Supplementary Online Content

Tessler I, Albuisson J, Piñeiro-Sabarís R, et al. Association of the novel NOTCH pathway regulator *MIB1* gene with the development of bicuspid aortic valve. *JAMA Cardiol*. Published online July 5, 2023. doi:10.1001/jamacardio.2023.1469

eTable 1. List of 34 Genes Known or Suspected to Cause Syndromic and Nonsyndromic BAV

eTable 3. Detailed Information About the Microinjection Reagents and Genotyping of the Mice Model

eTable 4. Phenotyping of French and Israeli Cases From Discovery and Replication I Cohorts

eTable 8. Candidate Genes Identified After Multistep Variant and Gene Filtering

eTable 9. MIBAVA-Leducq Cohort (Belonging to Replication Cohort I) Characteristics

eTable 10. MIB1 Identified Coding Variants

eTable 11. MIB1 Association Study by Burden Testing Using gnomAD Control Population

eTable 12. Replication Cohort II—Summary of Demographics and Clinical Data of BAV Cases

eTable 14. The 5 Most Significant SNVs in the Common Variants Analysis

eTable 15. Risk Haplotypes at the MIB1 Locus: a Comparison Between BAV Cases and Controls

eTable 16. Results From the Combination of Missense Mib1 K735R Mutant Alleles With Notch1 Loss of Function mutations

eFigure 1. A Flow Chart Summarizing the Design of the Study

eFigure 2. Flow Chart Displaying the Prioritization Process for Candidate Genes and Variants Analysis

eFigure 3. Multidimensional Scaling (MDS) Plot for 452 BAV Cases and 1911 FHS Controls

eFigure 4. Pedigree of Family BAV-003 With MIB1 p.V943F Variant and Bicuspid Aortic Valve (BAV) Phenotype

eFigure 5. Histological Analysis of Mib1+/+, Mib1+/+;Notch1+/+ and Mib1+/+;Rbp+/+ Control Mice

This supplementary material has been provided by the authors to give readers additional information about their work.

<u>eTables</u>

eTable 1: List of 34 genes known or suspected to cause syndromic and non-syndromic BAV

OMIM: Online Mendelian Inheritance in Man; AV, aortic valve; AD, autosomal dominant;

AR, autosomal recessive; NA, not applicable

Gene in (if present)	BAV	OMIM #	OMIM phenotype	Inheritance in humans
(ii present)	D A V			
ACTA2	NA	611788	Aortic aneurysm, familial thoracic 6	AD
Acvr1	Mouse	NA	NA	NA
BGN	Human	300989	Meester-Loeys syndrome	NA
ELN	NA	185500	Supravalvular aortic stenosis	NA
FBN1	NA	154700	Marfan syndrome	NA
FLNA	Human	300049	Periventricular nodular heterotopia 1	XLD
Fn1	Mouse	184255	Spondylometaphyseal dysplasia, corner fracture type	NA
Gata4	Mouse	607941	Atrial septal defect 2	AD
Gata5	Mouse	617912	Congenital heart defects, multiple types, 5	NA
Gata6	Mouse	600001	Heart defects, congenital, and other congenital anomalies	AD
LOX	NA	617168	Aortic aneurysm, familial thoracic 10	AD
MAT2A	Human	607086	Aortic aneurysm, familial thoracic 1	AD
Matr3	Mouse	NA	NA	NA
MFAP5	NA	616166	Aortic aneurysm, familial thoracic 9	AD
MYH11	NA	132900	Aortic aneurysm, familial thoracic 4	AD
Mar 2.5	Maura	108900 217095	Atrial septal defect 7, with or without AV conduction defects Conotruncal heart	AD AD
IVKX2.5	Mouse	614435 187500 614432	Hypoplastic left heart syndrome 2 Tetralogy of Fallot Ventricular sental defect 3	AD AD
Nos3	Mouse	NA	NA	NA
NOTCH1	Human, Mouse	109730	Aortic valve disease 1	AD
PRKG1	NA	615436	Aortic aneurysm, familial thoracic 8	AD
Robo1	Mouse	NA	NA	NA
Robo2	Mouse	NA	NA	NA
ROBO4	Human	607528	Aortic valve disease 8	AD
SKI	NA	182212	Shprintzen-Goldberg craniosynostosis syndrome	AD
SKIL	NA	NA	NA	NA
SLC2A10	NA	208050	Arterial tortuosity syndrome	AR
SMAD2	NA	NA	NA	NA
Smad3	Mouse	613795	Loeys-Dietz syndrome 3	AD
SMAD6	Human	614823	Aortic valve disease 2	AD
TGFB2	Human	615592	Loeys-Dietz syndrome 4	AD
TGFBS	Human	609192	Loevs-Dietz syndromes 1&2	AD
TOPPT	T T	610168 609192		
TGFBR2	Human	610168	Loeys-Dietz syndromes 1&2	AD
TGFBR3	NA	NA	NA	NA
YYIAPI	Human	602531	Grange syndrome	AR

eTable 3: Detailed information about the microinjection reagents and genotyping of the 89

mice model 90 91 (a) CRISPR-Cas9

J.	± (¤) C	KIDI K Cub		
Organism and Genetic line	Туре	Genomic target	Sequence (5' - 3')	bp
Mous	tracr RNA	<i>Mib1</i> Exon15	AGCAUAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACCG AGU CGGUGCUUU	67 bp
e, Mib1	crRNA	<i>Mib1</i> Exon15	GGGCAAGGUAGACGCUGCCUGUUUUAGAGCUAUGCU	36 bp
K735 R	ssODN	Mib1 Exon15	CAAATCAGATGCAGAAGAAATATAAAAACTTGCTTCCACTAGTAGTGAGAGGACATTA TCT TTACTTACTGTGTTTCTTGAAGGTTCCCAAGCGGCATCGACCTTGCCCACATCTTGCA TGTC TTGTA	12 7b p
	_			

92

93 (b) Microiniection summary

55 (b) Microinfection summary										
Organism and Genetic line	[Cas9 protein] (ng/uL)	[crRNA] (ng/µL)	[ssODN] (ng/µL)	Viable E2C embryos	Transferred embryos	Females	Born	Weaned	Mutant	Founders
Mouse, Mib1K735R	20	0.61	10	100	100	4	24	22	4	1

94

95 (c) Primers Genotyping

Organism and Genetic line	Gene	Primer sequence (5' - 3')	Annealing temperature	Amplicon (bp)
Mouse,	<i>Mib1K735R</i> WT	For: ATGTGGGCAAGGTAGACGCT	53.9°C	497bp
MIBIK/35R		Rev: ATTAGAAGAAAAACAAACGACC		
	Mib1K735R Mut	For: GGCACACGATGAAATAATCAGT	55.4°C	329bp
		Rev: TTCTTGAAGGTTCCCAAGCG		

96

97

98 eTable 4: Phenotyping of French and Israeli cases from Discovery and Replication I cohorts

	French cases (n=210)	Israeli cases (n=81)
Valve morphology		
Type I (R-L)	130 (61.9%)	38 (53.5%)
Type II (R-Non)	21 (10.0%)	14 (19.7%)
Type III (L-Non)	0 (0.0%)	6 (8.45%)
Type 0 (unicuspid)	19 (9.0%)	12 (16.9%)
Two raphes	5 (2.4%)	1 (1.4%)
Aortic disease		

Aortic dilatation*	117 (55.7%)	29 (41.1%)
Aortic coarctation	28 (13.3%)	7 (8.6%)

Data is presented in n (%), unless other specified; *Dilatation of the ascending aorta: adults>= 40mm, child>=2 Z score; Individual patient data can be found in eTables 4 and 5

eTable 8: Candidate genes identified after multi-step variant and gene filtering.

Details are provided on global population frequencies, CADD pathogenicity scores, and corresponding pedigrees. All variants are described according to the HGVS nomenclature.

		HGVS Coding variant	HGVS nomenclature	gnomAD frequency (v2.1.1)	CADD score v1.6
	<i>MIB1</i> NM_020774	c.2827G>T	p.V943F	0.00016	23.2
CHD genes	<i>JAG1</i> NM_000214	c.2884A>G	p.T962A	0.00008354	25.9
	<i>JAG1</i> NM_000214	c.925G>C	p.G309R	0.000003978	24
	<i>NCOR2</i> NM_006312	c.3698C>T	p.T1233M	0.0005768	25.8
Cardiac	<i>NID2</i> NM_007361	c.3979C>T	p.H1327Y	0.0005162	22.9
expresse d Genes	<i>NID2</i> NM_007361	c.3248C>T	p.A1083V	0.0008252	25.6

For each candidate gene, one variant per family was identified.

CHD: congenital heart defect; HGVS, Human Genome Variation Society.

117

121	Variable	Status
122	Age	52.18 years ±11.84 years (SD)
123		• • • • • •
124	Sex	35% Male (70/195)
124		$00/F_{\rm cm} = 1_{\rm c} (17/105)$
125		9%remaie (17/195)
126		56% unknown (112/195)
127	Family history of BAV and/or	4% Positive (8/195)
128	Thoracic aortic aneurism	35% Negative (70/195)
129		61% Unknown (121/195)
130		

eTable 9: MIBAVA-Leducq cohort (belonging to Replication Cohort I) characteristics

 $\ensuremath{\mathbb{C}}$ 2023 American Medical Association. All rights reserved.

132 eTable 10: MIB1 identified coding variants

Variant class	Coding variant	Proteic variant	gnomAD Frequency (v2.1.1)	Ethnic background	CADD score (v1.6)	Domain
	c.1138G>A	p.D380N	0	NFE	26	REP1
	c.1771A>T	p.I591F	0.00013	NFE	22. 8	ANK
Missense	c.2204A>G	p.K735R	0.000008	NFE	24	ANK
	c.2411G>A ^a	p.R804Q	0.00033	NFE	23. 1	RING
	c.2827G>T	p.V943F	0.00016	ASJ	23. 2	RING
Loss of	c.289C>T	p.R97*	0.00005	ASJ	36	-
function	c.2305C>T	p.R769*	0.00004	NFE	39	-
	c.3001C>T	p.R1001*	0.00004	NFE	38	-

133 ^aFound in 2 index cases.

eTable 11: MIB1 association study by burden testing using gnomAD control population 137

	CASES				GnomAD CONTROLS		
	Ethnic background	Total ancies count	Variant alleles count	Ethnic background	Total alleles count	Variant alleles count	p-value
Rare protein altering	NFE+ASJ	892	9	any	251,496	1230	0.03
variants	NFE+ASJ	892	9	NFE+ASJ	123,850	579	0.03
Synonymous variants	NFE+ASJ	892	1	any	251,496	1446	0.99
	NFE+ASJ	892	1	NFE+ASJ	123,850	414	0.95
138							

Burden analysis was performed using TRAPD which is based on allelic frequencies. The allelic frequencies presented correspond to half of genotype and disease frequencies in the context of a dominantly inherited disease as BAV.

	BAV cases (n=452)
Sex (male)	74.3% (336/452)
Age (years, mean±SD)	54.4±11.8
Valve morphology	
Type I (R-L)	50.1% (230/452)
Type II (R-Non)	13.7% (62/452)
Type III (L-Non)	2.2% (10/452)
Unknown	33.2% (150/452)
Aortic disease	
Aortic coarctation	1.1% (5/452)
Aortic aneurysm	38.3% (173/452)
Aortic dissection	0.7% (3/452)

eTable 12. Replication cohort II – Summery of demographics and clinical data of BAV cases

Chromosome	RS Number	Position (GRCh37)	Location to <i>MIB1</i>	Mean Allele Frequency	P-value
18	rs7241299	19292517	Upstream	9%	0.00283
18	rs79023008	19323399	Intron 2	9%	0.00236
18	rs1893384	19351344	Intron 3	31%	0.00095
18	rs3017041	19355507	Intron 4	31%	0.00366
18	rs11083391	19447927	3'UTR	9%	0.00401

148 eTable 14. The 5 most significant SNVs in the common variants analysis

149

index	haplotype	Total freq.	Total S.E	Controls freq.	Controls S.E.	Cases freq.	Cases S.E.
1	00000	68%	0.000358	69%	0.000442	64%	0.00019
2	00001	0%	0	0%	0	0%	0
3	00010	1%	0.000339	1%	0.000423	0%	0.000129
4	00100	0%	0.00014	0%	0.000174	0%	0.000129
5	00110	22%	0.000255	21%	0.000319	24%	0.000129
6	01000	0%	0.000284	0%	0.000355	0%	0.000141
7	01010	0%	0.00028	0%	0.000348	0%	0
8	01110	0%	0.000061	0%	0.000076	0%	0
9	10000	0%	0	0%	0	0%	0
10	11011	0%	0.000144	0%	0.000179	0%	0
11	11101	0%	0.000123	0%	0.000154	0%	0.000003
12	11110	0%	0	0%	0	0%	0
13	11111	8%	0.000208	8%	0.000259	11%	0.000003

eTable 15. Risk haplotypes at the MIB1 locus: a comparison between BAV cases and controls

The table summarizes the estimated sample haplotype frequencies using PHASE. "Total freq": estimated haplotype frequencies for the whole sample; "Total S.E.": estimated standard errors for these frequencies. Additional columns present estimated haplotype frequencies and their standard deviations in cases and controls. Haplotype SNPs are presented in Fig. 3.

Genotypes	TAV	BAV	No VSD	VSD	Total
<i>Mib1</i> ^{+/+} ; <i>Notch1</i> ^{+/+}	4	0	0	0	4
	100%	0%	0%	0%	100%
<i>Mib1^{KR/+}; Notch1^{+/+}</i>	11	0	11	0	11
	100%	0%	100%	0%	100%
<i>Mib1</i> ^{+/+} ; <i>Notch1</i> ^{+/-}	10	1	6	5	11
	91%	9%	55%	45%	100%
<i>Mib1^{KR/+}; Notch1^{+/-}</i>	5	4	0	9	9
	56%	44%	0%	100%	100%

eTable 16. Results from the combination of missense *Mib1* K735R mutant alleles with Notch1 loss of function mutations

TAV: Tricuspid aortic valve; BAV: Bicuspid aortic valve; VSD: Ventricular septal defect.

eFigure 1: A flow chart summarizing the design of the study

164

The human genetics data sources include a discovery cohort of familial cases and two additional independent cohorts. We validated the association via functional models: *in-vivo* mouse models. *Mice models of the identified *MIB1* variants in the human cohort on a sensitized background.

eFigure 2: Flow chart displaying the prioritization process for candidate genes and variants analysis

Replication Cohorts & Mouse model

172

(a) 1879 genes with rare variants were selected in our discovery cohort based on variant frequency (MAF < 1%), annotation (missense, canonical splice-site, frameshift, indels and nonsense variants), and predicted pathogenicity (CADD score >20). (b) From literature data, two lists of candidate genes were used, based on their roles in heart development pathophysiology: genes involved in human congenital heart disease (CHD) and genes expressed in the developing mouse heart; (c) Crossing the gene list in a with the list in b resulted, respectively, in 246 and 96 common genes. (d) Gene prioritization tools (VarElect and Endeavour) were used independently to rank these lists of genes. Varelect [keyword was "bicuspid"], and Endeavour training list of genes was the 34 BAV genes involved in humans and mice (Table S12). The top 10 ranked genes from each tool were chosen for further analysis. (e) Subsequent gene lists were analyzed by (1) Rarity - ranking variants by lowest allelic frequencies in GnomAD, (2) Recurrence - the number of families sharing pathogenic variants in the gene; and (3) Variant "weight" - according to the variant type, its known pathogenicity using HGMD and CLINVAR disease databases and the predicted severity of pathogenicity. The overall process yielded four final candidate genes, from which MIB1 was identified as the leading candidate: in addition to its role in NOTCH pathway, the identified variant that was published as causal in a family of LVNC.

190

eFigure 3: Multidimensional Scaling (MDS) plot for 452 BAV cases and 1911 FHS controls

Red dots: cases; Blue dots: controls; We identified 77 outliers in the control group that were excluded, therefore, 452 cases and 1834 controls were included for final analysis.

196

Quality control of the genotype data from each cohort was performed using Genome Studio and PLINK. We excluded individuals with low overall call rates, phenotypic and genotypic sex disparity and related individuals. We excluded SNPs with low call rates, MAF >1%, non-autosomal origin, HWE p-value<1.0E-5 and heterozygote excess.

We performed principal components-based (PCA) filtering for population stratification. We calculated 10 PCAs for the merged data and then used an MDS-plot (multi-dimensional-scale) to identify clusters and outliers. We did not detect any clusters in the merged population. We identified 77 outliers only in the control group and excluded them by using cutoff Eigenvalues (-0.02 to +0.02) on Y axis which calculated by using IBS (identical-by-state) distance for each pair of individuals (Figures 2A, 2B, 2C). No BAV case outliers were identified. An additive logistic regression model was performed for association analysis adjusted for sex and 10 PCA using PLINK.

After merging cases and controls and further quality controls, we used 452 BAV cases and 1834 white controls with a set of 1,355,128 single-nucleotide polymorphisms (SNPs) common to both Illumina arrays. From the 1,355,128 SNPs analyzed after QC for our association analysis, 66 SNPs in MIB1 (uc002ktp.3) hg19 chr18:19,284,918-19,450,912 region +/- 100kb were identified."

eFigure 4: Pedigree of family BAV-003 with *MIB1* p.V943F variant and bicuspid aortic valve (BAV) phenotype

Circles indicate females, squares indicate males. The proband (III-1) is indicated by a black arrowhead. Black filled symbols: bicuspid aortic valve. White filled symbols: tricuspid aortic valve. Genetic status: (+), p.V943F carrier patient; (-), non-carrier patient. In this pedigree, both parents have BAV.

eFigure 5: Histological analysis of *Mib1*+/+, *Mib1*+/+;*Notch1*+/+ and *Mib1*+/+;*Rbp*+/+

control mice. H&E staining. Aortic valves (A,C,E) and heart sections at E16.5. (B,D,F). The asterisk indicates the positions of the leaflets. (G) Quantification of valve defects. Data are expressed as mean \pm S.D. $Mib1^{+/+}$ (n=31); $Mib1^{+/+}$; $NI^{+/+}$ (n=4), $Mib1^{+/+}$; $Rbp^{+/+}$ (n=10), Non-significant differences by Chi-square. Scale bars, 100µm and 200µm.

