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A

Figure S1. SnoRNAs interacting with their HG are not enriched for certain snoRNA 
classes or targets. Cumulative bar charts showing the proportion of the two main 
snoRNA types or their target type among snoRNAs interacting with their host vs the others. 
(A) The proportion of box C/D to box H/ACA snoRNAs is not significantly different between 
those interacting with their host and those that do not. (B) Interacting snoRNA-hosts do not 
show a significantly higher proportion of orphan snoRNAs than non-interacting pairs. 
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Figure S2. Characteristics of the snoRNA-intron interactions. (A) Density plot showing 
the length of introns for snoRNAs interacting with their own host intron (purple) vs snoRNAs 
not interacting with their host genes (green). (B) Comparison of the stability of snoRNA-
intron regions for snoRNAs interacting with their host intron and snoRNAs not interacting 
with their host gene (see material and methods for more details). (C) Density plot showing 
the distribution of distance between the target region and the snoRNA. Distances longer 
than 1000 nt were grouped in together. (D) Pie chart displaying the proportion of snoRNA-
intron interactions for which the interaction overlaps with the branch point (BP). (E) 
Bedgraphs showing read coverage from TGIRT-Seq datasets of healthy human tissues and 
human cell lines in the intron 14 of the gene CWF19L1. Strong snoRNA extension was 
observed for the snoRNA SNORA12.



Exon 3

0

500

1000

1500

1305

30

Exon 4

B

C
ov

er
ag

e

Figure S3. SNORD139 is a low expressed snoRNA interacting with its host gene, that 
is included in some NMD transcripts. (A) Schematic representation of the main transcript 
of the RPL3 gene (201) as well as 2 other transcripts known to be targeted by NMD (see 
material an methods for more details) and involving alternative splicing of the exon 4. 
SNORD139 is located at the end of intron 3 of the ribosomal protein gene RPL3 and the 
observed interactions are further upstream in the same intron. The sequence of the 
snoRNA as well as one observed interaction between RPL3 and SNORD139 can be 
included in the alternative portion of exon 4, which is well conserved, and when included, 
leads to the production of transcripts that are targeted to the NMD pathway (NMD transcript 
names are indicated in red). Blue, orange and cyan rectangles represent, respectively, the 
exons, the snoRNAs and the snoRNA target region. The salmon track represents the 
conservation level across 100 vertebrates estimated using the PhastConst algorithm. 
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(B) NMD transcripts are detectable in our TGIRT-Seq datasets (see coverage in the 5’ 
extended exon 4 and the purple arc in the sashimi plot). The sequence of SNORD139 itself 
contains the predicted branch point of the intron (red star). (C) The branch point (green 
color and red star) is predicted to be more accessible if the snoRNA folds with the intron as 
opposed to the folding of SNORD139 alone (compare right to left panels). Moreover, the 
folding of SNORD139 alone is of low stability as compared to the SNORD139-extension 
(compare the mfe/nt between left and right panels), and the snoRNA is not expressed (see 
sashimi in B), according to our TGIRT-Seq data.
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Figure S4. SNORD95 is highly expressed, interacts with its host gene, and can be 
included in an alternative exon. (A) Schematic representation of the gene RACK1, and 
some of its transcripts showing a complex splicing pattern around the SNORD95 snoRNA. 
The snoRNA sequence, as well as 2 of its target regions (out of 3 detected, cyan 
rectangles), can be incorporated in alternative exons of some transcripts. The incorporation 
of the snoRNA and 2 target regions can lead to targeting to NMD (red labelled transcript). 
(B) Sashimi plot showing the alternative splicing of the RACK1 gene near the SNORD95 
snoRNA. The snoRNA is highly expressed (above 15,000 reads in this sample), and we 
detect different splicing patterns in our TGIRT-Seq datasets. (C) The folding of SNORD95 
with the intron nearby is thermodynamically more favorable than the folding of SNORD95 
alone, as seen by the mfe/nt values (compare the middle and right panels to the left), 
suggesting that the snoRNA-intron structure might be favored in some conditions, leading 
to altered HG splicing and/or altered snoRNA expression.
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Figure S5. SNORD84 interacts with its host gene and is a highly expressed snoRNA 
whose sequence contains the 5’ splice site of an alternative exon. (A) Schematic 
representation of the DDX39B gene and its extensive differential splicing patterns near the 
SNORD84 snoRNA. The SNORD84 snoRNA is partly included in an intron of some 
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transcripts, and there are several alternative 3’ and 5’ splice sites nearby. (B) Sashimi plot 
showing the observed alternative splicing of the first intron of the gene. The snoRNA 
(orange) is highly expressed (above 3000 reads) in our TGIRT-Seq datasets. (C) The 
interaction between SNORD84 and the intron of its host gene is observed in three different 
datasets, one from PARIS (P0) and two from LIGR-seq (L0 and L1) (see materials and 
methods for the nomenclature of the data sets). (D) The folding of the snoRNA with the 
intron region is slightly more favorable than the folding of the snoRNA alone (compare the 
mfe/nt of the right panel vs the left), but the 5’ splice site of the alternative exon seems to 
be more accessible if the SNORD84 folds with the intron.
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Figure S6. The EIF4A2 gene shows a highly varied alternative splicing pattern. In the 
annotation of Ensembl (V101), the EIF4A2 gene has 27 transcripts. The number of exons 
per transcript ranges from 2 to 12, and 5 snoRNAs are embedded in introns of the gene, 4 
H/ACA and 1 box C/D snoRNAs.
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Figure S7. The SNORD2-intron is bound by core C/D snoRNA binding proteins and 
RNA binding proteins (RBPs) involved in splicing regulation. (A) Screenshot of the 
Integrative Genomics Viewer (IGV) showing the EIF4A2 gene with the exons shown in blue 
boxes and the snoRNAs in orange boxes. Below the gene track, indicated using pale 
purple boxes, are shown the binding sites of core C/D interactors NOP58, NOP56 and FBL 
as detected in PAR-CLIP datasets (Kishore et al 2013 Genome Biology). The third track 
shows RBP binding sites detected using eCLIP by the ENCODE consortium using their 
recommended thresholds (van Nostrand et al 2020 Nature) as pale green boxes.  For both 
the PAR-CLIP and eCLIP tracks, binding sites from different cell lines and replicates of the 
studies were merged. (B) Screenshot of IGV showing intron 3 of EIF4A2 containing 
SNORD2, representing a zoom-in of the region depicted in a dashed box in panel A. The 
tracks shown below the gene track are the same as those described for panel A, but with 
the names of the RBPs below the boxes.



Figure S8. Mutation of 30 nucleotides at the end of SNORD2 to weaken the predicted 
folding of SNORD2-intron in the minigene construct. Predicted folding structures of 
SNORD2-intron (left panel) and the mutated version (right panel). The branch point (BP) in 
both structures is highlited in red. The molecular free energy (mfe) is indicated at the 
bottom of each predicted structure.
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Figure S9. EIF4A2 transcripts lacking exon 4 are targeted and degraded by the NMD 
pathway. (A) Schematic representation of EIF4A2 transcripts significantly targeted to the 
NMD pathway. RNA-seq datasets following depletion of NMD factors, from Colombo et al. 
(2017) RNA, were de novo analyzed at the transcript level and the transcripts 202, 204, 
215 and 223 were determined to be significantly affected by the modulation of NMD factors. 
(B) Two EIF4A2 transcripts lacking exon 4 are affected by NMD. Bar chart showing the 
relative abundance in transcripts per million (TPM) of EIF4A2 transcripts 201 (main 
transcript), 204 and 215 in the knock down (KD) and rescue (res) conditions from the UPF1 
NMD factor.
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Figure S10. Splicing order analysis shows that EIF4A2 introns 3 and 4 are removed 
later than other proximal introns. Heatmaps representing the order of intron removal in 
EIF4A2 from direct RNA nanopore sequencing of polyadenylated chromatin-associated 
RNA. Each line represents one read and each column displays one intron, with the shade 
of blue indicating whether the intron is present (not excised yet, dark blue) or absent 
(excised, light blue). Reads are sorted based on the number of introns excised, indicated 
by colored bars on the left of the heatmaps. Left: All full-length reads mapping to EIF4A2 in 
two biological replicates. Right: Zoom in to all full-length reads with at least two introns that 
are still present. Introns 3 and 4 are shown in bold on the x-axis and are most frequently 
removed after introns 1, 5, 6 and 7 but before introns 10 and 11.
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Figure S11. Direct RNA nanopore sequencing reveals the order of intron removal in 
EIF4A2. Direct RNA nanopore sequencing reads from polyadenylated chromatin-
associated RNA, showing that some introns have been excised while others are still 
present. 20% randomly sampled full-length reads are shown. Reads where introns 3 and/or 
4 are still present are shown in red, while reads where introns 3 and/or 4 have been 
removed are shown in dark blue. Introns 3 and 4 are most frequently removed after introns 
1, 5, 6 and 7 but before introns 10 and 11.



Figure S12. SNORD2-intron extension is observable in ovarian cancer datasets. Non-
fragmented TGIRT-Seq datasets of ovarian cancer (3 low and 3 high grade) demonstrate 
the presence of reads in the SNORD2-intron extension (shaded region). The top 3 samples 
are from low grade and the bottom 3 from high grade ovarian cancer.
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Figure S13. Schematic representation of the regions used to determine the extension 
ratio of a snoRNA-target pair. The snoRNA extension is the region from the boundary of 
the snoRNA (+2nt) to the end of the target region (in this hypothetical example, the pink 
line). The region of the intron that is not the snoRNA or the extension is used to calculate 
the baseline of the intron (green line). Steel blue, orange and cyan rectangles are, 
respectively, the exons, the snoRNA and the snoRNA target region. The extension ratio is 
calculated as the mean abundance of the extension region (pink) normalized by the mean 
abundance of the rest of the intron (green).
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