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Text S1. Materials and methods 

1. Fragment Deconstruction 

The fragment deconstruction analysis starts from a protein-ligand complex in PDB format. Firstly, an 

energy minimization was performed using Amber 16 to optimize the interaction between protein and 

ligand [1]. The, ligand structure binding in the pocket is deconstructed into fragments according to the 

retrosynthetic analysis by using DAIM software [2]. Single bond is broken and hydrogen is used to link 

with heavy atom to make the total charge value of each ‘piece’ integer.  

2. Core Fragment Identification.  

After fragment deconstruction, the binding free energy (ΔG) is calculated for each protein–fragment 

structure using the combination of the MM_PBSA method [3] for the enthalpy and an empirical method 

for the entropy [4] (Equation 1). Then, ligand efficiency (LE) which is defined as absolute value of ΔG 

divided by the heavy atom count (HAC) is obtained. All fragments deconstructed from original ligand is 

sorted based on LE. Fragment with highest LE value is generally identified as core fragment that 

theoretically has a highly conserved binding conformation and efficient contribution to the entire binding 

affinity. 

ΔGbind = ΔEgas + ΔGsol – TΔS = ΔEbind – T (ΔSsol + ΔSconf)                                         (1)  

 

3. Dynamic Fragment Growing.  

Dynamic fragment growing begins with the protein-core fragment complex structure. At first, energy 

minimization and molecular dynamics (MD) simulation are performed on protein-core fragment complex 

using AMBER16 package. Topology and coordinate files is created in the tleap module based on the 

Amber ff14SB force field [5] and general AMBER force field (GAFF) [6]. The complex system is solvated 

in an octahedron box of TIP3P water, with at least 10 Å between the solute and each box edge [7]. Counter 

ions, Na+ or Cl−, is added to neutralize the net charges of the system. The energy minimization was 

achieved through three stages: (i) only water molecules and ions are allowed to move, (ii) backbone atoms 

of protein are restrained and the remaining atoms are allowed to move, (iii) all atoms in the system could 

move freely. In each stage, 1000 steepest descent steps and 1000 conjugated gradient steps with a 

convergence criterion of 0.1 kcal mol−1 Å−1 were carried out in a vacuum. The MD simulation process 

using explicit-solvent particle mesh Ewald (PME) model is achieved through two stages: (i) the system is 

heated from 0 to 300K over 500 ps in the NVT ensemble with restraints on the solute (ii) 0.5 ns of MD in 

the NTP (T = 300 K and P = 1 atm) ensemble is carried out four times successively (4 x 0.5ns = 2ns), 

saving the structure every 2 ps 

Subsequently, RMSD-based clustering is performed on complex structures extracted from entire 

merged MD trajectories using the cpptraj module in AMBER16. The RMSD cutoff for the neighboring 

cluster is set as 0.5 Å. A complex structure is randomly picked from each of the top five clusters with the 



largest number of conformations, thereby obtaining an ensemble of protein-core fragment complex 

conformations with large structural difference. 

Finally, based on typical protein-core fragment complex structure, new fragment in selected fragment 

library is linked to the junction of core fragment placed in the binding site using AutoGrow2.0 [8]. The 

orientation of growing fragment was optimized with minimum steric clashes (overlap volume ≤ 4 Å3) to 

the surrounding residues. For generated protein-ligand complex structure, energy minimization is 

performed using the Sander module of Amber16, and binding free energy (ΔG) is calculated using the 

combination of the MM_PBSA method [3] for the enthalpy and an empirical method for the entropy [4] 

(Equation 1). Among a set of complex conformations containing the same ligand, the conformation with 

the lowest ΔG value is used the ultimate complex structure for subsequent ligand comparisons. 

4. Molecular Property Evaluation 

At the step of comparing generated ligands, a series of molecular properties are predicted for each 

ligand, including binding affinity, physicochemical properties, drug-likeness, pesticide-likeness and 

synthetic accessibility. Binding affinity is predicted through binding free energy calculation using the 

combination of the MM_PBSA method [3] for the enthalpy and an empirical method for the entropy [4] 

(Equation 1). The physicochemical properties are calculated using Mordred software [9], covering 

molecular weight (MW), hydrogen bond receptor (HBA), hydrogen bond donor (HBD), water partition 

coefficient (LogP), and so on. The drug-likeness is evaluated according to physicochemical properties, 

using qualitative Lipinski’s rule of five [10], Ghose’s rule [11], as well as the quantitative QED score [12]. 

The pesticide-likeness was evaluated according to a qualitative rule called Hao’s rule [13]. In addition, the 

synthetic accessibility score is evaluated using RDKit [14].  

  



Text S2. Description of validation protocol for ACFIS 2.0  

1. Dataset preparation 

As mentioned in the main text, a series of compounds that have been reported with experimental 

binding affinities or biological activity were collected as test set for the performance validation of ACFIS 

2.0. A total of 122 compounds was selected as test objects after literature investigation. Each compound in 

the test set was required to meet the following restrictions: 

1) There is available experimental data on its binding affinity or biological activity.  

2) The qualitative conclusion on its affinity or activity could be drawn (e.g. Compound A showed 

high affinity for X protein, while Compound B exhibited low affinity for X protein) based on the 

responding reference. 

3) The crystal structure of its protein-ligand complex (at least its receptor protein) is available. 

4) The core fragment in the compound could be identified based on the responding reference. 

Targeting a specific protein, a pair of compounds were generally collected, in which one had high 

affinity/ activity and the other one showed relatively low affinity/ activity. The case in which the tested 

compound exhibited relatively high affinity/ activity was classified into the positive sample group, 

otherwise it is classified as a negative sample group. Overall, the test set was composed of 61 positive 

samples and 61 negative samples. The data of 122 cases were provided in Table S1. 

2. Calculation for each case using ACFIS 2.0 

For each case/ sample, a calculation task in CAND_GEN mode was designed to evaluate the 

predictive performance of ACFIS 2.0. The inputs of a task consisted of a corresponding core fragment-

receptor protein complex structure (obtained by deconstructing the protein-ligand complex reported in 

PDBbind database) and the fragment library built specifically for performance testing (see Figure S3). For 

each task, ACFIS 2.0 outputted a list of all generated ligands, in which the ligands were sorted by their 

predicted binding affinities from strong to weak (by their predicted binding free energies from low and 

high). In this list, the tested compound and its paired compound were designedly contained.  

3. Performance evaluation for ACFIS 2.0 

In each calculation task (mentioned above), ACFIS 2.0 was expected to reasonably sort all generated 

ligands and assign the tested compound with an appropriate rank. In principle, the tested compounds that 

had been experimentally measured to have high affinity or activity should be at the top of the list, while 

those with low experimental affinity/ activity should be ranked after its paired compound with higher 

affinity/ activity.  

For positive samples, the top 20% was manually set as the ranking threshold. If a test compound ranks 

in the top 20% of the outputted complete list, it is computationally considered to have high affinity/ 



activity, and the corresponding case is predicted as positive. Otherwise, the corresponding case is predicted 

as negative.  

For negative samples, if a test compound ranks after its paired compound in the outputted list, the 

corresponding case is predicted as negative. Otherwise, the corresponding case is predicted as positive.  

After all testing tasks were completed, calculation results were compared with experimental findings. 

According to our statistics, 55 was true positive (TP), 8 was false positive (FP), 6 was false negative (FN), 

and 53 was true negative (TN). Here are the definitions of these elements: 

1) TP refers to the number of positive samples correctly predicted as positive. 

2) FP refers to the number of negative samples incorrectly predicted as positive. 

3) FN refers to the number of positive samples incorrectly predicted as negative. 

4) TN refers to the number of negative samples incorrectly predicted as negative. 

At last, the accuracy, precision, sensitivity, specificity, and negative positive value (NPV) of ACFIS 

2.0 in this performance testing were measured.  

Accuracy = (TP+TN)/(TP+FP+FN+TN) = 0.885 

Precision = TP/(TP+FP) = 0.873 

Sensitivity = TP/(TP+FN) = 0.901 

Specificity = TN/(FP+TN) = 0.868 

NPV = TN/(TN+FN) = 0.898 

  



 

 

Figure S1. The performance of ACFIS (old version) when using the same test set as ACFIS 2.0  

  



 

Figure S2. Validation workflow for ACFIS 2.0  

  



Figure S3. Fragment library used in ACFIS 2.0 performance validation 

  



Table S1. The test set of 122 cases used for performance validation and the predictive results of ACFIS 2.0/ ACFIS for these cases  

No. 
Protein 

Name 
Tested Compound 

Experimental Data 

Inputted Core 

Structure 

Computational Data 

 (ACFIS 2.0) 

Computational Data 

 (ACFIS 1.0) 

Affinity / 

Activity 

PDB of 

its 

complex 

structure 

Ref (DOI) 
Sample 

Group 

Rank 

of 

Test 

Com. 

Qualitative 

Classification 
Fact 

Rank 

of 

Test 

Com. 

Qualitative 

Classification 
Fact 

1 

Arginase-

1 
 

Kd =47.51 nM 

(High Affinity) 
3KV2 

10.1016/j.

abb.2010.

02.004 

Positive 

 

17  Positive True 18 Positive True 

2 

 

Kd =3 nM 

(Low Affinity) 
3MFV 

10.1021/j

m100306a 
Negative 68  Negative True 10 Positive False 

3 

Protein-

tyrosine 

phosphata

se 1b 

 

Ki =0.004 uM 

(High Activity) 
2QBP 

10.1021/j

m0702478 

 

Positive 

 

14 Positive True 11 Positive True 

4 

 

Ki =0.47 uM 

(Low Activity) 
2QBP Negative 26 Negative True 43 Negative True 

5 

β-

lactamase 
 

Ki =1.1 uM 

(High Activity) 
4DE1 

10.1021/j

m2014138 

 

Positive 

 

15 Positive True 56 Negative False 

6 

 

Ki  =76.0 uM 

(Low Activity) 
4DE2 Negative 86 Negative True 1 Positive False 

7 

Glutamate 

receptor 2 
 

Ki =531 nM 

(High Activity) 
3BFU 

10.1021/j

m701126

w 

Positive 

 

12 Positive True 14 Positive True 

8 

 

Kd =12.8 uM 

(Low Affinity) 
1P1Q 

10.1073/p

nas.10373

93100 

Negative 39 Negative True 80 Negative True 



9 

Transport

er 
 

Ki  =950 nM 

(High Activity) 
3F3C 10.1126/s

cience.116

6777 

 

Positive 

 

16 Positive True 77 Negative False 

10 

 

Ki  =64.8 uM 

(High Activity) 
3F3A Negative 77 Negative True 39 Positive False 

11 

Apolipopr

otein E4 
 

Kd  < 5 uM 

(High Affinity) 
 

10.1021/a

cs.jmedch

em.9b001

78 

Positive 

 

51 Negative False 15 Positive True 

12 

 

Kd =30 uM 

(Low Affinity) 
6NCO Negative 49 Positive False 62 Negative True 

13 
Indoleami

ne 2,3-

dioxygena

se 1 

 

IC50  =0.028 uM 

(High Activity) 
6O3I 

10.1021/a

cs.jmedch

em.9b006

62 

Positive 

 

12 Positive True 6 Positive True 

14 

 

IC50 =0.135 uM 

(Low Activity) 
 Negative 11 Positive False 43 Negative True 

15 
Palmitole

oyl-

protein 

carboxyle

sterase 

NOTUM 

 

IC50 =0.032 uM 

(High Activity) 
6R8Q 

10.1039/c

9md00096

h 

Positive 

 

3 Positive True 45 Negative False 

16 

 

IC50 =33 uM 

(Low Activity) 
6G25 Negative 28 Negative True 90 Negative True 

17 

Histone-

lysine N-

methyltra

nsferase 

NSD3 
 

IC50 = 1.9 uM 

(High Activity) 
6G2F 

10.1038/s

41589-

019-0310-

x 

Positive 

 

17 Positive True 10 Positive True 



18 

 

IC50 = 13 uM 

(Low Activity) 
6G25 Negative 36 Negative True 58 Negative True 

19 D-3-

phosphogl

ycerate 

dehydroge

nase 

 

IC50 =0.4 uM 

(High Activity) 
6RJ3 

10.1021/a

cs.jmedch

em.9b007

18 

Positive 

 

1 Positive True 9 Positive True 

20 

 

Kd =100 uM 

(Low Affinity) 
6RIH Negative 95 Negative True 63 Negative True 

21 
Phosphop

antetheine 

adenylyltr

ansferase 

 

IC50=0.037 uM 

(High Activity) 
6CCK 

10.1021/a

cs.jmedch

em.7b016

91 

Positive 

 

6 Positive True 19 Positive True 

22 

 

IC50 = 31uM 

(Low Activity) 
6CCM Negative 57 Negative True 103 Negative True 

23 
7,8-

dihydro-8-

oxoguanin

e 

triphospha

tase 

 

IC50 =8 nM 

(High Activity) 
6F22 

10.1021/a

cs.jmedch

em.7b018

84 

Positive 

 

9 Positive True 8 Positive True 

24 

 

IC50 =0.02 uM 

(Low Activity 
 Negative 43 Negative True 67 Negative True 

25 

Human N-

myristoylt

ransferase 

 

IC50 <1 nM 

(High Activity) 
5MU6 

10.1038/s

41557-

018-0039-

2 

Positive 

 

2 Positive True 10 Positive True 



26 

 

IC50 =20 uM 

(Low Activity) 
5O4V Negative  28 Negative True 60 Negative True 

27 

MNK1/2 
 

IC50= 0.028 uM 

(High Activity) 
6CK3 

10.1021/a

cs.jmedch

em.7b017

95 

Positive 

 

11 Positive True 17 Positive True 

28 

 

IC50 = 0.69 uM 

(Low Activity) 
6CJE Negative 16 Negative True 77 Negative True 

29 

BCR-

ABL1 
 

IC50 =0.5 uM 

(High Activity) 
5MO4 

10.1038/n

ature2170

2 

Positive 

 

5 Positive True 16 Positive True 

30 

 

Kd =2 uM 

(Low Activity) 
 Negative 28 Negative True 70 Negative True 

31 

Cyclin-

dependent 

kinase 8 

 

IC50 =3 nM 

(High Activity) 
5XS2 

10.1016/j.

bmcl.2017

.07.080 

Positive 

 

23 Positive True 39 Negative False 

32 

 

IC50 = 0.24 uM 

(Low Activity) 
 Negative 27 Negative True 25 Positive False 

33 Platelet-

activating 

factor 

acetylhydr

olase 

 

IC50=14 nM 

(High Activity) 
5YEA 10.1021/a

cs.jmedch

em.7b015

30 

Positive 

 

8 Positive True 17 Positive True 

34 

 

IC50 = 3.41uM 

(Low Activity) 
5YE7 Negative 29 Negative True 12 Positive False 

35 

cGMP-

dependent 

3',5'-

cyclic  

Ki =14 nM 

(High Activity) 
6B96 

10.1016/j.

bmcl.2017

.10.054 

Positive 

 

7 Positive True 21 Positive True 



36 

phosphodi

esterase 

 

Ki =22 uM 

(Low Activity) 
6B98 Negative  74 Negative True 98 Negative True 

37 

Bromodo

main-

containing 

protein 4 

 

Ki = 33 nM 

(High Activity) 
5UER - Positive 

 

12 Positive True 15 Positive True 

38 

 

Ki= 9.5 uM 

(Low Activity) 
 - Negative 61 Negative True 92 Negative True 

39 

Peregrin 

(BRPF 

family) 

 

IC50 =7.9 nM 

(High Activity) 
5T4V 

10.1021/a

cs.jmedch

em.6b015

83 

Positive 

 

14 Positive True 7 Positive True 

40 

 

IC50 =0.43uM 

(Low Activity) 
 Negative 27 Negative True 51 Negative True 

41 

PCAF/GC

N5 

 

IC50 =0.86 uM 

(High Activity) 
5ML0 

10.1021/a

cs.jmedch

em.6b015

66 

Positive 

 

41 Negative False 26 Negative False 

42 

 

IC50 =16 uM 

(Low Activity) 
5MKX Negative 86 Negative True 25 Positive False 

43 
PPC2/EE

D 

 

IC50 = 0.43uM 

(High Activity) 
5U62 

10.1021/a

cs.jmedch

em.6b014

73 

Positive 

 

13 Positive True 19 Positive True 



44 

 

IC50 =3.9 uM 

(Low Activity) 
5U5T Negative 43 Negative True 14 Positive False 

45 

Choline 

Kinase α 
 

Kd=0.01uM 

(High Affinity) 
5EQY 10.1021/a

cs.jmedch

em.5b015

52 

Positive 

 

31 Negative False 10 Positive True 

46 

 

Kd =0.769uM 

(Low Affinity) 
 Negative 28 Positive False 104 Negative True 

47 

Renin  

IC50 =38 nM 

(High Activity) 
5SZ9 

10.1016/j.

bmc.2016.

09.030 

Positive 

 

16 Positive True 5 Positive True 

48 

 

IC50 =43 uM 

(Low Activity) 
5SY3 Negative 57 Negative True 21 Negative True 

49 

BCATm  

IC50=0.2 uM 

(High Activity) 
5I5X 

10.1021/a

cs.jmedch

em.5b016

07 

Positive 

 

35 Negative False 8 Positive True 

50 

 

IC50=63 uM 

(Low Activity) 
5I5V Negative 94 Negative True 111 Negative True 

51 
Catechol 

O-

Methyltra

nsferase 

 

IC50 =75 nM 

(High Activity) 
5K0L 

10.1021/a

cs.jmedch

em.6b009

27 

Positive 

 

10 Positive True 34 Negative False 

52 

 

IC50  =0.9 uM 

(Low Activity) 
5K0B Negative 56 Negative True 77 Negative True 



53 

Phospholi

pase A2 
 

IC50 = 0.01 uM 

(High Activity) 
5G3N 

10.1021/a

csmedche

mlett.6b00

188 

Positive 

 

5 Positive True 9 Positive True 

54 

 

IC50 =0.91 uM 

(Low Activity) 
- Negative 16 Negative True 60 Negative True 

55 

BRD9  

IC50 =14 nM 

(High Activity) 
5F1H 

10.1021/a

cs.jmedch

em.5b018

65 

Positive 

 

16 Positive True 15 Positive True 

56 

 

IC50=0.656 uM 

(Low Activity) 
 Negative 36 Negative True 17 Negative True 

57 
CBP/EP3

00 

bromodo

main 

 

IC50 =0.03 uM 

(High Activity) 
5I8G 

10.1021/a

csmedche

mlett.6b00

075 

Positive 

 

13 Positive True 11 Positive True 

58 

 

IC50 =0.53 uM 

(Low Activity) 
5I86 Negative 18 Negative True 60 Negative True 

59 KEAP1 

 

IC50 =1.3 nM 

(High Activity) 
5FNU 

10.1021/a

cs.jmedch

em.6b002

28 

Positive 20 Positive True 5 Positive True 



60 

 

IC50 =3.4 uM 

(Low Activity) 
5FNS Negative 

 

31 Negative True 74 Negative True 

61 

FABP4  

Kd =37.4 nM 

(High Activity) 
6LJV 

10.1021/a

cs.jmedch

em.9b021

07 

Positive 

 

16 Positive True 10 Positive True 

62 

 

Kd =3741.9 nM 

(Low Activity) 
- Negative 59 Negative True 42 Negative True 

63 
LTA4 

Hydrolase  

IC50  =0.57 uM 

(High Activity) 
4Y2T 10.1016/j.

bmc.2015.

03.083 

Positive 

 

39 Negative False 18 Positive True 

64 

 

IC50  =18.3 uM 

(Low Activity) 
- Negative 73 Negative True 9 Positive False 

65 

BRD4  

IC50 =15 nM 

(High Activity) 
6KEF - Positive 

 

15 Positive True 12 Positive True 

66 

 

IC50 =4.5 uM 

(Low Activity) 
- - Negative 82 Negative True 41 Negative True 



67 

WDR5 
 

Kd= 0.4 uM 

(High Affinity) 
6UJL 

10.1021/a

cs.jmedch

em.0c002

24 

Positive 

 

10 Positive True 13 Positive True 

68 

 

Kd =32 uM 

(Low Affinity) 
- Negative 90 Negative True 85 Negative True 

69 

Mek1  

IC50 =0.33 uM 

(High Activity) 
7B9L 10.1021/a

csmedche

mlett.0c00

563 

Positive 

 

17 Positive True 37 Negative False 

70 

 

IC50 =450 uM 

(Low Activity) 
- Negative 89 Negative True 75 Negative True 

71 

LLRK2  

IC50 =11 nM 

(High Activity) 
7BJR 

10.1021/a

cs.jmedch

em.1c007

20 

Positive 

 

15 Positive True 75 Negative True 

72 

 

IC50 =1.73 uM 

(Low Activity) 
7BJM Negative 34 Negative True 46 Positive False 

73 

c-MET  

IC50  =44 nM 

(High Activity) 
- 

10.1021/a

csmedche

mlett.0c00

392 

Positive 

 

16 Positive True 5 Positive True 

74 

 

IC50 = 0.66 uM 

(Low Activity) 
7B41 Negative 31 Negative True 59 Negative True 



75 

Axl  

IC50 =37 nM 

(High Activity) 
- 

10.1074/jb

c.M116.7

71485 

Positive 

 

19 Positive True 13 Positive True 

76 

 

IC50 =0.432 uM 5U6B Negative 39 Negative True 11 Positive False 

77 
Notum 

Carboxyle

sterase 
 

IC50 =31 nM 

(High Activity) 
6ZVL 10.1021/a

cs.jmedch

em.0c013

91 

Positive 

 

36 Negative False 55 Negative False 

78 

 

IC50=41 uM 

(Low Activity) 
 Negative 61 Negative True 85 Negative True 

79 

DNA 

Gyrase 
 

Kd= 17 nM 

(High Affinity) 
6KZZ 

10.1021/a

csomega.0

c00865 

Positive 

 

8 Positive True 13 Positive True 

80 

 

Kd=0.24uM 

(Low Affinity) 
 Negative 19 Negative True 53 Negative True 

81 Enoyl-

acyl-

carrier-

protein 

reductase 

 

IC50 = 2.2 uM 

(High Activity) 
6SQL 

10.1021/a

cs.jmedch

em.0c000

07 

Positive 

 

17 Positive True 31 Negative False 

82 

 

IC50 =22 uM 

(Low Activity) 
 Negative 18 Positive False 38 Negative True 



83 

JAK1 
 

IC50  =64 nM 

(High Activity) 
6TPF 

10.1021/a

cs.jmedch

em.0c003

59 

Positive 

 

8 Positive True 16 Positive True 

84 

 

IC50 =2.2 uM 

(Low Activity) 
6TPD Negative 39 Negative True 42 Negative True 

85 

DYRK1B  

IC50= 65 nM 

(High Activity) 
7A5D 

10.1021/a

cs.jmedch

em.1c000

24 

Positive 

 

11 Positive True 43 Negative False 

86 

 

IC50 =3 uM 

(Low Activity) 
- Negative 9 Positive False 26 Positive False 

87 

DYRK1A  

IC50 =218 nM 

(High Activity) 
7AJ4 

10.1021/a

cs.jmedch

em.1c000

23 

Positive 

 

18 Positive True 16 Positive True 

88 

 

IC50>10uM 

(Low Activity) 
 Negative 63 Negative True 9 Positive False 

89 Notum 

Carboxyle

steras 
 

IC50 =0.11 uM 

(High Activity) 
6YSK 10.1021/a

cs.jmedch

em.0c006

60 

Positive 

 

15 Positive True 48 Negative False 

90 
 

IC50 =48 uM 

(Low Activity) 
6YV2 Negative 71 Negative True 50 Negative True 

91 FGFR2 

 

IC50 =0.46 uM 

(High Activity) 
7OZF 

10.1021/a

cs.jmedch

em.1c011

63 

Positive 

 

14 Positive True 17 Positive True 



92 

 

IC50 >10 uM 

(Low Activity) 
 Negative 10 Positive False 57 Negative True 

93 

ASH1L 
 

IC50 =4 uM 

(High Activity) 
6WZW 

10.1038/s

41467-

021-

23152-6 

Positive 

 

18 Positive True 35 Negative False 

94 

 

IC50 =50.5 uM 

(Low Activity) 
 Negative 84 Negative True 19 Positive False 

95 

MTH1 

 

IC50 =6 nM 

(High Activity) 
6JVP 

10.1016/j.

bioorg.20

21.104813 

Positive 

 

6 Positive True 56 Negative False 

96 

 

IC50= 1.5 uM 

(Low Activity) 
6JVG Negative 25 Negative True 41 Positive False 

97 MAT2A 

 

IC50= 22 nM 

(High Activity) 
7BHV 

10.1021/a

cs.jmedch

em.1c000

67 

Positive 

 

8 Positive True 18 Positive True 



98 

 

IC50 =7.2 uM 

(Low Activity) 
7BHU Negative 30 Negative True 46 Negative True 

99 

SETD2 
 

IC50 =0.818 uM 

(High Activity) 
- 10.1021/a

csmedche

mlett.1c00

272 

Positive 

 

6 Positive True 14 Positive True 

100 

 

IC50 =170 uM 

(Low Activity) 
7LZB Negative 91 Negative True 54 Negative True 

101 

BRD4  

PIC50 =7.7 

(High Activity) 
7OE6 

10.1021/a

cs.jmedch

em.1c003

65 

Positive 

 

14 Positive True 44 Negative False 

102 

 

PIC50 =4.9 

(Low Activity) 
 Negative 61 Negative True 95 Negative True 

103 

BPTF  

IC50 =32 nM 

(High Activity) 
- - Positive 

 

16 Positive True 9 Positive True 

104 

 

IC50 =0.698 uM 

(Low Activity) 
7F5D - Negative 28 Negative True 37 Negative True 



105 

Tim-3  

IC50 =0.75 uM 

(High Activity) 
7M3Z 

10.1021/a

cs.jmedch

em.1c013

36 

Positive 

 

17 Positive True 11 Positive True 

106 

 

IC50 =4.9 uM 

(Low Activity) 
7M3Y Negative 41 Negative True 39 Negative True 

107 

DYRK2 
 

IC50 =0.6 nM 

(High Activity) 
8HLT - Positive 

 

5 Positive True 17 Positive True 

108 

 

IC50 =1.41 uM 

(Low Activity) 
7EJV 

10.1038/s

41467-

022-

30581-4 

Negative 27 Negative True 90 Negative True 

109 

Acetohydr

oxyacid 

synthase 

 

Ki =9.4 nM 

(High Activity) 
- - Positive 

 

9 Positive True 31 Negative False 

110 

 

Ki =127 nM 

(Low Activity) 
1YHZ 

10.1073/p

nas.05087

01103 

Negative 19 Negative True 24 Positive False 

111 

Protoporp

hyrinogen 

Oxidase  

 

IC50 =0.28 uM 

(High Activity) 
 

10.1016/j.

jsb.2009.1

1.012 

Positive 

 

9 Positive True 19 Positive True 

112 

 

IC50 =4.00 uM 

(Low Activity) 
3I6D Negative 6 Positive False 21 Negative True 

113 

Ecdysone 

receptor 

 

 

 

pIC50 > 8.81 

(High Activity) 

1R20 

10.1038/n

ature0211

2 

Positive 

 

12 Positive True 20 Positive True 



114 

 

 

pIC50 =5.92  

(Low Activity) 

 Negative 76 Negative True 92 Negative True 

115 Nicotinic 

acetylchol

ine  

Receptors  

 

 

Ki =2.2 nM 

(High Activity) 
3C79 

10.1073/p

nas.08021

97105 

Positive 

 

6 Positive True 15 Positive True 

116 

 

Ki =100 nM 

(Low Activity) 
 Negative 13 Negative True 6 Positive False 

117 

Complex 

II 
 

IC50 =8.61 μM 

(High Activity) 
- 

10.3390/ij

ms160715

287 

Positive 

 

17 Positive True 25 Negative False 

118 

 

IC50 =45.9 μM 

(Low Activity) 
4YXD Negative 12 Positive False 37 Negative True 

119 

Complex 

III 
 

Ki= 83 nM 

(High Activity) 
3TGU 

10.1021/ja

3001908 

Positive 

 

9  Positive True 3 Positive True 

120 

 

Ki＞10μM 

(Low Activity) 
- Negative 28  Negative True 36 Negative True 

121 4-

hydroxyp

henylpyru

vate 

dioxygena

se 

 

Ki =24 nM 

(High Activity) 
5YY7 - Positive 

 

13  Positive True 9 Positive True 

122 

 

Ki =0.247 μM 

(Low Activity) 
5YWG 

10.1111/fe

bs.14747 
Negative 18 Negative True 104 Negative True 



Table S2. Comparison of ACFIS2 with other computational tools for FBDD in key features. 

FBDD Step Tool Form Functionality Input Output 

Fragment 

screening 

SEED Software Fragment docking Protein structure  Suggested core 

fragment 

Fragment-to-

Lead 

FragPELE Software (comma

nd line operation) 

Fragment growing Protein–ligand 

complex file 

Protein–suggested 

ligand complex file 

 DeepFrag Browser app (http

s://durrantlab.pitt.

edu/deepfrag/) 

Fragment growing Receptor and 

ligand structure 

file 

Suggested-

fragments table 

 Delinker Software (comma

nd line operation) 

Fragment linking Fragment 

(SMILES) and 

receptor structure 

file 

Generated 

molecules 

(SMILES) 

 SyntaLinker Software (comma

nd line operation) 

Fragment linking Fragment file Generated 

molecules 

 Autogrow Software Fragment growing Fragment file Generated 

molecules 

 LigBuilder 

2  

Software (comma

nd line operation) 

Fragment growing / 

linking / mutation  

Receptor structure 

file  

Suggested-ligand 

file  

Fragment 

screening + 

Fragment-to 

Lead 

ACFIS 2.0 Web server (http:/

/chemyang.ccnu.e

du.cn/ccb/server/

ACFIS2/) 

Fragment hit 

identification + 

Fragment growing 

Protein–ligand 

complex file 

Protein-suggested 

ligand / core 

fragment complex 

file and ligand file 
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