# Supplementary data

# ACFIS 2.0: an improved web-server for fragment-based drug discovery via a dynamic screening strategy

Xing-Xing Shi<sup>1,†</sup>, Zhi-Zheng Wang<sup>1,†</sup>, Fan Wang<sup>1,†</sup>, Ge-Fei Hao<sup>1,\*</sup> and Guang-Fu Yang<sup>1,\*</sup>

<sup>†</sup> National Key Laboratory of Green Pesticide, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, Central China Normal University, Wuhan 430079, P.R. China

\* To whom correspondence should be addressed. Email: gfyang@mail.ccnu.edu.cn (Guang-Fu Yang), gefei\_hao@foxmail.com (Ge-Fei Hao)

† Joint First Authors

### Text S1. Materials and methods

#### 1. Fragment Deconstruction

The fragment deconstruction analysis starts from a protein-ligand complex in PDB format. Firstly, an energy minimization was performed using Amber 16 to optimize the interaction between protein and ligand [1]. The, ligand structure binding in the pocket is deconstructed into fragments according to the retrosynthetic analysis by using DAIM software [2]. Single bond is broken and hydrogen is used to link with heavy atom to make the total charge value of each 'piece' integer.

#### 2. Core Fragment Identification.

After fragment deconstruction, the binding free energy ( $\Delta G$ ) is calculated for each protein–fragment structure using the combination of the MM\_PBSA method [3] for the enthalpy and an empirical method for the entropy [4] (Equation 1). Then, ligand efficiency (LE) which is defined as absolute value of  $\Delta G$ divided by the heavy atom count (HAC) is obtained. All fragments deconstructed from original ligand is sorted based on LE. Fragment with highest LE value is generally identified as core fragment that theoretically has a highly conserved binding conformation and efficient contribution to the entire binding affinity.

$$\Delta G_{\text{bind}} = \Delta E_{\text{gas}} + \Delta G_{\text{sol}} - T\Delta S = \Delta E_{\text{bind}} - T \left( \Delta S_{\text{sol}} + \Delta S_{\text{conf}} \right)$$
(1)

# 3. Dynamic Fragment Growing.

Dynamic fragment growing begins with the protein-core fragment complex structure. At first, energy minimization and molecular dynamics (MD) simulation are performed on protein-core fragment complex using AMBER16 package. Topology and coordinate files is created in the tleap module based on the Amber ff14SB force field [5] and general AMBER force field (GAFF) [6]. The complex system is solvated in an octahedron box of TIP3P water, with at least 10 Å between the solute and each box edge [7]. Counter ions, Na+ or Cl–, is added to neutralize the net charges of the system. The energy minimization was achieved through three stages: (i) only water molecules and ions are allowed to move, (ii) backbone atoms of protein are restrained and the remaining atoms are allowed to move, (iii) all atoms in the system could move freely. In each stage, 1000 steepest descent steps and 1000 conjugated gradient steps with a convergence criterion of 0.1 kcal mol<sup>-1</sup> Å<sup>-1</sup> were carried out in a vacuum. The MD simulation process using explicit-solvent particle mesh Ewald (PME) model is achieved through two stages: (i) the system is heated from 0 to 300K over 500 ps in the NVT ensemble with restraints on the solute (ii) 0.5 ns of MD in the NTP (T = 300 K and P = 1 atm) ensemble is carried out four times successively (4 x 0.5ns = 2ns), saving the structure every 2 ps

Subsequently, RMSD-based clustering is performed on complex structures extracted from entire merged MD trajectories using the cpptraj module in AMBER16. The RMSD cutoff for the neighboring cluster is set as 0.5 Å. A complex structure is randomly picked from each of the top five clusters with the

largest number of conformations, thereby obtaining an ensemble of protein-core fragment complex conformations with large structural difference.

Finally, based on typical protein-core fragment complex structure, new fragment in selected fragment library is linked to the junction of core fragment placed in the binding site using AutoGrow2.0 [8]. The orientation of growing fragment was optimized with minimum steric clashes (overlap volume  $\leq 4 \text{ Å}^3$ ) to the surrounding residues. For generated protein-ligand complex structure, energy minimization is performed using the Sander module of Amber16, and binding free energy ( $\Delta G$ ) is calculated using the combination of the MM\_PBSA method [3] for the enthalpy and an empirical method for the entropy [4] (Equation 1). Among a set of complex conformations containing the same ligand, the conformation with the lowest  $\Delta G$  value is used the ultimate complex structure for subsequent ligand comparisons.

# 4. Molecular Property Evaluation

At the step of comparing generated ligands, a series of molecular properties are predicted for each ligand, including binding affinity, physicochemical properties, drug-likeness, pesticide-likeness and synthetic accessibility. Binding affinity is predicted through binding free energy calculation using the combination of the MM\_PBSA method [3] for the enthalpy and an empirical method for the entropy [4] (Equation 1). The physicochemical properties are calculated using Mordred software [9], covering molecular weight (MW), hydrogen bond receptor (HBA), hydrogen bond donor (HBD), water partition coefficient (LogP), and so on. The drug-likeness is evaluated according to physicochemical properties, using qualitative Lipinski's rule of five [10], Ghose's rule [11], as well as the quantitative QED score [12]. The pesticide-likeness was evaluated according to a qualitative rule called Hao's rule [13]. In addition, the synthetic accessibility score is evaluated using RDKit [14].

### Text S2. Description of validation protocol for ACFIS 2.0

1. Dataset preparation

As mentioned in the main text, a series of compounds that have been reported with experimental binding affinities or biological activity were collected as test set for the performance validation of ACFIS 2.0. A total of 122 compounds was selected as test objects after literature investigation. Each compound in the test set was required to meet the following restrictions:

1) There is available experimental data on its binding affinity or biological activity.

2) The qualitative conclusion on its affinity or activity could be drawn (e.g. Compound A showed high affinity for X protein, while Compound B exhibited low affinity for X protein) based on the responding reference.

3) The crystal structure of its protein-ligand complex (at least its receptor protein) is available.

4) The core fragment in the compound could be identified based on the responding reference.

Targeting a specific protein, a pair of compounds were generally collected, in which one had high affinity/ activity and the other one showed relatively low affinity/ activity. The case in which the tested compound exhibited relatively high affinity/ activity was classified into the positive sample group, otherwise it is classified as a negative sample group. Overall, the test set was composed of 61 positive samples and 61 negative samples. The data of 122 cases were provided in Table S1.

2. Calculation for each case using ACFIS 2.0

For each case/ sample, a calculation task in CAND\_GEN mode was designed to evaluate the predictive performance of ACFIS 2.0. The inputs of a task consisted of a corresponding core fragment-receptor protein complex structure (obtained by deconstructing the protein-ligand complex reported in PDBbind database) and the fragment library built specifically for performance testing (see Figure S3). For each task, ACFIS 2.0 outputted a list of all generated ligands, in which the ligands were sorted by their predicted binding affinities from strong to weak (by their predicted binding free energies from low and high). In this list, the tested compound and its paired compound were designedly contained.

3. Performance evaluation for ACFIS 2.0

In each calculation task (mentioned above), ACFIS 2.0 was expected to reasonably sort all generated ligands and assign the tested compound with an appropriate rank. In principle, the tested compounds that had been experimentally measured to have high affinity or activity should be at the top of the list, while those with low experimental affinity/ activity should be ranked after its paired compound with higher affinity/ activity.

For positive samples, the top 20% was manually set as the ranking threshold. If a test compound ranks in the top 20% of the outputted complete list, it is computationally considered to have high affinity/

activity, and the corresponding case is predicted as positive. Otherwise, the corresponding case is predicted as negative.

For negative samples, if a test compound ranks after its paired compound in the outputted list, the corresponding case is predicted as negative. Otherwise, the corresponding case is predicted as positive.

After all testing tasks were completed, calculation results were compared with experimental findings. According to our statistics, 55 was true positive (TP), 8 was false positive (FP), 6 was false negative (FN), and 53 was true negative (TN). Here are the definitions of these elements:

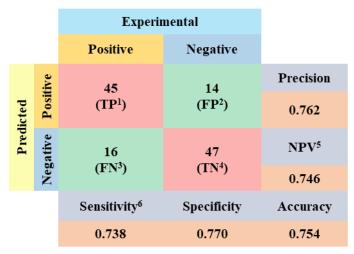
1) TP refers to the number of positive samples correctly predicted as positive.

2) FP refers to the number of negative samples incorrectly predicted as positive.

3) FN refers to the number of positive samples incorrectly predicted as negative.

4) TN refers to the number of negative samples incorrectly predicted as negative.

At last, the accuracy, precision, sensitivity, specificity, and negative positive value (NPV) of ACFIS 2.0 in this performance testing were measured.


Accuracy = (TP+TN)/(TP+FP+FN+TN) = 0.885

Precision = TP/(TP+FP) = 0.873

Sensitivity = TP/(TP+FN) = 0.901

Specificity = TN/(FP+TN) = 0.868

NPV = TN/(TN+FN) = 0.898



<sup>1</sup> True Positive <sup>2</sup> False Positive <sup>3</sup> False Negative <sup>4</sup> True Negative <sup>5</sup> Negative Predictive Value <sup>6</sup> Also called "Recall"

Figure S1. The performance of ACFIS (old version) when using the same test set as ACFIS 2.0

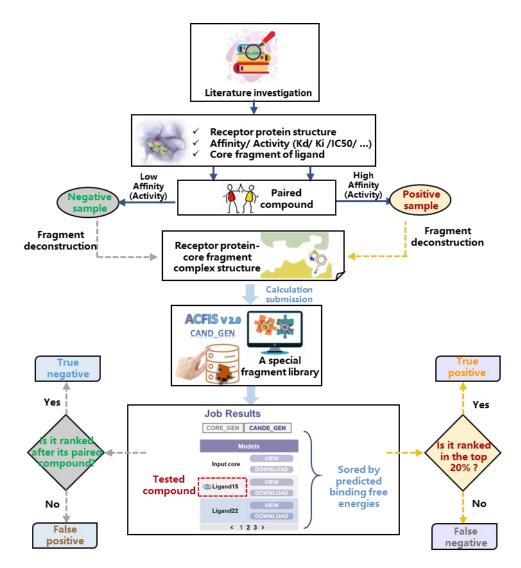



Figure S2. Validation workflow for ACFIS 2.0

 $\begin{array}{c} \underset{()}{\overset{\mathsf{H}}{\overset{\mathsf{h}}}}{\overset{\mathsf{h}}{\overset{\mathsf{h}}}} \xrightarrow{\overset{\mathsf{h}}{\overset{\mathsf{h}}}} \xrightarrow{\overset{\mathsf{h}}} \xrightarrow{\overset{\mathsf{h}}} \xrightarrow{\overset{\mathsf{h}}} \xrightarrow{\overset{\mathsf{h}}}} \xrightarrow{\overset{\mathsf{h}}} \overset{\mathsf{h}}} \xrightarrow{\overset{\mathsf{h}}} \overset{\mathsf{h}}} \xrightarrow{\overset{\mathsf{h}}} \overset{\mathsf{h}} \overset{\mathsf{h}}} \xrightarrow{\overset{\mathsf{h}}} \overset{\mathsf{h}} \overset{\mathsf{h}} \overset{\mathsf{h}} \overset{\mathsf{h}}} \overset{\mathsf{h}} \overset{\mathsf{h}}} \overset{\mathsf{h}} \overset{\mathsf{h}} \overset{\mathsf{h}} \overset{\mathsf{h}} \overset{\mathsf{h}}} \overset{\mathsf{h}} \overset{\mathsf{h}} \overset{\mathsf{h}} \overset{\mathsf{h}} \overset{\mathsf{h}}} \overset{\mathsf{h}} \overset{\mathsf{h}}} \overset{\mathsf{h}} \overset{\mathsf{h}} \overset{\mathsf{h}} \overset{\mathsf{h}}} \overset{\mathsf{h}} \overset{\mathsf{h}} \overset{\mathsf{h}} \overset{\mathsf{h}} \overset{\mathsf{h}}} \overset{\mathsf{h}} \overset{\mathsf{h}} \overset{\mathsf{h}} \overset{\mathsf{h}} \overset{\mathsf{h}} \overset{\mathsf{h}} \overset{\mathsf{h}}} \overset{\mathsf{h}} \overset{\mathsf{h}} \overset{\mathsf{h}} \overset{\mathsf{h}}} \overset{\mathsf{h}} \overset{\mathsf{h}}} \overset{\mathsf{h}} \overset{\mathsf{h}} \overset{\mathsf{h}} \overset{\mathsf{h}}} \overset{\mathsf{h}} \overset{\mathsf{h}}} \overset{\mathsf{h}} \overset{\mathsf{h}} \overset{\mathsf{h}} \overset{\mathsf{h}}} \overset{\mathsf{h}} \overset{\mathsf{h}}} \overset{\mathsf{h}} \overset{\mathsf{h}} \overset{\mathsf{h}}} \overset{\mathsf{h}} \overset{\mathsf{h}}} \overset{\mathsf{h}}} \overset{\mathsf{h}} \overset{\mathsf{h}} \overset{\mathsf{h}} \overset{\mathsf{h}}} \overset{\mathsf{h}} \overset{\mathsf{h}}} \overset{\mathsf{h}} \overset{\mathsf{h}} \overset{\mathsf{h}} \overset{\mathsf{h}} \overset{\mathsf{h}}} \overset{\mathsf{h}}} \overset{\mathsf{h}} \overset{\mathsf{h}} \overset{\mathsf{h}} \overset{\mathsf{h}}} \overset{\mathsf{h}} \overset{\mathsf{h}}} \overset{\mathsf{h}} \overset{\mathsf{h}} \overset{\mathsf{h}} \overset{\mathsf{h}}} \overset{\mathsf{h}} \overset{\mathsf{h}}} \overset{\mathsf{h}} \overset{\mathsf{h}} \overset{\mathsf{h}} \overset{\mathsf{h}}} \overset{\mathsf{h}} \overset{\mathsf{h}}} \overset{\mathsf{h}} \overset{\mathsf{h}} \overset{\mathsf{h}} \overset{\mathsf{h}}} \overset{\mathsf{h$  $\begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & &$ A special fragment library used in performance validation

Figure S3. Fragment library used in ACFIS 2.0 performance validation

|     |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         | Experiment                            | al Data                           |                 |                                                    | C                          | omputational Da<br>(ACFIS 2.0) | ta   | C                          | omputational Da<br>(ACFIS 1.0) | ta    |
|-----|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------------------|-----------------------------------|-----------------|----------------------------------------------------|----------------------------|--------------------------------|------|----------------------------|--------------------------------|-------|
| No. | Protein<br>Name      | Tested Compound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Affinity /<br>Activity                  | PDB of<br>its<br>complex<br>structure | Ref (DOI)                         | Sample<br>Group | Inputted Core<br>Structure                         | Rank<br>of<br>Test<br>Com. | Qualitative<br>Classification  | Fact | Rank<br>of<br>Test<br>Com. | Qualitative<br>Classification  | Fact  |
| 1   | Arginase-            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <i>K</i> d =47.51 nM<br>(High Affinity) | 3KV2                                  | 10.1016/j.<br>abb.2010.<br>02.004 | Positive        | HO <sup>-N</sup> HO <sup>-N</sup> HO <sup>-N</sup> | 17                         | Positive                       | True | 18                         | Positive                       | True  |
| 2   | 1                    | H <sub>2</sub> N<br>H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <i>K</i> d =3 nM<br>(Low Affinity)      | 3MFV                                  | 10.1021/j<br>m100306a             | Negative        | NH                                                 | 68                         | Negative                       | True | 10                         | Positive                       | False |
| 3   | Protein-<br>tyrosine | $ \begin{array}{c} NH_2 \\ \\ O_{\mathcal{S}}^{N} N \\ O_{\mathcal{S}}^{S} H \\ \\ O_{\mathcal{S}}^{H} O_{\mathcal{S}}^{H} H \\ \\ O_{\mathcal{S}}^{H} O_{\mathcal{S}}^{H}} O_{\mathcal{S}}^{H} O_{\mathcal{S}}^{H} O_{\mathcal{S}}^{H}} O_{\mathcal{S}}^{H} O$ | Ki =0.004 uM<br>(High Activity)         | 2QBP                                  | 10.1021/j<br>m0702478             | Positive        | HO<br>O<br>S<br>S<br>S<br>S<br>S<br>S              | 14                         | Positive                       | True | 11                         | Positive                       | True  |
| 4   | phosphata<br>se 1b   | HO S NH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ki =0.47 uM<br>(Low Activity)           | 2QBP                                  |                                   | Negative        | HO                                                 | 26                         | Negative                       | True | 43                         | Negative                       | True  |
| 5   | β-                   | N-NH<br>N, N<br>N, N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <i>Ki</i> =1.1 uM<br>(High Activity)    | 4DE1                                  | 10.1021/j<br>m2014138             | Positive        |                                                    | 15                         | Positive                       | True | 56                         | Negative                       | False |
| 6   | lactamase            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <i>Ki</i> =76.0 uM<br>(Low Activity)    | 4DE2                                  |                                   | Negative        | , i i i i i i i i i i i i i i i i i i i            | 86                         | Negative                       | True | 1                          | Positive                       | False |
| 7   | Glutamate            | S<br>HN<br>HN<br>HN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <i>Ki</i> =531 nM<br>(High Activity)    | 3BFU                                  | 10.1021/j<br>m701126<br>w         | Positive        | O<br>O<br>O<br>H                                   | 12                         | Positive                       | True | 14                         | Positive                       | True  |
| 8   | receptor 2           | о<br>HN O<br>HN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <i>Kd</i> =12.8 uM<br>(Low Affinity)    | 1P1Q                                  | 10.1073/p<br>nas.10373<br>93100   | Negative        | NH₂                                                | 39                         | Negative                       | True | 80                         | Negative                       | True  |

Table S1. The test set of 122 cases used for performance validation and the predictive results of ACFIS 2.0/ ACFIS for these cases

| 9  | Transport                                              | F<br>NH <sub>2</sub><br>OH | <i>Ki</i> =950 nM<br>(High Activity)          | 3F3C | 10.1126/s<br>cience.116               | Positive | <sup>3</sup> <sup>2</sup> <sup>1</sup> OH                                                   | 16 | Positive | True  | 77 | Negative | False |
|----|--------------------------------------------------------|----------------------------|-----------------------------------------------|------|---------------------------------------|----------|---------------------------------------------------------------------------------------------|----|----------|-------|----|----------|-------|
| 10 | er                                                     | HN NH <sub>2</sub> OH      | <i>Ki</i> =64.8 uM<br>(High Activity)         | 3F3A | 6777                                  | Negative | ντ ΤΟΗ<br>NH <sub>2</sub>                                                                   | 77 | Negative | True  | 39 | Positive | False |
| 11 | Apolipopr                                              |                            | <i>Kd</i> < 5 uM<br>(High Affinity)           |      | 10.1021/a<br>cs.jmedch                | Positive | HN<br>H <sub>2</sub> N                                                                      | 51 | Negative | False | 15 | Positive | True  |
| 12 | otein E4                                               |                            | <i>Kd</i> =30 uM<br>(Low Affinity)            | 6NCO | em.9b001<br>78                        | Negative | CI                                                                                          | 49 | Positive | False | 62 | Negative | True  |
| 13 | Indoleami<br>ne 2,3-                                   | F<br>N HO H                | IC <sub>50</sub> =0.028 uM<br>(High Activity) | 6O3I | 10.1021/a<br>cs.jmedch                | Positive | st.                                                                                         | 12 | Positive | True  | 6  | Positive | True  |
| 14 | dioxygena<br>se 1                                      |                            | IC <sub>50</sub> =0.135 uM<br>(Low Activity)  |      | em.9b006<br>62                        | Negative | N                                                                                           | 11 | Positive | False | 43 | Negative | True  |
| 15 | Palmitole<br>oyl-<br>protein                           |                            | IC <sub>50</sub> =0.032 uM<br>(High Activity) | 6R8Q | 10.1039/c                             | Positive |                                                                                             | 3  | Positive | True  | 45 | Negative | False |
| 16 | carboxyle<br>sterase<br>NOTUM                          |                            | IC <sub>50</sub> =33 uM<br>(Low Activity)     | 6G25 | 9md00096<br>h                         | Negative | H H H                                                                                       | 28 | Negative | True  | 90 | Negative | True  |
| 17 | Histone-<br>lysine N-<br>methyltra<br>nsferase<br>NSD3 |                            | IC50 = 1.9 uM<br>(High Activity)              | 6G2F | 10.1038/s<br>41589-<br>019-0310-<br>x | Positive | N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N | 17 | Positive | True  | 10 | Positive | True  |

| 18 |                                      | IC <sub>50</sub> = 13 uM<br>(Low Activity)     | 6G25 |                                       | Negative |                       | 36 | Negative | True | 58  | Negative | True |
|----|--------------------------------------|------------------------------------------------|------|---------------------------------------|----------|-----------------------|----|----------|------|-----|----------|------|
| 19 | D-3-<br>phosphogl<br>ycerate         | IC <sub>50</sub> =0.4 uM<br>(High Activity)    | 6RJ3 | 10.1021/a<br>cs.jmedch                | Positive | H<br>H<br>H<br>H      | 1  | Positive | True | 9   | Positive | True |
| 20 | dehydroge<br>nase                    | <i>K<sub>d</sub></i> =100 uM<br>(Low Affinity) | 6RIH | em.9b007<br>18                        | Negative | N-N O                 | 95 | Negative | True | 63  | Negative | True |
| 21 | Phosphop<br>antetheine<br>adenylyltr | IC50=0.037 uM<br>(High Activity)               | 6CCK | 10.1021/a<br>cs.jmedch<br>em.7b016    | Positive |                       | 6  | Positive | True | 19  | Positive | True |
| 22 | ansferase                            | IC <sub>50</sub> = 31uM<br>(Low Activity)      | 6CCM | 91                                    | Negative |                       | 57 | Negative | True | 103 | Negative | True |
| 23 | 7,8-<br>dihydro-8-<br>oxoguanin      | IC <sub>50</sub> =8 nM<br>(High Activity)      | 6F22 | 10.1021/a<br>cs.jmedch                | Positive | iz<br>>=0             | 9  | Positive | True | 8   | Positive | True |
| 24 | e<br>triphospha<br>tase              | IC <sub>50</sub> =0.02 uM<br>(Low Activity     |      | em.7b018<br>84                        | Negative |                       | 43 | Negative | True | 67  | Negative | True |
| 25 | Human N-<br>myristoylt<br>ransferase | IC50<1 nM<br>(High Activity)                   | 5MU6 | 10.1038/s<br>41557-<br>018-0039-<br>2 | Positive | Z<br>Z<br>Z<br>Z<br>H | 2  | Positive | True | 10  | Positive | True |

| 26 |                                        | F N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                      | IC <sub>50</sub> =20 uM<br>(Low Activity)      | 504V |                                    | Negative |                                       | 28 | Negative | True | 60 | Negative | True  |
|----|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|------|------------------------------------|----------|---------------------------------------|----|----------|------|----|----------|-------|
| 27 | MNK1/2                                 |                                                                                                                                                                                                                                                              | IC <sub>50</sub> = 0.028 uM<br>(High Activity) | 6CK3 | 10.1021/a<br>cs.jmedch<br>em.7b017 | Positive | N N N N N N N N N N N N N N N N N N N | 11 | Positive | True | 17 | Positive | True  |
| 28 |                                        |                                                                                                                                                                                                                                                              | IC <sub>50</sub> = 0.69 uM<br>(Low Activity)   | 6CJE | 95                                 | Negative | Η                                     | 16 | Negative | True | 77 | Negative | True  |
| 29 | BCR-                                   | F <sub>3</sub> CO<br>N<br>H<br>N<br>N<br>O<br>H<br>N<br>O<br>H<br>N<br>O<br>H<br>N<br>O<br>H<br>N<br>O<br>H<br>N<br>O<br>H<br>N<br>O<br>H<br>N<br>O<br>H<br>N<br>O<br>H<br>N<br>O<br>H<br>N<br>O<br>H<br>N<br>O<br>H<br>N<br>O<br>H<br>N<br>O<br>H<br>O<br>H | IC <sub>50</sub> =0.5 uM<br>(High Activity)    | 5MO4 | 10.1038/n<br>ature2170             | Positive | F <sub>3</sub> CO O                   | 5  | Positive | True | 16 | Positive | True  |
| 30 | ABL1                                   | F <sub>3</sub> CO<br>N<br>H<br>N<br>N<br>O                                                                                                                                                                                                                   | <i>Kd</i> =2 uM<br>(Low Activity)              |      | 2                                  | Negative | N Star                                | 28 | Negative | True | 70 | Negative | True  |
| 31 | Cyclin-                                | NH<br>CF <sub>3</sub> NH <sub>2</sub>                                                                                                                                                                                                                        | IC <sub>50</sub> =3 nM<br>(High Activity)      | 5XS2 | 10.1016/j.                         | Positive |                                       | 23 | Positive | True | 39 | Negative | False |
| 32 | dependent<br>kinase 8                  | N NH<br>N NH<br>NH <sub>2</sub>                                                                                                                                                                                                                              | IC <sub>50</sub> = 0.24 uM<br>(Low Activity)   |      | bmcl.2017<br>.07.080               | Negative | N Y                                   | 27 | Negative | True | 25 | Positive | False |
| 33 | Platelet-<br>activating<br>factor      |                                                                                                                                                                                                                                                              | IC50=14 nM<br>(High Activity)                  | 5YEA | 10.1021/a<br>cs.jmedch             | Positive | ξ−HN c NH2                            | 8  | Positive | True | 17 | Positive | True  |
| 34 | acetylhydr<br>olase                    | H, S, O H,                                                                                                                                                                                                                     | IC <sub>50</sub> = 3.41uM<br>(Low Activity)    | 5YE7 | em.7b015<br>30                     | Negative | s in s<br>U                           | 29 | Negative | True | 12 | Positive | False |
| 35 | cGMP-<br>dependent<br>3',5'-<br>cyclic |                                                                                                                                                                                                                                                              | <i>Ki</i> =14 nM<br>(High Activity)            | 6B96 | 10.1016/j.<br>bmcl.2017<br>.10.054 | Positive | HN<br>N<br>N<br>CI                    | 7  | Positive | True | 21 | Positive | True  |

| 36 | phosphodi<br>esterase   | HN<br>N<br>N<br>CI                             | <i>Ki</i> =22 uM<br>(Low Activity)           | 6B98 |                                          | Negative |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 74 | Negative | True  | 98 | Negative | True  |
|----|-------------------------|------------------------------------------------|----------------------------------------------|------|------------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----------|-------|----|----------|-------|
| 37 | Bromodo<br>main-        |                                                | <i>Ki</i> = 33 nM<br>(High Activity)         | 5UER | -                                        | Positive |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12 | Positive | True  | 15 | Positive | True  |
| 38 | containing<br>protein 4 | HN<br>H <sub>2</sub> N                         | <i>Ki</i> = 9.5 uM<br>(Low Activity)         |      | -                                        | Negative | HN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 61 | Negative | True  | 92 | Negative | True  |
| 39 | Peregrin                | N H O'S'O N O O                                | IC <sub>50</sub> =7.9 nM<br>(High Activity)  | 5T4V | 10.1021/a<br>cs.jmedch                   | Positive | <sup>s<sup>2</sup></sup><br>o <sup>2</sup> S <sup>2</sup> N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 14 | Positive | True  | 7  | Positive | True  |
| 40 | (BRPF<br>family)        | N<br>H<br>O'S'O<br>N<br>N<br>O'SO<br>N<br>O'SO | IC <sub>50</sub> =0.43uM<br>(Low Activity)   |      | em.6b015<br>83                           | Negative | or to the provided | 27 | Negative | True  | 51 | Negative | True  |
| 41 | PCAF/GC                 |                                                | IC50 =0.86 uM<br>(High Activity)             | 5ML0 | 10.1021/a<br>cs.jmedch                   | Positive |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 41 | Negative | False | 26 | Negative | False |
| 42 | N5                      |                                                | IC <sub>50</sub> =16 uM<br>(Low Activity)    | 5MKX | em.6b015<br>66                           | Negative |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 86 | Negative | True  | 25 | Positive | False |
| 43 | PPC2/EE<br>D            | H <sub>2</sub> N O O                           | IC <sub>50</sub> = 0.43uM<br>(High Activity) | 5U62 | 10.1021/a<br>cs.jmedch<br>em.6b014<br>73 | Positive | where the second | 13 | Positive | True  | 19 | Positive | True  |

| 44 |                       | HN N O<br>H <sub>2</sub> N O | IC <sub>50</sub> =3.9 uM<br>(Low Activity) | 5U5T |                         | Negative |                                       | 43 | Negative | True  | 14  | Positive | False |
|----|-----------------------|------------------------------|--------------------------------------------|------|-------------------------|----------|---------------------------------------|----|----------|-------|-----|----------|-------|
| 45 | Choline               |                              | Kd=0.01uM<br>(High Affinity)               | 5EQY | 10.1021/a<br>cs.jmedch  | Positive | N N N N N N N N N N N N N N N N N N N | 31 | Negative | False | 10  | Positive | True  |
| 46 | Kinase α              |                              | Kd =0.769uM<br>(Low Affinity)              |      | em.5b015<br>52          | Negative |                                       | 28 | Positive | False | 104 | Negative | True  |
| 47 | Renin                 |                              | IC <sub>50</sub> =38 nM<br>(High Activity) | 5SZ9 | 10.1016/j.<br>bmc.2016. | Positive | N N N                                 | 16 | Positive | True  | 5   | Positive | True  |
| 48 |                       |                              | IC <sub>50</sub> =43 uM<br>(Low Activity)  | 5SY3 | 09.030                  | Negative | н                                     | 57 | Negative | True  | 21  | Negative | True  |
| 49 | BCATm                 |                              | IC50=0.2 uM<br>(High Activity)             | 5I5X | 10.1021/a<br>cs.jmedch  | Positive | - Z<br>O                              | 35 | Negative | False | 8   | Positive | True  |
| 50 |                       | N S OH                       | IC50=63 uM<br>(Low Activity)               | 515V | em.5b016<br>07          | Negative | N S                                   | 94 | Negative | True  | 111 | Negative | True  |
| 51 | Catechol<br>O-        | N N-NH O                     | IC <sub>50</sub> =75 nM<br>(High Activity) | 5K0L | 10.1021/a<br>cs.jmedch  | Positive | N 2 22                                | 10 | Positive | True  | 34  | Negative | False |
| 52 | Methyltra<br>nsferase | N<br>S<br>N-NH               | IC <sub>50</sub> =0.9 uM<br>(Low Activity) | 5K0B | em.6b009<br>27          | Negative | N<br>S<br>N-NH                        | 56 | Negative | True  | 77  | Negative | True  |

| 53 | Phospholi                | H <sub>2</sub> N<br>O<br>O<br>O<br>O<br>O | IC <sub>50</sub> = 0.01 uM<br>(High Activity) | 5G3N | 10.1021/a<br>csmedche                    | Positive | H <sub>2</sub> N<br>O | 5  | Positive | True | 9  | Positive | True |
|----|--------------------------|-------------------------------------------|-----------------------------------------------|------|------------------------------------------|----------|-----------------------|----|----------|------|----|----------|------|
| 54 | pase A2                  |                                           | IC <sub>50</sub> =0.91 uM<br>(Low Activity)   | -    | mlett.6b00<br>188                        | Negative |                       | 16 | Negative | True | 60 | Negative | True |
| 55 | BRD9                     |                                           | IC50=14 nM<br>(High Activity)                 | 5F1H | 10.1021/a<br>cs.jmedch                   | Positive |                       | 16 | Positive | True | 15 | Positive | True |
| 56 | вкря                     |                                           | IC50=0.656 uM<br>(Low Activity)               |      | em.5b018<br>65                           | Negative | N                     | 36 | Negative | True | 17 | Negative | True |
| 57 | CBP/EP3<br>00<br>bromodo |                                           | IC50 =0.03 uM<br>(High Activity)              | 518G | 10.1021/a<br>csmedche<br>mlett.6b00      | Positive | HN O<br>NH            | 13 | Positive | True | 11 | Positive | True |
| 58 | main                     |                                           | IC <sub>50</sub> =0.53 uM<br>(Low Activity)   | 5186 | 075                                      | Negative |                       | 18 | Negative | True | 60 | Negative | True |
| 59 | KEAP1                    |                                           | IC <sub>50</sub> =1.3 nM<br>(High Activity)   | 5FNU | 10.1021/a<br>cs.jmedch<br>em.6b002<br>28 | Positive |                       | 20 | Positive | True | 5  | Positive | True |

| 60 |           | IC50 = 3.4 uM<br>(Low Activity)              | 5FNS |                                    | Negative |             | 31 | Negative | True  | 74 | Negative | True  |
|----|-----------|----------------------------------------------|------|------------------------------------|----------|-------------|----|----------|-------|----|----------|-------|
| 61 | FABP4     | Kd =37.4 nM<br>(High Activity)               | 6LJV | 10.1021/a<br>cs.jmedch<br>em.9b021 | Positive | O OH<br>H Z | 16 | Positive | True  | 10 | Positive | True  |
| 62 |           | Kd =3741.9 nM<br>(Low Activity)              | -    | 07                                 | Negative |             | 59 | Negative | True  | 42 | Negative | True  |
| 63 | LTA4      | IC <sub>50</sub> =0.57 uM<br>(High Activity) | 4Y2T | 10.1016/j.<br>bmc.2015.            | Positive | O N N       | 39 | Negative | False | 18 | Positive | True  |
| 64 | Hydrolase | IC <sub>50</sub> =18.3 uM<br>(Low Activity)  | -    | 03.083                             | Negative |             | 73 | Negative | True  | 9  | Positive | False |
| 65 | BRD4      | IC <sub>50</sub> =15 nM<br>(High Activity)   | 6KEF | -                                  | Positive |             | 15 | Positive | True  | 12 | Positive | True  |
| 66 |           | IC50 =4.5 uM<br>(Low Activity)               | -    | -                                  | Negative | Ń ", "      | 82 | Negative | True  | 41 | Negative | True  |

| 67 | WDR5  |                              | <i>Kd</i> = 0.4 uM<br>(High Affinity)        | 6UJL | 10.1021/a<br>cs.jmedch | Positive | Br<br>O<br>OH | 10 | Positive | True | 13 | Positive | True  |
|----|-------|------------------------------|----------------------------------------------|------|------------------------|----------|---------------|----|----------|------|----|----------|-------|
| 68 | WDR5  |                              | <i>Kd</i> =32 uM<br>(Low Affinity)           | -    | em.0c002<br>24         | Negative | СІ            | 90 | Negative | True | 85 | Negative | True  |
| 69 | Mek1  |                              | IC50 =0.33 uM<br>(High Activity)             | 7B9L | 10.1021/a<br>csmedche  | Positive | 0-            | 17 | Positive | True | 37 | Negative | False |
| 70 |       | o                            | IC <sub>50</sub> =450 uM<br>(Low Activity)   | -    | mlett.0c00<br>563      | Negative | // <          | 89 | Negative | True | 75 | Negative | True  |
| 71 | LLRK2 | NH2<br>N<br>N<br>N<br>N<br>N | IC50=11 nM<br>(High Activity)                | 7BJR | 10.1021/a<br>cs.jmedch | Positive | NH2 ///       | 15 | Positive | True | 75 | Negative | True  |
| 72 |       |                              | IC <sub>50</sub> =1.73 uM<br>(Low Activity)  | 7BJM | em.1c007<br>20         | Negative |               | 34 | Negative | True | 46 | Positive | False |
| 73 | c-MET |                              | IC50 =44 nM<br>(High Activity)               | -    | 10.1021/a<br>csmedche  | Positive |               | 16 | Positive | True | 5  | Positive | True  |
| 74 |       |                              | IC <sub>50</sub> = 0.66 uM<br>(Low Activity) | 7B41 | mlett.0c00<br>392      | Negative | N N H         | 31 | Negative | True | 59 | Negative | True  |

| 75 | Axl                         |                                                       | IC50=37 nM<br>(High Activity)                | -    | 10.1074/jb<br>c.M116.7 | Positive | HZ<br>Z                     | 19 | Positive | True  | 13 | Positive | True  |
|----|-----------------------------|-------------------------------------------------------|----------------------------------------------|------|------------------------|----------|-----------------------------|----|----------|-------|----|----------|-------|
| 76 | AAI                         | H<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>H             | IC50 =0.432 uM                               | 5U6B | 71485                  | Negative | N-N                         | 39 | Negative | True  | 11 | Positive | False |
| 77 | Notum<br>Carboxyle          |                                                       | IC <sub>50</sub> =31 nM<br>(High Activity)   | 6ZVL | 10.1021/a<br>cs.jmedch | Positive | O<br>N−NH                   | 36 | Negative | False | 55 | Negative | False |
| 78 | sterase                     | ✓ O O O O O O O O O O O O O O O O O O O               | IC <sub>50</sub> =41 uM<br>(Low Activity)    |      | em.0c013<br>91         | Negative | ° N∕NH                      | 61 | Negative | True  | 85 | Negative | True  |
| 79 | DNA                         |                                                       | Kd= 17 nM<br>(High Affinity)                 | 6KZZ | 10.1021/a<br>csomega.0 | Positive | Z H<br>Z H<br>C O           | 8  | Positive | True  | 13 | Positive | True  |
| 80 | Gyrase                      |                                                       | Kd=0.24uM<br>(Low Affinity)                  |      | c00865                 | Negative |                             | 19 | Negative | True  | 53 | Negative | True  |
| 81 | Enoyl-<br>acyl-<br>carrier- |                                                       | IC <sub>50</sub> = 2.2 uM<br>(High Activity) | 6SQL | 10.1021/a<br>cs.jmedch | Positive | 0 NH <sub>2</sub>           | 17 | Positive | True  | 31 | Negative | False |
| 82 | protein<br>reductase        | NH <sub>2</sub><br>NH <sub>2</sub><br>NH <sub>2</sub> | IC50 =22 uM<br>(Low Activity)                |      | em.0c000<br>07         | Negative | 0<br>€<br>S<br>S<br>NH<br>O | 18 | Positive | False | 38 | Negative | True  |

| 83 |                    | F<br>F<br>HN<br>NH<br>NH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | IC <sub>50</sub> =64 nM<br>(High Activity)   | 6TPF | 10.1021/a<br>cs.jmedch                   | Positive | NH                | 8  | Positive | True  | 16 | Positive | True  |
|----|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|------|------------------------------------------|----------|-------------------|----|----------|-------|----|----------|-------|
| 84 | JAK1               | NH<br>NH<br>NH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | IC <sub>50</sub> =2.2 uM<br>(Low Activity)   | 6TPD | em.0c003<br>59                           | Negative | Z<br>Z<br>Z       | 39 | Negative | True  | 42 | Negative | True  |
| 85 | DYRK1B             | N + H + N + N + N + N + N + N + N + N +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | IC <sub>50</sub> = 65 nM<br>(High Activity)  | 7A5D | 10.1021/a<br>cs.jmedch                   | Positive |                   | 11 | Positive | True  | 43 | Negative | False |
| 86 | DIKKID             | $N_{N+2} N_{N+2} N_{N$ | IC <sub>50</sub> =3 uM<br>(Low Activity)     | -    | em.1c000<br>24                           | Negative | NH <sub>2</sub> N | 9  | Positive | False | 26 | Positive | False |
| 87 |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IC50=218 nM<br>(High Activity)               | 7AJ4 | 10.1021/a<br>cs.jmedch                   | Positive | CI                | 18 | Positive | True  | 16 | Positive | True  |
| 88 | DYRK1A             | CI<br>N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | IC <sub>50</sub> >10uM<br>(Low Activity)     |      | em.1c000<br>23                           | Negative | CI<br>CI          | 63 | Negative | True  | 9  | Positive | False |
| 89 | Notum<br>Carboxyle | CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IC <sub>50</sub> =0.11 uM<br>(High Activity) | 6YSK | 10.1021/a<br>cs.jmedch                   | Positive | - <del>5</del> N  | 15 | Positive | True  | 48 | Negative | False |
| 90 | steras             | К. СООН                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | IC <sub>50</sub> =48 uM<br>(Low Activity)    | 6YV2 | em.0c006<br>60                           | Negative | Соон              | 71 | Negative | True  | 50 | Negative | True  |
| 91 | FGFR2              | H<br>H<br>H<br>H<br>N<br>O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | IC50 =0.46 uM<br>(High Activity)             | 70ZF | 10.1021/a<br>cs.jmedch<br>em.1c011<br>63 | Positive | HN-N-NH<br>O      | 14 | Positive | True  | 17 | Positive | True  |

| 92 |       | HN CO                      | IC <sub>50</sub> >10 uM<br>(Low Activity)   |      |                                          | Negative |                      | 10 | Positive | False | 57 | Negative | True  |
|----|-------|----------------------------|---------------------------------------------|------|------------------------------------------|----------|----------------------|----|----------|-------|----|----------|-------|
| 93 |       | NH <sub>2</sub>            | IC50 =4 uM<br>(High Activity)               | 6WZW | 10.1038/s<br>41467-                      | Positive | S<br>NH <sub>2</sub> | 18 | Positive | True  | 35 | Negative | False |
| 94 | ASHIL | NH <sub>2</sub><br>N<br>HO | IC <sub>50</sub> =50.5 uM<br>(Low Activity) |      | 021-<br>23152-6                          | Negative |                      | 84 | Negative | True  | 19 | Positive | False |
| 95 |       | $H_2N$ $N$ $N$ $N$ $O$     | IC50=6 nM<br>(High Activity)                | 6JVP | 10.1016/j.                               | Positive | HN                   | 6  | Positive | True  | 56 | Negative | False |
| 96 | MTH1  | HN<br>$H_2N$ $N$ $N$       | IC50= 1.5 uM<br>(Low Activity)              | 6JVG | bioorg.20<br>21.104813                   | Negative | H <sub>2</sub> N N   | 25 | Negative | True  | 41 | Positive | False |
| 97 | MAT2A |                            | IC50= 22 nM<br>(High Activity)              | 7BHV | 10.1021/a<br>cs.jmedch<br>em.1c000<br>67 | Positive |                      | 8  | Positive | True  | 18 | Positive | True  |

| 98  |       |                                                                                             | IC <sub>50</sub> =7.2 uM<br>(Low Activity)   | 7BHU |                                     | Negative |                                     | 30 | Negative | True | 46 | Negative | True  |
|-----|-------|---------------------------------------------------------------------------------------------|----------------------------------------------|------|-------------------------------------|----------|-------------------------------------|----|----------|------|----|----------|-------|
| 99  | SETD2 |                                                                                             | IC50 =0.818 uM<br>(High Activity)            | -    | 10.1021/a<br>csmedche<br>mlett.1c00 | Positive | H<br>N<br>HN<br>HN<br>HN<br>HN<br>H | 6  | Positive | True | 14 | Positive | True  |
| 100 |       |                                                                                             | IC <sub>50</sub> =170 uM<br>(Low Activity)   | 7LZB | 272                                 | Negative | e 0                                 | 91 | Negative | True | 54 | Negative | True  |
| 101 | BRD4  |                                                                                             | PIC <sub>50</sub> =7.7<br>(High Activity)    | 70E6 | 10.1021/a<br>cs.jmedch              | Positive |                                     | 14 | Positive | True | 44 | Negative | False |
| 102 |       |                                                                                             | PIC <sub>50</sub> =4.9<br>(Low Activity)     |      | em.1c003<br>65                      | Negative | HN &                                | 61 | Negative | True | 95 | Negative | True  |
| 103 | BPTF  | N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N | IC50 =32 nM<br>(High Activity)               | -    | -                                   | Positive |                                     | 16 | Positive | True | 9  | Positive | True  |
| 104 |       |                                                                                             | IC <sub>50</sub> =0.698 uM<br>(Low Activity) | 7F5D | -                                   | Negative | NH                                  | 28 | Negative | True | 37 | Negative | True  |

| 105 | Tim-3                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | IC <sub>50</sub> =0.75 uM<br>(High Activity) | 7M3Z | 10.1021/a<br>cs.jmedch                 | Positive | N N N N N N N N N N N N N N N N N N N | 17 | Positive | True  | 11 | Positive | True  |
|-----|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|------|----------------------------------------|----------|---------------------------------------|----|----------|-------|----|----------|-------|
| 106 | TIII-5                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | IC <sub>50</sub> =4.9 uM<br>(Low Activity)   | 7M3Y | em.1c013<br>36                         | Negative | o H CI                                | 41 | Negative | True  | 39 | Negative | True  |
| 107 | DUDUA                  | $\underset{O}{\overset{H_{N}}{\underset{N}}} \underset{N}{\overset{N}{\underset{N}}} \underset{N}{\overset{H_{N}}{\underset{N}}} \underset{N}{\overset{N}{\underset{N}}} \underset{R}{\overset{K_{N}}{\underset{N}}} \underset{R}{\overset{K_{N}}} \underset{R}{\overset{K_{N}}} \underset{R}{\underset{N}}} \underset{R}{\overset{K_{N}}} \underset{R}{\overset{K_{N}}} \underset{R}{\underset{N}}} \underset{R}{\overset{K_{N}}} \underset{R}{\overset{K}} \underset{R}{\overset{K}} \underset{R}{\overset{K}} \underset{R}{\overset{K}} \underset{R}{\underset{N}} \underset{R}{\overset{K}} \underset{R}} \underset{R}{\overset{K}} \underset{R}{\overset{K}} \underset{R}{\overset{K}} \underset{R}{\overset{K}} \underset{R}}{\underset{R}} \underset{R}} \underset{R}{\overset{K}} \underset{R}} \underset{R}}{\underset{R}} \underset{R}} \underset{R}{\overset{K}} \underset{R}} \underset{R}}{\underset{R}} \underset{R}} \underset{R}}{\underset{R}} \underset{R}} R$ | IC <sub>50</sub> =0.6 nM<br>(High Activity)  | 8HLT | -                                      | Positive | N N N N N N N N N N N N N N N N N N N | 5  | Positive | True  | 17 | Positive | True  |
| 108 | DYRK2                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | IC <sub>50</sub> =1.41 uM<br>(Low Activity)  | 7EJV | 10.1038/s<br>41467-<br>022-<br>30581-4 | Negative |                                       | 27 | Negative | True  | 90 | Negative | True  |
| 109 | Acetohydr              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <i>Ki</i> =9.4 nM<br>(High Activity)         | -    | -                                      | Positive |                                       | 9  | Positive | True  | 31 | Negative | False |
| 110 | oxyacid<br>synthase    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <i>Ki</i> =127 nM<br>(Low Activity)          | 1YHZ | 10.1073/p<br>nas.05087<br>01103        | Negative | O<br>NH<br>O<br>S<br>S<br>O           | 19 | Negative | True  | 24 | Positive | False |
| 111 | Protoporp<br>hyrinogen | $ \begin{array}{c} O & H & H \\ F & F \\ F & F \\ F & F \\ F & F \\ O & F \\ O & F \\ O & O \\ O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | IC <sub>50</sub> =0.28 uM<br>(High Activity) |      | 10.1016/j.<br>jsb.2009.1               | Positive |                                       | 9  | Positive | True  | 19 | Positive | True  |
| 112 | Oxidase                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | IC50 =4.00 uM<br>(Low Activity)              | 3I6D | 1.012                                  | Negative | F 0 <sup>3</sup>                      | 6  | Positive | False | 21 | Negative | True  |
| 113 | Ecdysone<br>receptor   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | pIC50 > 8.81<br>(High Activity)              | 1R20 | 10.1038/n<br>ature0211<br>2            | Positive |                                       | 12 | Positive | True  | 20 | Positive | True  |

| 114 |                                |                           | pIC50 =5.92<br>(Low Activity)                |      |                        | Negative |                    | 76 | Negative | True  | 92  | Negative | True  |
|-----|--------------------------------|---------------------------|----------------------------------------------|------|------------------------|----------|--------------------|----|----------|-------|-----|----------|-------|
| 115 | Nicotinic<br>acetylchol<br>ine |                           | Ki =2.2 nM<br>(High Activity)                | 3C79 | 10.1073/p<br>nas.08021 | Positive | CI<br>Z            | 6  | Positive | True  | 15  | Positive | True  |
| 116 | Receptors                      | S NH CI                   | Ki =100 nM<br>(Low Activity)                 |      | 97105                  | Negative | ,72 <sup>-</sup> N | 13 | Negative | True  | 6   | Positive | False |
| 117 | Complex                        | O<br>H<br>CF <sub>3</sub> | IC <sub>50</sub> =8.61 μM<br>(High Activity) | -    | 10.3390/ij             | Positive |                    | 17 | Positive | True  | 25  | Negative | False |
| 118 | Π                              | CF3                       | IC <sub>50</sub> =45.9 μM<br>(Low Activity)  | 4YXD | ms160715<br>287        | Negative | CF <sub>3</sub>    | 12 | Positive | False | 37  | Negative | True  |
| 119 | Complex                        |                           | <i>Ki</i> = 83 nM<br>(High Activity)         | 3TGU | 10.1021/ja             | Positive |                    | 9  | Positive | True  | 3   | Positive | True  |
| 120 | III                            |                           | <i>Ki</i> > 10μM<br>(Low Activity)           | -    | 3001908                | Negative | × <sup>2</sup> 0   | 28 | Negative | True  | 36  | Negative | True  |
| 121 | 4-<br>hydroxyp<br>henylpyru    |                           | <i>Ki</i> =24 nM<br>(High Activity)          | 5YY7 | -                      | Positive |                    | 13 | Positive | True  | 9   | Positive | True  |
| 122 | vate<br>dioxygena<br>se        |                           | <i>Ki</i> =0.247 μM<br>(Low Activity)        | 5YWG | 10.1111/fe<br>bs.14747 |          |                    | 18 | Negative | True  | 104 | Negative | True  |

| FBDD Step                                      | Tool            | Form                                                                | Functionality                                        | Input                                                  | Output                                                                         |
|------------------------------------------------|-----------------|---------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------------|
| Fragment screening                             | SEED            | Software                                                            | Fragment docking                                     | Protein structure                                      | Suggested core fragment                                                        |
| Fragment-to-<br>Lead                           | FragPELE        | Software (comma nd line operation)                                  | Fragment growing                                     | Protein–ligand complex file                            | Protein–suggested<br>ligand complex file                                       |
|                                                | DeepFrag        | Browser app (http<br>s://durrantlab.pitt.<br>edu/deepfrag/)         | Fragment growing                                     | Receptor and ligand structure file                     | Suggested-<br>fragments table                                                  |
|                                                | Delinker        | Software (comma nd line operation)                                  | Fragment linking                                     | Fragment<br>(SMILES) and<br>receptor structure<br>file | Generated<br>molecules<br>(SMILES)                                             |
|                                                | SyntaLinker     | Software (comma nd line operation)                                  | Fragment linking                                     | Fragment file                                          | Generated molecules                                                            |
|                                                | Autogrow        | Software                                                            | Fragment growing                                     | Fragment file                                          | Generated molecules                                                            |
|                                                | LigBuilder<br>2 | Software (comma nd line operation)                                  | Fragment growing / linking / mutation                | Receptor structure file                                | Suggested-ligand file                                                          |
| Fragment<br>screening +<br>Fragment-to<br>Lead | ACFIS 2.0       | Web server (http://chemyang.ccnu.e<br>du.cn/ccb/server/<br>ACFIS2/) | Fragment hit<br>identification +<br>Fragment growing | Protein–ligand complex file                            | Protein-suggested<br>ligand / core<br>fragment complex<br>file and ligand file |

# Table S2. Comparison of ACFIS2 with other computational tools for FBDD in key features.

## Reference

[1] Case D A, Cheatham III T E, Darden T, et al. The Amber biomolecular simulation programs. Journal of Computational Chemistry, 2005, 26, 1668-1688.

[2] Kolb P, Caflisch A. Automatic and efficient decomposition of two-dimensional structures of small molecules for fragment-based high-throughput docking. Journal of Medicinal Chemistry, 2006, 49, 7384-7392.

[3] Miller III B R, McGee Jr T D, Swails J M, et al. MMPBSA. py: an efficient program for end-state free energy calculations. Journal of Chemical Theory and Computation, 2012, 8, 3314-3321.

[4] Sun H, Duan L, Chen F, et al. Assessing the performance of MM/PBSA and MM/GBSA methods. 7. Entropy effects on the performance of end-point binding free energy calculation approaches. Physical Chemistry Chemical Physics, 2018, 20, 14450-14460.

[5] Maier J A, Martinez C, Kasavajhala K, et al. ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. Journal of Chemical Theory and Computation, 2015, 11, 3696-3713.

[6] Wang J, Wolf R M, Caldwell J W, et al. Development and testing of a general amber force field. Journal of Computational Chemistry, 2004, 25, 1157-1174.

[7] Mark P, Nilsson L. Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. The Journal of Physical Chemistry A, 2001, 105, 9954-9960.

[8] Durrant J D, Lindert S, McCammon J A. AutoGrow 3.0: an improved algorithm for chemically tractable, semi-automated protein inhibitor design. Journal of Molecular Graphics and Modelling, 2013, 44, 104-112.

[9] Moriwaki H, Tian Y S, Kawashita N, et al. Mordred: a molecular descriptor calculator. Journal of Cheminformatics, 2018, 10, 1-14.

[10] Lipinski C A, Lombardo F, Dominy B W, et al. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 2012, 64, 4-17.

[11] Ghose A K, Viswanadhan V N, Wendoloski J J. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. Journal of Combinatorial Chemistry, 1999, 1, 55-68.

[12] Bickerton G R, Paolini G V, Besnard J, et al. Quantifying the chemical beauty of drugs. Nature Chemistry, 2012, 4, 90-98.

[13] Hao G, Dong Q, Yang G. A comparative study on the constitutive properties of marketed pesticides. Molecular informatics, 2011, 30, 614-622. [14] Ertl P, Schuffenhauer A. Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions. Journal of Cheminformatics, 2009, 1, 1-11.