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Supplementary Note 1: Cortical Regions in Resting-State Networks 
 
Following the parcellation method described in the main manuscript1, a k-means algorithm was applied to 
reduce each RSN’s number of regions to five. This number was chosen to maintain good balance between 
computational complexity of Fmax and each network’s and spatial resolution. The five regions obtained 
for all 11 RSNs with this method are presented in Supplementary Figure 1.   

 
Supplementary Figure 1. Representative cortical regions of the 11 resting-state networks (RSNs) 
from the parcellation scheme. After the k-means procedure, each RSN consisted of five regions, 
which was chosen to balance spatial resolution with computational efficiency. The first seven 
networks are those associated with higher-order function, whereas the bottom panel contains 
sensorimotor and sensory networks.  
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Supplementary Note 2: Code Listing for Computing µ[Fmax] 
 
To compute µ[Fmax], the first step was to generate a state-by-state TPM directly from the time-series. This 
was accomplished with the build_tpm function, which counts through all transitions occurring in the 
inputted time-series and populates the TPM accordingly. Note that PyPhi2 requires indexing and binary-
to-integer conversion to follow little-endianness (LE). Transition counts are normalized with respect to 
the total number of transitions out of a particular state, which are used obtain transition probabilities. The 
second output (weights_ts) gives the percent frequency of each state, which was obtained by counting 
the total number of occurrences in the time-series and dividing by the total number of time points.  
 

def build_tpm(time_series): 
 
    # Inputs: 
    # 1) time_series  (Array with dimensions n_time_points X n_regions) 
    # 
    # Outputs: 
    # 1) tpm (Array with dimensions n_states X n_states) 
    #       Each entry gives the probability of transition between two states. 
    # 
    # 2) weights (Array with dimensions 1 X n_states) 
    #       Each entry gives the probability of a state appearing in the time-series. 
 
    import numpy as np 
    import pyphi 
 
    # Obtain bi time-series. 
    avgs = np.mean(time_series, axis=0) 
 
    time_series_copy = np.copy(time_series) 
 
    for i in range(len(avgs)): 
        time_series[np.where(time_series_copy[:, i] >= avgs[i]), i] = 1 
        time_series[np.where(time_series_copy[:, i] < avgs[i]), i] = 0 
 
    time_series = time_series.astype(np.int) 
 
    markov_chain = time_series.tolist() 
    n = len(markov_chain[0]) 
    tpm = np.zeros((2 ** n, 2 ** n)) 
 
    # Loop through all transitions and populate TPM. 
    for (s1, s2) in zip(markov_chain, markov_chain[1:]): 
        i = pyphi.convert.state2le_index(s1) 
        j = pyphi.convert.state2le_index(s2) 
        tpm[i][j] += 1 
 
    # Create array for transition counts. 
    transitions_total = np.sum(tpm, axis= -1) 
     
    # Normalize counts in TPM to obtain probabilities. 
    for div in range(len(transitions_total)): 
        if transitions_total[div] != 0.0: 
            tpm[div, :] /= transitions_total[div] 
 
    # Create array for state counts. 
    weights_ts = np.zeros((2 ** time_series.shape[-1])) 
 
    for s in markov_chain: 
        i = pyphi.convert.state2le_index(s) 
        weights_ts[i] += 1 
 
    weights_ts /= len(markov_chain) 
 
    return np.copy(tpm), np.copy(weights_ts) 

 
The next function used was mean_phi_max, which takes the TPM and weights array as inputs. For each 
state appearing in the time-series, Fmax is obtained and multiplied by the corresponding weight of the 
state. Note that since the TPMs might not meet the conditional independence property, we converted the 
TPM outputted by build_tpm to state-by-node form (tpm_sbn) using pyphi.convert: 
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tpm_sbn = pyphi.convert.to_2dimensional(pyphi.convert.state_by_state2state_by_node(tpm)) 
 

A complete analysis typically involves evaluating F for every possible subset of elements and finding 
Fmax from the one that maximizes integrated information. The function below was used to obtain a list of 
all possible subsets for a given number of elements (n). The output (subset_list) ranges from all 
subsets that include two elements to the subset including all elements. 
 

def all_subsets(n): 
 
    from itertools import combinations 
    subset_list = [] 
 
    for n_i in range(n + 1): 
        sub = list(combinations(range(n), n_i)) 
 
        if len(sub[0]) > 1: 
            for s in sub: 
                subset_list.append(s) 
 
    return subset_list 

 

Initially, we conducted a complete subset analysis over the time-series for networks with all subjects 
concatenated. We found that F was always maximized for the subset that includes all of a networks’ 
regions, and in subsequent analyses (i.e., the control procedures and grouped permutations), we evaluated 
F over this subset only. The subset_type input can be changed from "All"  to "Full", which 
restricts the calculation to the subset that includes the entire network. 
 

def mean_phi_max(tpm_sbn, weights_ts, subset_type = "All"): 
     
    # Inputs: 
    # 1) tpm_sbn (State-by-node form, dimensions n_states X n_regions) 
    # 2) weights (Array with dimensions 1 X n_states) 
    # 
    # 3) subset_type (Type of subset analysis) 
    #       "All" : Find phi_max for from all possible subsets 
    #       "Full": Find phi for the subset including all network elements 
    # 
    # Outputs: 
    # 1) phi_weight 
    #       Weighted average of phi_max for the TPM's corresponding time-series. 
 
    import numpy as np 
    import pyphi 
    from pyphi.compute import phi 
 
    rows, columns = tpm_sbn.shape 
    setting_int = np.linspace(0, rows - 1, num=rows).astype(int) 
    M = list(map(lambda x: list(pyphi.convert.le_index2state(x, columns)), setting_int)) 
    M = np.asarray(M).astype(np.int) 
 
    phi_values = [] 
    network = pyphi.Network(tpm_sbn) 
 
    for state in range(rows): 
        if weights_ts[state] != 0: 
 
            if subset_type == "Full": 
                phi_values.append(phi(pyphi.Subsystem(network, M[state, :], range(network.size)))) 
 
            elif subset_type == "All": 
                phi_subset_list = [] 
                subset_list = all_subsets(columns) 
 
                for s in subset_list: 
 
                    phi_subset_list.append(phi(pyphi.Subsystem(network, M[state, :], s))) 
 
                phi_values.append(max(phi_subset_list)) 
 
    weights_non_zero = weights_ts[np.where(weights_ts != 0)] 
    mean_phi = np.sum(phi_values * weights_non_zero) 
 
    return mean_phi 
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Supplementary Note 3: Modulation by Sedative and the Reference Metrics 
 

Integrated Information from the Decoding Perspective 
 
To calculate integrated information from the decoding perspective (F*)3, we employed the Practical PHI 
Toolbox (https://figshare.com/articles/code/phi_toolbox_zip/3203326). As with the equivalent version of 
these results for µ[Fmax] in the main manuscript, we generated 17 time-series by concatenating 16 
subjects and leaving a different subject out each time. The procedure used involved finding the minimum 
information partition (MIP), or the partition that minimizes F*, over all possible symmetric bipartitions 
of the system.4,5 This means that F* was computed over all possible cuts of the system into two parts 
consisting of 2 and 3 elements, which was as symmetric as possible for a system consisting of five 
elements.  

Finding the MIP ensures that if the system consists of independent subsystems, F* is evaluated 
over the least interdependent parts (i.e., the MIP provides the most “natural” way to partition the system). 
The results are shown in Supplementary Figure 2, where we give absolute values of F* and statistical 
significances with respect to the awake condition.  

 
Supplementary Figure 2. Modulation of F* individual RSNs over symmetric bipartitions. For 
each network, the average integrated information is compared for the four conditions of awareness. 
Bar heights represent the mean of the distribution obtained by concatenating 16 subjects with a 
different subject left out each time (N = 17, mean ± SD, with error bars representing SD = Ö17 * SE, 
SE being the standard error of the sample mean). All statistically significant differences found 
between the conditions (i.e., awake vs. deep sedation) are indicated by the horizontal lines above the 
bars: *; p < 𝛼!" , where 𝛼!" is the significance threshold obtained with the Benjamini-Hochberg 
correction for multiple comparisons between conditions: A vs. M; 𝛼!" = 0.023, A vs. D; 𝛼!" = 0.027, 
A vs. R; 𝛼!" = 0.014, M vs. D; 𝛼!" = 0.027, M vs. R; 𝛼!" = 0.023; D vs. R; 𝛼!" =	0.032.  
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Unlike µ[Fmax], only the cingulate networks reflected the conscious evolution of subjects (i.e., 
awake > mild > deep < recovery). Moreover, the overall variability of this measure across different 
networks was found to be low compared to the other measures.   
 
Causal Density  
 
For causal density (CD), we used the Multivariate Granger Causality Toolbox 
(https://www.mathworks.com/matlabcentral/fileexchange/78727-the-multivariate-granger-causality-
mvgc-toolbox).6 The Granger causality was computed for every pair of regions and CD was obtained by 
averaging over all values. The results for each network are shown in Supplementary Figure 3. Overall, the 
RSNs present a variety of behaviours through this measure, with some similarities to the results seen for 
µ[Fmax]. Four networks closely reflected the conscious evolution of subjects, which were the 
frontoparietal, default mode, dorsal attention, and retrosplenial networks. On the other hand, the sensory 
and sensorimotor networks show no consistent modulation pattern. 
 

 
 

Supplementary Figure 3. Modulation of CD individual RSNs over symmetric bipartitions. For 
each network, causal density (CD) is compared for the four conditions of awareness. Bar heights 
represent the mean of the distribution obtained by concatenating 16 subjects with a different subject 
left out each time (N = 17, mean ± SD, with error bars representing SD = Ö17 * SE, SE being the 
standard error of the sample mean). All statistically significant differences found between the 
conditions (i.e., awake vs. deep sedation) are indicated by the horizontal lines above the bars: *; p < 
𝛼!" , where 𝛼!" is the significance threshold obtained with the Benjamini-Hochberg correction for 
multiple comparisons between conditions: A vs. M; 𝛼!" = 0.018, A vs. D; 𝛼!" = 0.036, A vs. R; 𝛼!" 
= 0.027, M vs. D; 𝛼!" = 0.027, M vs. R; 𝛼!" = 0.027; D vs. R; 𝛼!" =	0.036. 
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Average Pearson Correlation Coefficient 
 
In contrast to the modulation of µ[Fmax], which varied substantially over the collection of RSNs, µ[ρ] 
presents a homogeneous behaviour that reflects the conscious state of subjects in most networks. In the 
discussion of the main manuscript, we argue that while it may appear as though correlations are a more 
reliable measure of conscious level, it is well-established that certain cortical networks are more 
important for conscious processing than others. Accordingly, we should expect a measure of conscious 
level to behave differently over different cortical regions, with some regions being more strongly affected 
than others. In other words, the globalized behaviour of µ[ρ] does not allow for differentiation of cortical 
regions based on modulation pattern.  

 
Supplementary Figure 4. Modulation of µ[𝝆] by propofol in individual RSNs. For each network, 
the average Pearson correlation coefficient is compared for the four conditions of awareness. Bar 
heights represent the mean of the distribution obtained by concatenating 16 subjects with a different 
subject left out each time (N = 17, mean ± SD, with error bars representing SD = Ö17 * SE, SE being 
the standard error of the sample mean). All statistically significant differences found between the 
conditions (i.e., awake vs. deep sedation) are indicated by the horizontal lines above the bars: *; p < 
𝛼!" , where 𝛼!" is the significance threshold obtained with the Benjamini-Hochberg correction for 
multiple comparisons between conditions: A vs. M; 𝛼!" = 0.036, A vs. D; 𝛼!" = 0.045, A vs. R; 𝛼!" 
= 0.027, M vs. D; 𝛼!" = 0.036, M vs. R; 𝛼!" = 0.032; D vs. R; 𝛼!" =	0.036. 
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Supplementary Note 4: Mechanism Level Integrated Information 
 
A potential solution to deal with computation cost of Fmax is to evaluate the integrated information of 
individual mechanisms (𝜙).7,8 In this analysis, we computed the mechanism-level integrated information 
and compared its results with those of µ[Fmax]. To obtain variation related specifically to mechanisms, we 
used the time-series obtained by concatenating all 17 subjects. We chose to focus only on high-order 
mechanisms (i.e., mechanisms consisting of 2 or more elements) because there is a large discrepancy 
between 𝜙 for higher-order and elementary mechanisms (i.e., those consisting of individual elements). A 
TPM was constructed using the same approach described in the main manuscript, and we computed 
mechanism-level integrated information as follows:   
 

1. A set of 2 or more elements was used to define the mechanism (i.e., nodes 0 & 1). 
2. For each network’s time-series, 𝜙 was computed for the mechanism using PyPhi; like µ[Fmax], 

this involved obtaining a weighted average of the mechanisms 𝜙 value for every state appearing 
in the time-series, which was used to obtain µ[𝜙] for a particular mechanism.   

3. µ[𝜙] was computed for every other possible mechanism (i.e., nodes 0 & 2, nodes 0 & 3, … nodes 
0, 1, 2, … nodes 0, 1, 2, 3, … nodes 0, 1, 2, 3, 4).  

4. 〈µ[𝜙]〉 was obtained by averaging over the µ[𝜙] values of all higher-order mechanisms. 
 
The results for every RSN and condition are shown in Supplementary Figure 5 below. 
 

 
Supplementary Figure 5. Modulation of 〈µ[𝝓]〉 by propofol in individual RSNs. For each 
network’s concatenated time-series, we computed a weighted average of integrated information for 
each mechanism, (µ[𝜙]) and then averaged over all possible mechanisms (N = 28 mechanisms, mean 
± SD, with error bars representing SD). All statistically significant differences found between the 
conditions (i.e., awake vs. deep sedation) are indicated by the horizontal lines above the bars: *; p < 
𝛼!" , where 𝛼!" is the significance threshold obtained with the Benjamini-Hochberg correction for 
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multiple comparisons between conditions: A vs. M; 𝛼!" = 0.014, A vs. D; 𝛼!" = 0.032, A vs. R; 𝛼!" 
= 0.005, M vs. D; 𝛼!" = 0.01, M vs. R; 𝛼!" = 0.023; D vs. R; 𝛼!" =	0.032. 
 
First, we note that some networks behave differently through this measure of integrated 

information as compared to µ[Fmax]. The frontoparietal (FPN) and dorsal attention (DAN) networks still 
present a modulation pattern that reflects the conscious evolution of subjects with significant changes. 
However, this is also the case for more networks, including the default mode, cingulate-opercular, 
sensorimotor, and visual networks. This means that for certain networks, an analysis over individual 
mechanisms may not be substantial to estimate µ[Fmax].  

As mentioned, the mechanism-based metric does not go beyond computing the integrated 
information of individual mechanisms. To understand the difference in these results, it is important to 
consider how Fmax with respect to this counterpart: 1) the integrated information (“small phi”, or 𝜙) of 
each mechanism is computed; 2) each mechanism, its 𝜙 value, and cause-effect repertoires are used to 
specify a concept; 3) each concept is used to populate a high dimensional space called a conceptual 
structure; 4) Fmax is computed by partitioning the conceptual structure and measuring its irreducibility.9,10 
In other words, Fmax measures the integration of a conceptual structure, which according to IIT, is a 
complete representation of a conscious experience. On the other hand, 𝜙 measures the integration of 
concepts, which are parts of the conscious experience but do not represent consciousness in its entirely.    

Since concepts are derived directly from specific mechanisms, Fmax does not only depend on the 
integration of each mechanism, but also on how strongly the mechanisms are integrated with respect to 
one another, making it a much more thorough measure of integration than 𝜙. Even if a network’s 
mechanisms yield high 𝜙, a set of independent mechanisms will result in low Fmax. On the other hand, if 
its mechanisms are collectively irreducible through the conceptual structure, Fmax will be high.  

Our results can therefore be explained by the idea that Fmax goes several steps beyond 𝜙 to describe 
a network’s integration. While several networks closely reflect changes to awareness level through 
〈µ[𝜙]〉, only two (the FPN and DAN) demonstrate this property through µ[Fmax]. Considering the 
differences discussed between these two measures, the final conclusion we make is that with the data we 
obtained and the procedure we applied, only the FPN and DAN reflect changes to conscious level via the 
full set of criteria specified by IIT 3.0.  
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Supplementary Note 5: Markov Property and Conditional Independence Tests 
 

To determine the extent to which a TPM was conditionally independent, we computed the relative 
residual between a raw TPM (generated directly from the time-series) and its conditionally independent 
counterpart (obtained through PyPhi processing) as described in the Methods of the main manuscript. The 
Frobenius norm of the residual matrix was computed, which was divided by the Frobenius norm of the 
conditionally independent matrix.9 The results are presented in Supplementary Table 1, where the 
deviation between the two matrices is given as a percent difference.  

In summary, this test showed that the relative difference between the two matrices ranges from 
20% to 80% depending on the network and condition in question. The RSNs whose transition matrices 
most closely resemble their conditionally independent counterparts are the Default Mode Network 
(Awake: 38%, Mild: 28%, Deep: 22%, Recovery: 41%) Frontoparietal Network (45%, 35%, 35%, 54%), 
and Dorsal Attention Network (43%, 39%, 35%, 45%).  

These results indicate that the fMRI signals we obtained do not completely satisfy the conditional 
independence property. Calculations of Fmax are based on the conditionally independent variant of the 
TPM, and as a consequence of converting to this form, some of the features contained in the original 
signals are lost. Nevertheless, we believe that the mechanisms preserved in the conditionally independent 
variants can still be used to meaningfully calculate integrated information, especially for networks with 
lower percent differences.  

 

 Awake Mild Deep Recovery 

Frontoparietal 36.97 27.48 21.81 39.22 

Default Mode 43.49 33.75 34.46 51.52 

Retrosplenial 57.36 50.75 49.34 59.69 

Dorsal Attention 41.56 37.85 34.53 43.9 

Ventral Attention 42.94 33.44 35.98 40.5 

Cingulo-Opercular 42.27 33.93 31.14 41.9 

Cingulo-Parietal 67.85 68 56.85 65.12 

SM Hand 51.53 62.68 60.34 56.74 

SM Mouth 68.59 61.28 51.44 64.93 

Auditory 62.24 53.76 54.73 65.36 

Visual 74.88 62.24 60 71.37 

 
Supplementary Table 1. Conditional independence test. Percent differences between the TPMs 
generated directly from the time-series and their conditionally independent counterparts are presented 
in this table. RSNs are given across rows, and the four conditions are presented in columns.  
 
Turning to the Markov property, nearly all time-series acquired by concatenating the entire subject 

population did not show statistically significant differences that indicate a violation of Markovian 
behaviour. Out of the 44 time-series tested (11 RSNs, 4 conscious states), three yielded p < 0.05: the 
retrosplenial network in the recovery condition (p = 0.03), the ventral attention network in the awake 
condition (p = 0.04), and the cingulo-parietal network in the awake condition (p = 0.02). For all relevant 
statistics, see Supplementary Table 2. 
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 𝜒# 𝜈 𝜒#/	𝜈 𝑝   

 35.66 28 1.27 0.15 Awake 

22.25 28 0.79 0.77 Mild 
29.24 29 1.01 0.45 Deep  

10.52 30 0.35 1.00 Recovery 

 23.16 28 0.83 0.72 

16.46 27 0.61 0.94 
29.59 28 1.06 0.38 

25.46 30 0.85 0.70 

 21.94 29 0.76 0.82 

10.85 22 0.49 0.98 
29.33 29 1.01 0.45 

41.82 27 1.55 0.03 

 16.13 28 0.58 0.96 

17.68 30 0.59 0.96 
15.43 25 0.62 0.93 

8.52 28 0.30 1.00 

 34.41 22 1.56 0.04 

34.48 23 1.50 0.06 
22.99 24 0.96 0.52 

16.57 29 0.57 0.97 

 8.18 31 0.26 1.00 

13.33 30 0.44 1.00 
21.72 31 0.70 0.89 

11.35 29 0.39 1.00 

 45.11 27 1.67 0.02 
27.28 29 0.94 0.56 

19.34 29 0.67 0.91 
15.09 30 0.50 0.99 

 22.43 30 0.75 0.84 
33.61 31 1.08 0.34 

42.94 31 1.39 0.08 
31.18 29 1.08 0.36 

 26.26 30 0.88 0.66 
32.52 29 1.12 0.30 

38.78 30 1.29 0.13 
22.70 29 0.78 0.79 

 22.76 31 0.73 0.86 
41.19 29 1.42 0.07 

17.43 30 0.58 0.97 
20.10 31 0.65 0.93 

 17.34 31 0.56 0.98 
24.75 30 0.82 0.74 

36.24 31 1.17 0.24 
21.78 30 0.73 0.86 

Supplementary Table 2. Results for the 
Markov property contingency table test. 
Each block corresponds to an RSN, with four 
rows corresponding to the four states of 
awareness (awake, mild, deep, recovery). The 
first column gives the 𝜒# values obtained from 
equation 5 of the main manuscript, the second 
column gives the degrees of freedom 𝜈 
(number of sequences – 1), the third column 
gives a reduced 𝜒# value, or  𝜒#/	𝜈, and the 
fourth column gives p values. Time-series 
yielding statistically significant differences (p 
< 0.05) were considered to violate the Markov 
property and their p-values are highlighted with 
red text.  
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Supplementary Note 6: Statistical Results for Condition Comparisons 
 
Statistical Test for the Control Procedure  
 
In the control procedures, we tested whether the original (unpermuted) networks fell within the control 
distributions. This is essentially a test to verify that permutations did indeed impose a significant decrease 
on µ[Fmax] or the reference metrics.  
 For each condition, the spatial control sample was generated by randomly grouping regions from 
different networks 100 times (N = 100), whereas the temporal control distribution was generated by 
permuting each RSN’s signal randomly 50 times (For 11 RSNs and 50 permutations, N = 550). The two 
control distributions were then standardized, and each original RSN’s µ[Fmax] value (or that of the 
reference metrics) was assigned a z-score with respect to both control distributions: 

𝑧!"# =
µ[F$%&]!"# −	µ'(!#)(*

σ'(!#)(*
 (1) 

Using each network’s z-score, a p value was then calculated with significance set to 0.05. Supplementary 
Table 3, we show which networks that fell significantly within the spatial and temporal control 
distributions ( p ³ 0.05) for each of the metric analyzed.  
 
Statistical Test for Analysis of Modulation by Sedative 
 
For our evaluation of sedative-induced changes to each network’s µ[Fmax], we concatenated 16 of the 17 
subjects and left a different subject out for each time-series. The mean of this sampling distribution was 
taken to be the mean of the population µ, and the standard deviation of the sample was defined as the 
standard error of the sample mean. The standard error was multiplied by Ö(N = 17) to obtain the standard 
deviation of the population (s). For the same network, two of the four conditions i and j were compared 
using Welch’s t-test11, which is used for comparisons of two samples with different variances. For every 
possible pair of conditions, the t values were computed as follows: 

𝑡 = 	
µ!+µ"

,#
$-.!

%+."%/
  (2) 

We then computed the degrees of freedom using the Welch-Satterthwaite equation11 (simplified for two 
samples of the same size): 

𝜈 = (𝑁 − 1)
-.!%0."%/

%

.!&0."&
  (3) 

Finally, we obtained a two-tailed p - value using t and 𝜈. With four conditions, there were a total of six 
possible comparisons for each network. All t, 𝜈, and p values obtained for each RSN’s modulation are 
presented in Supplementary Tables 4 and 5. 
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Results for the Control Procedures 
 
As shown in Figure 2 of the main manuscript, the metric with the least amount of sensitivity to both 
spatial and temporal permutations was F*. This is evident in the table, as it had the most networks 
that fell within the control distributions. With the exception of the DMN in some conditions, 
µ[Fmax] and CD distinguished the time-series of nearly all original RSNs from their permuted 
counterparts. While correlations dropped significantly in the spatial control procedure, they did not 
change as a result of temporal permutations.  
 

µ[Fmax] Awake Mild Deep Recovery 

Spatial Control DMN; (1) (0) DMN; (1) (0) 

Temporal Control (0) (0) (0) (0) 

CD Awake Mild Deep Recovery 

Spatial Control (0) (0) DMN; (1) (0) 

Temporal Control (0) (0) (0) (0) 

F* Awake Mild Deep Recovery 

Spatial Control Retro, CP, 
Auditory; (3) 

DAN, VAN, CO, 
CP, SM Hand, 

Visual; (6) 

FPN, DMN, CO, 
DAN, Retro, 
Visual; (6) 

Retro, VAN, CP, 
SM Hand; (4) 

Temporal Control 

FPN, DMN, 
Retro, DAN,  

VAN, CO, CP, 
SM Hand, SM 
Mouth, Visual, 
Auditory; (11) 

FPN, DMN, 
DAN,  VAN, CO, 

CP, SM Hand, 
SM Mouth, 
Visual; (9) 

FPN, DMN, 
Retro, DAN,  

VAN, CO, CP, 
SM Hand, SM 
Mouth, Visual, 
Auditory; (10) 

Retro, DAN,  
VAN, CP, SM 
Hand, Visual, 
Auditory; (7) 

µ[r] Awake Mild Deep Recovery 

Spatial Control (0) DMN; (1) DMN, FPN; (2) (0) 

Temporal Control N.A. 
 

Supplementary Table 3. Networks falling within spatial and temporal control distributions. For 
integrated information and each reference metric, we list the networks for which values were not 
significantly different from those obtained in the control procedures. With respect to the control 
distributions, the networks listed had a p value equal to or greater than 0.05. The number of networks 
without significance is reported in each box. For each condition, N = 100 for the spatial control 
distributions and N = 550 (repeated 50 times for each RSN) for the temporal control distributions. 
Temporal permutations had no effect on correlations, hence the N.A. label in the final row.  
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Results for Modulation of µ[Fmax] 
Frontoparietal 

 M D R  
 

A 
1.93 4.74 -4.45 t 

29.44 26.53 31.35 n 
0.063 <1E-05 0.0001 p 

                   
M 

2.74 -5.19  
30.96 31.23  
0.01 <1E-05  

   
  

  
D           

-7.94  
28.83  

<1E-05  
 
Retrosplenial 

 M D R 
 

A 
-0.18 0.61 -0.22 

31.46 31.67 31.99 

0.86 0.54 0.83 

  
 

M 0.85 -0.05 

31.97 31.32 

0.4 0.96 

   
  

  
D 

-0.84 

31.56 

0.41 

 
Ventral Attention 

 M D R 

 
A 

-0.09 1.29 1.41 

31.87 31.42 30.53 

0.93 0.21 0.17 

                   
M 

1.34 1.45 

30.8 26.69 

0.19 0.16 

   
  

  
D           

-0.31 

30.46 

0.76 
 

Default Mode 

 M D R 
 

A 
-0.39 2.29 -1.7 

30.53 31.03 31.51 

0.7 0.029 0.099 

                   
M 

3.01 -1.5 

31.94 28.78 

0.0051 0.15 

   
  

  
D           

-3.95 

29.44 

0.00045 

 
 
Dorsal Attention 

 M D R 
 

A 
1.92 8.6 4.02 

30.27 31.85 29.22 

0.065 0 0.00037 
                   

M 
5.47 1.99 

29.31 31.82 

<1E-05 0.055 
   

  
  

D           
-2.96 

28.15 

0.0062 
 

Cingulo-Opercular 

 M D R 

 
A 

0.93 0.49 0.45 

28.28 20.88 30.55 

0.36 0.63 0.66 

                   
M 

-0.77 -0.53 

25.62 31.23 

0.45 0.6 

   
  

  
D           

0.05 

23.55 

0.96 
 
Cingulo-Parietal 

 M D R 

 
A 

1.25 1.38 0.67 

30.89 31.15 31.61 

0.22 0.18 0.24 

                   
M 

0.16 1.58 

31.98 31.89 

0.87 0.12 

   
  

  
D           

-1.67 

28.39 

0.1 

 
Supplementary Table 4. Results for statistical 
comparison of µ[Fmax] over the four states of 
awareness in higher-order networks. (A: awake; 
M: mild; D: Deep; Recovery: R). Welch’s t-test was 
used to obtain t, 𝜈 (degrees of freedom), and p values, 
which are given in this respective order within each 
comparison block (highlighted with the bolded 
borders). Positive t values indicate a decrease of 
µ[Fmax], whereases negative values indicate an 
increase. 
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Sensorimotor Mouth 

 M D R 

 
A 

1.14 0.28 -0.6 

31.77 30.99 30.41 

0.26 0.78 0.55 

                   
M 

-0.95 -1.61 

31.7 29.22 

0.35 0.12 

   
  

  
D           

-0.88 

27.71 

0.39 
 
Visual 

 M D R 
 

A 
0.27 -1.27 - 0.04 

24.02 32 27.79 

0.79 0.21 0.97 
                   

M 
- 1.1 - 0.27 

24.11 30.24 

0.28 0.79 
   

  
  

D           
0.95 

27.89 

0.35 

 
 
Supplementary Table 5. Results for statistical 
comparison of µ[Fmax] over the four states of 
awareness in sensorimotor and sensory RSNs. 
(A: awake; M: mild; D: Deep; Recovery: R). 
Welch’s t-test was used to obtain t, 𝜈 (degrees of 
freedom), and p values, which are given in this 
respective order within each comparison block 
(highlighted with the bolded borders). Positive t 
values indicate a decrease of µ[Fmax], whereases 
negative values indicate an increase. 

 
 

Sensorimotor Hand 

 M D R 
 

A 
-0.34 2.58 1.19 

31.91 30.04 31.6 

0.74 0.015 0.24 
                   

M 
2.92 1.58 

29.27 31.89 

0.0067 0.12 
   

  
  

D           
-1.67 

28.39 

0.1 
 
Auditory 

 M D R 

 
A 

2.4 - 1.95 - 2.42 

28.4 28.42 31.86 

0.023 0.061 0.021 

                   
M 

- 3.73 - 4.25 

32 28.76 

0.00073 0.00017 

   
  

  
D           

- 0.06 

29.43  

0.95 
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Correction for Multiple Comparisons in Results for µ[Fmax] 
 
Since the comparison for each pair of conditions (i.e., awake vs. mild sedation, etc.) was repeated for each 
of the 11 networks, we applied a correction for multiple comparisons to the p-values obtained in 
Supplementary Tables 6 and 7. The Benjamini-Hochberg procedure12,13 was applied as follows:  

1) The p-values for each condition comparison were ranked from smallest to largest and assigned a 
rank number (k) from 1 to 11. 

2) The null hypothesis (Ho) was defined to be the case where µ[Fmax] does not differ significantly 
between a pair of conditions. 

3) The original a level (a = 0.05) was adjusted via multiplication by the rank and division by the 
number  of networks (m). 

4) The p-values were compared to the adjusted a values; the significance threshold was set at the 
highest k value (kmax) for which a network’s p-value was less than a (k / m). Ho was rejected for 
all networks with k £ kmax . 

Awake vs. Mild 

Network p k a (k / m) Reject Ho 

Auditory 0.023 1 0.0045 False 

Frontoparietal 0.063 2 0.0091 False 

Dorsal Attn. 0.065 3 0.014 False 

Cing. Parietal 0.22 4 0.018 False 

SM Mouth 0.26 5 0.023 False 

Cing. Operc. 0.36 6 0.027 False 

Default Mode 0.70 7 0.032 False 

SM Hand 0.74 8 0.036 False 

Visual 0.79 9 0.041 False 

Retrosplenial 0.86 10 0.045 False 

Ventral Attn. 0.93 11 0.050 False 

Awake vs. Deep 

Network pi k a (k / m) Reject Ho 

Dorsal Attn. <1E-05 1 0.0045 True 

Frontoparietal <1E-05 2 0.0091 True 

SM Hand 0.015 3 0.014 False 

Default Mode 0.029 4 0.018 False 

Auditory 0.061 5 0.023 False 

Cing. Parietal 0.18 6 0.027 False 

Ventral Attn. 0.21 7 0.032 False 

Visual 0.21 8 0.036 False 

Retrosplenial 0.54 9 0.041 False 

Cing. Operc. 0.63 10 0.045 False 

SM Mouth 0.78 11 0.050 False 

Awake vs. Recovery 

Network pi k a (k / m) Reject Ho 

Frontoparietal 0.00010 1 0.0045 True 

Dorsal Attn. 0.00037 2 0.0091 True 

Auditory 0.021 3 0.014 False 

Default Mode 0.099 4 0.018 False 

Ventral Attn. 0.17 5 0.023 False 

SM Hand 0.24 6 0.027 False 

Cing. Parietal 0.51 7 0.032 False 

SM Mouth 0.55 8 0.036 False 

Cing. Operc. 0.66 9 0.041 False 

Retrosplenial 0.83 10 0.045 False 

Visual 0.97 11 0.050 False 

 
 
Supplementary Table 6. Multiple comparison 
correction for µ[Fmax] for comparisons 
involving the awake condition.  For each 
possible comparison between the four conditions 
of awareness, statistical significance was 
determined by applying a multiple comparison 
correction to the p-values associated with Welch’s 
t-test (Supplementary Tables 4 and 5). This was 
done using the Benjamini-Hochberg procedure, 
where networks were arranged in terms of 
increasing p-value, assigned a rank k, and then 
compared to the adjusted threshold a (k / m), with 
m being the number of times a comparison was 
repeated (i.e., the number of networks). 
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Mild vs. Deep 

Network pi k a (k / m) Reject Ho 

Dorsal Attn. <1E-05 1 0.0045 True 

Auditory 0.00073 2 0.0091 True 

Default Mode 0.0051 3 0.014 True 

SM Hand 0.0067 4 0.018 True 

Frontoparietal 0.010 5 0.023 True 

Ventral Attn. 0.19 6 0.027 False 

Visual 0.28 7 0.032 False 

SM Mouth 0.35 8 0.036 False 

Retrosplenial 0.40 9 0.041 False 

Cing. Operc. 0.45 10 0.045 False 

Cing. Parietal 0.87 11 0.050 False 

 
Deep vs. Recovery 

Network pi k a (k / m) Reject 
Ho 

Frontoparietal 0.023 1 0.0045 True 

Default Mode 0.00045 2 0.0091 True 

Dorsal Attn. 0.0062 3 0.014 True 

SM Hand 0.10 4 0.018 False 

Visual 0.35 5 0.023 False 

SM Mouth 0.39 6 0.027 False 

Retrosplenial 0.41 7 0.032 False 

Cing. Parietal 0.53 8 0.036 False 

Ventral Attn. 0.94 9 0.041 False 

Auditory 0.95 10 0.045 False 

Cing. Operc. 0.96 11 0.050 False 

 

 

 

 

 

 

 

 

Mild vs. Recovery 

Network pi k a (k / m) Reject Ho 

Frontoparietal <1E-05 1 0.0045 True 

Auditory 0.00017 2 0.0091 True 

Dorsal Attn. 0.055 3 0.014 False 

SM Mouth 0.12 4 0.018 False 

SM Hand 0.12 5 0.023 False 

Default Mode 0.15 6 0.027 False 

Ventral Attn. 0.16 7 0.032 False 

Cing. Operc. 0.60 8 0.036 False 

Cing. Parietal 0.62 9 0.041 False 

Visual 0.79 10 0.045 False 

Retrosplenial 0.96 11 0.050 False 

 
 
Supplementary Table 7. Multiple comparison 
correction for µ[Fmax] for comparisons 
involving other conditions.  For each possible 
comparison between the four conditions of 
awareness, statistical significance was determined 
by applying a multiple comparison correction to 
the p-values associated with Welch’s t-test 
(Supplementary Tables 4 and 5). This was done 
using the Benjamini-Hochberg procedure, where 
networks were arranged in terms of increasing p-
value, assigned a rank k, and then compared to the 
adjusted threshold a (k / m), with m being the 
number of times a comparison was repeated (i.e., 
the number of networks). 
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Supplementary Note 7: Grouped Permutations  
 
Analysis for µ[Fmax] 
 
The following analysis is an extension of our investigation into the BOLD signal’s temporal properties 
and how they relate to integrated information. 

As seen in the temporal control procedures, the BOLD signal’s inherent causality can be captured 
with integrated information. This was underscored by the observation that µ[Fmax] is subject to a ten-fold 
decrease when the order of its state-transitions is disrupted. While the control procedure consisted of 
shuffling time points individually, the following analysis extended this idea by permuting each network’s 
time-series in grouped blocks of time points.  

The order of time points within these blocks was unchanged, but the blocks themselves were 
rearranged in random order. This was repeated for blocks of several sizes n, including 2, 3, 5, 7, 15, and 
35 time points, which allowed for varying degrees of fluctuation based on the number of time points in 
each block. As an intermediate step between the single time point permutations and groups of 2, we also 
permuted in groups of 2 and 1, where two time points were grouped, and the next point was permuted 
individually (n = 1.5). For each n, we permuted to obtain 20 new time-series, from which we obtained the 
means and standard deviations of µ[Fmax] as shown in Supplementary Figures 6 and 7. This allowed us to 
analyze how µ[Fmax] is affected with varying degrees of disruption to the original time-series. Different 
networks are presented across rows, while the four conditions are presented in the columns.  

The general behaviour demonstrated in all cases is the same: as n increases, µ[Fmax] converges 
towards the values of the original time-series, from which the n = 35 distributions do not deviate 
significantly in most cases. This result is not surprising considering the nature of the permutations 
performed; with smaller n, there is a larger number of blocks to be shuffled, which induces a greater 
degree of sequential disruption and yields time-series with more random transitions. On the other hand, 
permutations with larger n swap fewer transitions and hence preserve more of the original signal.  

Interestingly, it appears that the length of these plateaus, and hence the rate at which the ordered 
µ[Fmax] value is approached, varies across networks and conditions. To describe these changes 
quantitatively, the plots in Supplementary Figures 6 and 7 were fitted using an exponential plateau 
function: 

µ[F$%&] = Γ[1 − 𝑒'()] (4) 

The first parameter, Γ, corresponds to the maximum value reached by the curve and is effectively 
an approximation of the network’s unpermuted µ[Fmax], while the exponential parameter 𝜆 is proportional 
to the rate at which the plateau is approached. More specifically, a high 𝜆 corresponds to a faster rate of 
approach as the number of grouped time points increases, which can be observed with a longer plateau 
(i.e., µ[Fmax] is near the maximum at n = 5). In contrast, networks with low 𝜆 demonstrate a steadier 
increase that continues with larger n values, and their plateau is visibly shorter. The values obtained for 
this parameter are presented in the fifth columns of Supplementary Figures 6 and 7.  
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Supplementary Figure 6. Grouped permutations in higher-order RSNs. For several group sizes 
containing n time points, permutations were performed by randomly rearranging the positions of 
grouped blocks within the time-series. µ[Fmax] is plotted against each n (logarithmically scaled) for 
higher-order RSNs. RSNs are given along rows and the four conditions are presented across columns. 
The graphs were fitted using an exponential plateau function, from which we obtained the exponential 
parameter 𝜆 to quantify the rate of approach towards the plateau with respect to increasing n. For each 
RSN, the modulation of 𝜆 over the four conditions is shown in the fifth column. Standard deviations 
for 𝜆 were obtained based on the variance of the µ[Fmax] values used for fitting. Statistically 
significant differences are shown only for comparisons that involve the awake condition (0.01< p < 
0.05: *, 0.001< p < 0.01: **, p < 0.001: ***). Error bars in the first four columns correspond to the 
sample standard deviation of the permuted samples (N = 20 for each n), while error bars in the fifth 
column represent the standard deviation of the fit for each condition. Note that a single value was 
obtained for each condition’s fit parameter, and its standard deviation was derived from that of the 
data points used to fit it. 
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Supplementary Figure 7. Grouped permutations in sensorimotor and sensory RSNs. The results 
for the same procedure are shown but for RSNs associated with sensory and motor functions. Error 
bars in the first four columns correspond to the sample standard deviation of the permuted samples (N 
= 20 for every n), and error bars in the fifth column represent the standard deviation of the fit for each 
condition. Note that a single value was obtained for each condition’s fit parameter, and its standard 
deviation was derived from that of the data points used to fit it. 

 
Upon closer inspection, it is noticeable that higher 𝜆 values pertain to networks lower in µ[Fmax]. 

For example, consider the DMN and FPN in the awake condition (Supplementary Figure 6, rows 1 & 2): 
the latter generates µ[Fmax] nearly twice greater than the former at the plateau, while its 𝜆 values are 
substantially lower (DMN: µ[Fmax] = 0.30, 𝜆 = 0.81; frontoparietal: µ[Fmax] = 0.56, 𝜆 = 0.39). The same 
observation holds true for other RSNs higher in µ[Fmax], such as the retrosplenial, ventral-attention, and 
mouth sensorimotor networks. This relationship is also apparent for sedative-induced changes within the 
same network. In the FPN and DAN, µ[Fmax] decreased moving towards deep sedation and increased in 
recovery; in terms of 𝜆, both networks demonstrate a significant increase in deep sedation followed by a 
significant decrease in recovery. In the FPN, µ[Fmax] peaked during the recovery phase, which 
corresponds to a significant dip and minimum value for 𝜆 in the fourth condition. Taking all networks and 
conditions together, the Pearson correlation coefficient between µ[Fmax] and 𝜆 is -0.68 (p = 1e-5, with 
44 samples for each parameter), indicating a moderate to strong negative correlation.  

Some higher-order RSNs, most notably the ventral and retrosplenial networks, presented no 
significant changes in µ[Fmax] throughout sedation. This is also the case for their 𝜆 values, which do not 
fluctuate significantly over the four conditions. Furthermore, there appears to be an exception to this trend 
in the DMN; although 𝜆 is significantly different for the four conditions, it presents no clear relationship 
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with µ[Fmax]. The hand sensorimotor cortex presents another exception, as there are no significant 
changes in 𝜆 despite substantial variations in its µ[Fmax]. Otherwise, the remaining sensory and motor 
networks also demonstrate an inverse relationship between the two parameters.  

Since larger n values correspond to more preservation of the original time-series, 𝜆 effectively 
represents the capacity of a signal to maintain its integrated information despite disruptions to its temporal 
structure. In networks with high 𝜆 and low µ[Fmax], grouped permutations do not drastically impact 
µ[Fmax] because the signals contain fewer causal structures that generate integrated information. This is 
also apparent from their rapid approach towards the plateau, which shows that the dynamics giving rise to 
µ[Fmax] can be captured over a block containing as few as five time points. On the other hand, highly 
integrated networks with low 𝜆 are more susceptible to permutations; their time-series contain more 
“consequential” transitions that contribute to µ[Fmax]. Permutations with larger n can significantly reduce 
their integrated information, which indicates a more sophisticated temporal behaviour spanning a larger 
group of time points.  

In other words, 𝜆 represented a time-series’ capacity to withstand permutations, and this was 
stronger in networks where integrated information was low. On the other hand, the low 𝜆 values of highly 
integrated networks reflected a more elaborate temporal structure; their time-series contained a higher 
proportion of “consequential” transitions that contributed to µ[Fmax], which accounts for their higher 
susceptibility to permutations. These differences were also observed for different conditions within the 
same network, which provided insight into the anaesthetic’s effects on resting-state temporal dynamics. 
 
Analysis for CD 
 
Since the control procedure showed that Causal Density (CD) is also strongly reduced when time-points 
are permuted, we wanted to test whether the time-series will behave in a similar way for this metric when 
permuted in groups. Thus, we computed CD for the same set of time-series with grouped permutations 
and applied the same type of fit (see Supplementary Figures 8 and 9).  

While CD also presents a similar behaviour with increasing group size, its 𝜆 values were 
substantially smaller than those of µ[Fmax], meaning that the plateau is approached more steadily for CD 
(i.e., the graphs present a “shorter” plateau). Moreover, the correlation between this fit parameter and CD 
was - 0.47 (p =1e-3), which was lower than its correlation with µ[Fmax].  

One major difference is that while this metric also presents a plateau-like behaviour, the CD values 
of the original RSNs are still significantly higher than those corresponding to the least disruptive 
permutation (n = 35). This means that the values obtained for CD depend more on each time-series in its 
entirety, which is in line with the vector autoregressive (VAR) model used to compute Granger causality. 
On the other hand, µ[Fmax] is computed from a transition probability matrix (TPM), which was 
constructed using the count of transitions between states in a time-series, and this does not strongly 
depend on the order of the entire signal. For this reason, these results show that the dependence of CD on 
an entire signal made it more sensitive to grouped permutations than µ[Fmax].  
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Supplementary Figure 8. Grouped permutations and their effects on CD in higher-order RSNs. 
The mean and standard deviation of CD (20 values) are plotted against each n (logarithmically scaled) 
for the RSNs that are associated with higher-order functions. The graphs were fitted using an 
exponential plateau function, from which we obtained the parameter 𝜆 to quantify the rate of approach 
towards the plateau with respect to increasing n. Statistically significant differences are shown for 
comparisons that involve the awake condition (0.01< p < 0.05: *, 0.001< p < 0.01: **, p < 0.001: 
***). Error bars in the first four columns correspond to the sample standard deviation of the permuted 
samples (N = 20 for every n), and error bars in the fifth column represent the standard deviation of the 
fit for each condition. Note that a single value was obtained for each condition’s fit parameter, and its 
standard deviation was derived from that of the data points used to fit it.
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Supplementary Figure 9. Grouped permutations and their effects on CD in sensorimotor and 
sensory RSNs. The results for the same procedure are shown but for RSNs associated with sensory 
and motor functions. Error bars in the first four columns correspond to the sample standard deviation 
of the permuted samples (N = 20 for every n), and error bars in the fifth column represent the standard 
deviation of the fit for each condition. Note that a single value was obtained for each condition’s fit 
parameter, and its standard deviation was derived from that of the data points used to fit it.
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