quantify, criterion b) is considerably more elusive.

For this investigation, we selected the GO: Biological Process (BP) ontology and designed queries for the
experiment. Each query comprised a proportion of genes associated with a random GO:BP term and a proportion of
unrelated, random genes. We randomized both the proportions and query size within a reasonable range, allowing us
to gauge the impact of "noise" on filtering and evaluate the retention of "signal" in the query both with and without
filtering.

Our study analyzed the performance of five in-house developed filtering strategies and the SUMER R package with
different parameter settings. The SUMER strategies require parameters specifying the maximum number of terms to



retain, whereas our in-house methods are parameter-free. Ultimately, the strategy currently implemented in the
g:Profiler tool outperformed all other contenders, including the SUMER strategies with various parameters. Although
the SUMER strategies exhibited commendable performance, their parameters lacked a suitable default and did not
generalize well across different queries. (See Supplementary Figure S1).

Furthermore, we conducted the same evaluation using a more complex query featuring signals from two independent
GO:BP terms. In this scenario, our implemented filtering strategy demonstrated superior performance, while the
limitations of SUMER's parameter-based approach became evident.

A. Alexa, J. Rahnenführer and T. Lengauer, Improved scoring of functional groups from gene expression data by
decorrelating GO graph structure, Bioinformatics 22, 1600 (2006)”

Supplementary Figure S1. Comparison of different filtering strategies on retaining "signal" genes and reducing reported terms in GO
queries. The background dot plot indicates all performed queries, while the foreground bigger dots represent the combined average
per filtering schema. The x-axis represents the fraction of terms retained after filtering, while the y-axis represents the fraction of
"signal" genes with and without filtering. The legend denotes the different filtering methods, including in-house filtering schemes
(prefixed with 'filt_'), the currently implemented method in g:Profiler ('passed_filter'), and SUMER methods ('sumer_N', where N
denotes the maximum number of terms to retain). The SUMER 'gradient' intuitively visualises the trade-off between signal retention
and term reduction. Our 'passed_filter' method, indicated by an arrow, demonstrates the best performance in retaining relevant
signal while significantly reducing the number of reported terms.


