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1 Supplementary Note: analytical null distribution of bi-variate
Moran’s R

1.1 Univariate Moran’s I

Univariate Moran’s I is established for hypothesis testing on the spatial autocorrelation of a single variable
x. Let x = (x1, x2, ..., xn) be the vector of values over n locations, and x̄ be the mean of x. W = w[ij] is the
spatial weight matrix (without normalization). The formula of the statistic takes the form in the following
equation:

I =
n∑n

i=1

∑n
j=1 wij

∑n
i=1

∑n
j=1 wij(xi − x̄)(xj − x̄)∑n

i=1(xi − x̄)2

Null hypothesis assumes that

1) x is normally distributed

2) x is spatially randomly distributed

Under the assumption, the expectation and variance of univariate Moran’s I are

E(I) =
−1

n− 1

V ar(I) =
n((n2 − 3n+ 3)S1 − nS2 + 3(

∑n
i=1

∑n
j=1 wij)

2

(n− 1)(n− 2)(n− 3)(
∑n

i=1

∑n
j=1 wij)2

− (E(I))2

S1 =
1

2

n∑
i=1

n∑
j=1

(wij + wji)
2, S2 =

n∑
i=1

(

n∑
j=1

wij +

n∑
j=1

wji)
2

1.2 Bivariate Moran’s global R

Here, in order to distinguish the univariate auto-correlation, we use the symbol R to indicate spatial corre-
lation. Specifically, the multivariate Moran’s R indicates the spatial correlation between one variable and
another variable in neighbouring regions. Here we consider the bivariate case. Let X = (X1, X2, ..., Xn)
and Y = (Y1, Y2, ..., Yn) be the two variables of interest. The formula of the statistic takes the form in the
following equation:

R =
n∑n

i=1

∑n
j=1 wi,j

∑n
i=1

∑n
j=1 wij(Xi − X̄)(Yj − Ȳ )√∑n

i=1(Xi − X̄)2
√∑n

i=1(Yi − Ȳ )2
(1)

The null hypothesis assumes that

1) X and Y are normally distributed: X ∼ N(0, σ2
1I),Y ∼ N(0, σ2

2I).

2) X and Y are is spatially randomly distributed.

The expectation and variance of the test statistic need to be derived under the null hypothesis to con-
duct the z-score test. Note, in Eq. (1), we can further absorb the normalisation term of W to simplify the
notation. However, the de-mean operations over X and Y cannot be absorbed for simplification, as it will
break the i.i.d. assumption. Instead, we have to introduce a centring matrix below.

Denote H as the centring matrix, H = I − 1
n11

T , then Eq. (1) can be rewritten in matrix form:
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R =
n∑n

i=1

∑n
j=1 wi,j

(HX)TWHY√
(HX)THX

√
(HY)THY

=
n∑n

i=1

∑n
j=1 wi,j

XTHWHY√
XTHHX

√
YTHHY

=
n∑n

i=1

∑n
j=1 wi,j

XTHWHY√
XTHXYYTHY

(2)

Since H is symmetric, diagonalizing H will give

H = PTDiag(1, 1, , , , 1, 0)P,

where P is an orthogonal matrix.

Apply the same orthogonal transformation to the numerator in Eq. (2):

PTHWHP = PTHPPTWPPTHP

= Diag(1, 1, , , , 1, 0)PTWPDiag(1, 1, , , , 1, 0) = PTWPn−1,

where PTWPn−1 denotes the submatrix of PTWP consisting of its first (n − 1) -th rows and columns.
Hence it is also symmetric. Suppose that further diagonalising yields

PTWPn−1 = QT
1 Diag(λ1, λ2, ..., λn−1)Q1, (3)

where λ1, λ2, ..., λn−1 are the n− 1 eigenvalues of the matrix PTWPn−1 and Q1 is orthogonal. Let

Q =

(
Q1 0
0 1

)
(4)

V = PQ (5)

Orthogonality of P and Q ensures that V is also orthogonal. Observe that V can diagonalise both HWH
and H:

VTHWHV = QTPTHWHPQ = Diag(λ1, λ2, ..., λn−1, 0) (6)

VTHV = QTDiag(1, 1, , , , 1, 0)Q = Diag(1, 1, , , , 1, 0) (7)

Substitute Eq. (6) and (7) into (2), bivaraite Moran’s R can be rewritten into

R =
n∑n

i=1

∑n
j=1 wi,j

XTVDiag(λ1, λ2, ..., λn−1, 0)V
TY√

XTVDiag(1, 1, , , , 1, 0)VTX
√

YTVDiag(1, 1, , , , 1, 0)VTY
(8)

Let VTX = (a1, a2, , , , an) and VTY = (b1, b2, , , , bn). Since V is orthogonal, VTX and VTY still
follows the same normal distribution, that is,

VTX ∼ N(0, σ2
1I) (9)

VTY ∼ N(0, σ2
2I) (10)

or equivalently, for any i = 1, 2, ..., n, ai ∼ N(0, σ2
1), bi ∼ N(0, σ2

2). Then R can be expressed into a function
of product of normal random variables:

R =
n∑n

i=1

∑n
j=1 wi,j

∑n−1
i=1 λiaibi√∑n−1

i=1 a2i

√∑n−1
i=1 b2i

(11)
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Assuming that E(Rp) = E(numeratorp)
E(denominatorp) , it suffices to compute the moments of numerator and denomi-

nator respectively.
By the assumption,

E(ai)E(bi) = 0 (12)

E(a2i )E(b2i ) = σ2
1σ

2
2 (13)

E(aiajbibj) = 0 (14)

Hence,

E(numerator) =

n−1∑
i=1

λiE(ai)E(bi) = 0 (15)

E(numerator2) =

n−1∑
i=1

λ2
iE(a2i )E(b2i ) + 2

∑
i ̸=j

λiλjE(aiajbibj) (16)

E(denominator2) =
n−1∑
i=1

E(a2i )

n−1∑
i=1

E(b2i ) = (n− 1)2σ2
1σ

2
2 (17)

Combining (15),(16) and (17),

E(R) = 0 (18)

V ar(R) = E(R2) =
n2

(
∑n

i=1

∑n
j=1 wi,j)2

∑n−1
i=1 λ2

i

(n− 1)2
(19)

Recall (6), it is equivalent to HWH = VDiag(λ1, λ2, ..., λn−1, 0)V
T. Thus, λ1, λ2, ..., λn−1 are also

eigenvalues of HWH. By the property of trace and eigenvalues,

n−1∑
i−1

λ2
i = tr((HWH)2) (20)

Substitute (20) into and represent the trace using the elements of W , the variance of bivariate Moran’s
R can be expressed in the form of function of matrix W :

V ar(R) =
n2

∑n
i=1

∑n
j=1 wijwji − 2n(

∑n
i=1(

∑n
j=1 wij

∑n
j=1 wji) + (

∑n
i=1

∑n
j=1 wij)

2

n2(n− 1)2
(21)

1.3 Bivariate Moran’s local R

Local moran’s R at the i-th spot takes the form in the following equation:

Ri = (xi − x̄)

n∑
j=1

wij(yj − ȳ) + (yi − ȳ)

n∑
j=1

wij(xj − x̄) (22)

Since

xi − x̄ =
n− 1

n
xi −

1

n

n∑
j=1,j ̸=i

xj (23)

and each pair of xi and xj for any i and j are independent, for any i,

xi − x̄ ∼ N(0,
n− 1

n
σ2
1I) (24)
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Similarly,

yi − ȳ ∼ N(0,
n− 1

n
σ2
2I) (25)

Hence,

E(Ri) = E(xi − x̄)

n∑
j=1

wijE(yj − ȳ) + E(yi − ȳ)

n∑
j=1

wijE(xj − x̄) = 0 (26)

V ar((xi − x̄)wij(yj − ȳ)) = w2
ij(E((xi − x̄)2(yj − ȳ)2)− (E((xi − x̄)(yj − ȳ))2))

= w2
ijE((xi − x̄)2(yj − ȳ)2) = w2

ijE((xi − x̄)2)E((yj − ȳ)2)

= w2
ij

(n− 1)2

n2
σ2
1σ

2
2

(27)

Cov((xi − x̄)wij(yj − ȳ), (yi − ȳ)wik(xk − x̄)) = E((xi − x̄)wij(yj − ȳ)(yi − ȳ)wik(xk − x̄))

− E((xi − x̄)wij(yj − ȳ))E((yi − ȳ)wik(xk − x̄))

= E((xi − x̄)wij(yj − ȳ)(yi − ȳ)wik(xk − x̄))

̸= 0 if and only if i = j = k

(28)

Cov((xi − x̄)wij(yj − ȳ), (xi − x̄)wik(yk − ȳ)) = E((xi − x̄)wij(yj − ȳ)(xi − x̄)wik(yk − ȳ))

− E((xi − x̄)wij(yj − ȳ))E((xi − x̄)wik(yk − ȳ))

= 0

(29)

Cov((yi − ȳ)wij(xj − x̄), (yi − ȳ)wik(xk − x̄)) = E((yi − ȳ)wij(xj − x̄)(yi − ȳ)wik(xk − x̄))

− E((yi − ȳ)wij(xj − x̄))E((yi − ȳ)wik(xk − x̄))

= 0

(30)

Therefore,

V ar(Ri) =

n∑
j=1

V ar((xi − x̄)wij(yj − ȳ)) +

n∑
j=1

V ar((yi − ȳ)wij(xj − x̄))

+ 2Cov((xi − x̄)wii(yi − ȳ), (yi − ȳ)wii(xi − x̄)

= 2
(n− 1)2

n2
σ2
1σ

2
2

n∑
j=1

w2
ij + 2

(n− 1)2

n2
σ2
1σ

2
2w

2
ii

(31)
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2 Supplementary Figure
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(a)

Supplementary Figure 1: Detecting spatial LRI in mouse subventricular zone (SVZ). We demon-
strated the broad applicability of SpatialDM from Next-Generation Sequencing data to Fluorescent In Situ
Hybridization (FISH) data. SVZ, located along the walls of the brain lateral ventricles, is the birthplace
for neural stem cells throughout life. Many LRIs have been identified as essential to the neurogenic niche,
including mitogenic signals like fibroblast growth factor 2 (FGF-2) and epidermal growth factor (EGF),
neurogenic signals like BMP and Shh, as well as membrane-bound signals like Notch and Eph [1, 4]. All
statistical tests here are one-sided. (a) From the limited number of significant interactions (FDR > 0.1)
due to low sequencing coverage of FISH-based sequencing, we found (b) EFNA1 EPHA3 enriched in neural
progenitors, neuroblast and neural NSCs [4], (c) GDF5 signalling to BMPR1A ACVR2B complex from var-
ious cell types, in particular NSC and neural progenitors [3], and (d) HSPG2 DAG1 transmitted between
adjacent choroid plexes cells [2], etc. In the Moran p-value spatial plots, dot colour indicates 1 - p-values
(of all ranges), the selected number of spots refers to only spots with the uncorrected p < 0.1. The chord
diagram visualizes the dominant cell types where edge numbers correspond to weighted cell type composition
on selected spots and the edge colour indicates sender cell types. All statistical results are based on one-sided
tests without adjustment.
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(a)

Supplementary Figure 2: SpatialDM achieves high accuracy and reproducibility in real data and
simulations. (a-c) ROC under the 50% (a), 75% (b), 99% (c) degrees of interaction simulation scenario.
AUROC for each method is labelled in the legend. Source data are provided as a Source Data file. (d-e)
Pearson correlations (two-sided) of the numbers of local selected spots (p < 0.1) between z-score approach
and permutation approach, in the melanoma dataset (d, p < 1e−16) and the intestine dataset (e, p < 1e−16).
Source data are provided as a Source Data file. (f) AUROC comparison for global Moran permutation tests
with (0.17 weight) vs. without considering ligand auto-correlation in each simulation scenario. (g-j) ROC
under the 50% (a), 75% (b), 99% (c) degrees of interaction after considering ligand auto-correlation.
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(a)

Supplementary Figure 3: SpatialDM detects oncology-relevant interactions in the melanoma
data. (a) FPR comparison of SpatialDM with CellChat, Giotto, SpaTalk, and SpatialCorr in the melanoma
dataset but with shuffled LR pairs. All tests are one-sided. Only SpatialDM (both z-score and permutation
approaches) calibrates with the null distribution along with the diagonal line. (b) Cell type prediction
based on local Moran p-values. The whole dataset was used for fitting the linear regression model and for
prediction. A Pearson coefficient R = 0.928 was observed. Source data are provided as a Source Data file. (c)
Pathway enrichment result for pattern 3 interactions (one-sided). Source data are provided as a Source Data
file. (d) FCER2 and CR2 expression across different cell types in the scRNA dataset. (e) Gene Ontology
enrichment of the 3500 genes that are up-regulated in the CD23 hot spots (one-sided Fisher’s Exact Test,
Benjamini-Hochberg corrected. Source data are provided as a Source Data file. ).
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(a)

Supplementary Figure 4: 4 exemplar interactions belonging to pattern 0 (Upper panel) and
pattern 1 (Lower panel), respectively. The local Moran spots (permutation, p <0.1, one-sided), and
their corresponding LR expression were visualised. Local p of all ranges are displayed.
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(a)

Supplementary Figure 5: Global and local selection in the intestine dataset (a) Comparison of the
number of selected pairs across all 8 samples by Corbett, et al. vs. global Moran (permutation approach,
p < 0.05, one-sided). (b-c) Cluster map based on permutaion (b) or z-score (c) p-values (one-sided). Each
row is an interaction; each column is a sample. The sample clustering results were visualised on the top,
which were consistent with sample kinship. (d) For FN1 CD44, the correlation of additive cell type weights
across selected spots between A1 and A2 (permutation, p <0.1, one-sided). Each dot represents a cell type.
x- and y-axis represent additive cell type weights. An Pearson coefficient R = 0.978 (two-sided, p < 1e− 16)
was observed. (e-g) Summary coefficient histogram for 4 pairs of samples (i.e. Technical replicates A1 vs.
A2 in e, A8 vs. A9 in f, biological replicates A3 vs. A9 and non-biological replicates A3 vs. A7 in g).
Each statistic was a Pearson coefficient of additive cell type weight (e.g. a specific example provided in d)
computed for an overlapping pair between the samples. The total number of overlapping pairs were specified
in y-axis labels or legend.
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(a)

Supplementary Figure 6: Spatial plots of FN1 CD44 (Upper) and PLG F2RL1 (Lower) in the
specified samples. For each lane, local Moran selected spots (z-score approach, coloured by the value of
1−p), LR expression, and (for PLG F2RL1) the cell type across selected spots were visualised. In the Moran
p-value spatial plots, dot colour indicates 1 - p-values (of all ranges), the selected number of spots refers to
only spots with the uncorrected p < 0.1. The chord diagram visualises the dominant cell types where edge
numbers (or width depending on figure resolution) correspond to weighted cell type composition on selected
spots and the edge colour indicates sender cell types. All p-values are one-sided, no adjustments.
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(a)

Supplementary Figure 7: Local selection results in the adult intestine data (a) Similar to Fig.
3d, pattern 2 and 3 summary for A1 SpatialDE results. (b) Pathway enrichment results for pattern 0
and 2 (Fisher’s Exact Test, one-sided). (c) Similar to Supp Fig 6, two other EGF pathway pairs were
visualised in A1, in addition to Fig. 3F. (d) Violin plots of EGF downstream gene expression. (e) The
CEACAM1 CEACAM5 interaction pattern visualised in A1 (ubiquitous) versus A3 (sparse). All local p-
values are one-sided, no adjustments.
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