Supporting Information for

Original article

Corynoxine B targets at HMGB1/2 to enhance autophagy for alphasynuclein clearance in fly and rodent models of Parkinson's disease

Qi Zhu^{a,†}, Juxian Song^{b,c,†}, Jiayue Chen^{a,†}, Zhenwei Yuan^c, Liangfeng Liu^{c,d,e}, Liming Xie^a, Qiwen Liao^f, Richard D. Ye^f, Xiu Chen^a, Yepiao Yan^a, Jieqiong Tan^g, Chris Soon Heng Tan^h, Min Li^{c,*}, Jiahong Lu^{a,*}

^aState Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China

^bMedical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou 510006, China

°Mr. and Mrs. Ko Chi Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China

^dGuangdong Corporate Key Laboratory of High-end Liquid Medicine R&D, Industrilization, Shaoguan 512028, China

^eLimin Pharmaceutical Factory, Livzon Pharmaceutical Group Inc., Shaoguan 512028, China

^fKobilka Institute of Innovative Drug Discovery, School of Medicine, the Chinese University of Hong Kong, Shenzhen 518172, China

^gCenter for Medical Genetics, Life Science School, Central South University, Changsha 410031, China

^hDepartment of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen 518055, China

Received 14 October 2022; received in revised form 12 February 2023; 28 February 2023

*Corresponding authors.

E-mail addresses: <u>limin@hkbu.edu.hk</u> (Min Li); <u>jiahonglu@um.edu.mo</u> (Jiahong Lu). [†]These authors made equal contributions to this work.

Running title: Corynoxine B targets at HMGB1/2 to enhance autophagy in PD

1. Supporting tables

Table S1 Reagents and antibodies

Peagents	Company name (Catalog number)	City/State Country
Recombinant hHMGR1 protein	Abcam (#ab167718)	Cambridge UK
Recombinant hHMGB2 protein	Δ beam (#ab109962)	Cambridge, UK
Torin 1	I C L aboratories ($\#$ T-7887)	Massachusette US
SAR405	$\Delta PF_{x}BIO (\# \Delta 8883)$	Houston USA
FRSS	Gibco $(\#24010043)$	Massachusette US
Chloroquine	Sigma-Aldrich (#C6628)	I ouis Missouri US
Kollinhor HS 15	Sigma Aldrich (#2066)	Louis Missouri, US
DMEM for SILAC	Signa-Aluncii (#42700) Thermo Scientific (#88264)	Massachusetta US
13C. 15N. J. Lysing 201C1	Thermo Scientific (#88200)	Massachusetts, US
Lucino 2HCl	Thermo Scientific (#88420)	Massachusetts, US
L-LySING-2HUI	Therma Scientific (#80000)	Massachusetts, US
$15C_6$ $15N_4$ L-Arginine-HCI	Thermo Scientific (#89990) T_{1}	Massachusetts, US
L-Arginine-HCI	I nermo Scientific (#89989)	Massachusetts, US
Dialyzed Fetal Bovine Serum	I nermo Scientific (#26400044)	Massachusetts, US
KIPA lysis (Medium)	Beyotime (#P0013C)	Snanghai, CN
RIPA lysis (Weak)	Beyotime (#P0013D)	Shanghai, CN
Poly-D-lysine	Beyotime (#ST508)	Shanghai, CN
L1po8000	Beyotime (#C0533)	Shanghai, CN
Lipofectamine 3000	Invitrogen (#L30000015)	California, US
Anti-FLAG M2 Magnetic Beads	Sigma-Aldrich (#M8823)	Louis Missouri, US
Clean-Blot IP Detection Kit	Thermo Scientific (#21232)	Massachusetts, US
DAB Substrate Kit	Vectorlabs (#SK-4100)	California, US
Antibodies	Company name (Catalog number)	City/State, Country
Anti-phospho-AMPKα (Thr172)	Cell Signaling Technology (#5256)	Massachusetts, US
Anti-AMPK	Cell Signaling Technology (#5831)	Massachusetts, US
Anti-Atg14	MBL(#PD026)	Hokkaido Prefecture, JP
Anti-PI 3-Kinase p100 (VPS34)	Santa Cruz (#sc365404)	Texas, USA
Anti-BECN1 (Beclin 1)	Santa Cruz (#sc11427)	Texas, USA
Anti-HMGB1	Abcam (#ab18256)	Cambridge, UK
Anti-HMGB2	Abcam (#ab124670)	Cambridge, UK
Anti-SQSTM1	Abcam (#ab109012)	Cambridge, UK
Anti-LC3	Novus Biologicals (#NB100-2220)	Colorado, US
Anti-Tyrosine hydroxylase	Pel-Freez (#P40101-0)	Arkansas, US
Anti- β -actin	Cell Signaling Technology (#4970)	Massachusetts, US
Anti-a-synuclein	BD Transduction Laboratories (#610786)	California, US
Purified anti- α -synuclein	BioLegend (#MMS-5091)	California, US
phospho-(Ser129) antibody		,
Goat anti-mouse secondary	Cell Signaling Technology (#7076)	Massachusetts. US
antibody		
Goat anti-rabbit secondary	Cell Signaling Technology (#7074)	Massachusetts US
antibody		
Goat anti-Rabbit Secondary	Invitrogen (#A-21428)	California US
Antibody Alexa Fluor 555	miniogon (#11 21720)	Camorina, 00
Goat anti-Mouse IoG Secondary	Invitrogen (#A-11001)	California US
Antibody Alexa Fluor 488	minogon (#11-11001)	Camorina, 05
Goat anti-Rabbit Secondary	Invitrogen (#A-11008)	California US
Antibody Alexa Fluor 488	minogon (#11-11000)	Camorina, 05
Antibody, Alexa Fluor 488		

2. Supporting figures

Figure S1 Effects of corynoxine B (Cory B) on the expression levels of autophagy related proteins in N2a and PC12 cells. N2a cells and PC12 cells were treated with different concentrations of Cory B for 6 h. Expression levels of phospho-AMPK α (Thr172), total AMPK, VPS34, Atg14L, Beclin1, p62 and LC3 were analyzed by Western blot, and band intensities of phospho-AMPK α (Thr172) /total AMPK were used to compare AMPK activation.

We examined the effects of Cory B on autophagy after knocking down *Hmgb1*, *Hmgb2*, or both in N2a cells. Short interfering RNA (siRNA) for *Hmgb1* (siHMGB1) was synthesized based on previous study, and four different pairs of siRNAs for *Hmgb2* (siHMGB2) were synthesized and verified as Fig. S2A. siHMGB2-4 was chosen for further experiment. Results showed that transfection of siRNA for *Hmgb1* and *Hmgb2* individually decreased protein expression levels of HMGB1 and HMGB2, respectively. In addition, the dual knockdown of both *Hmgb1* and *Hmgb2* decreased their expression levels simultaneously (Fig. S2B). The loss of function resulting from individual knockdown of *Hmgb1* and *Hmgb2* markedly inhibited autophagy level in N2a cells, and dual knockdown synergistically enhanced the inhibitory effect (Fig. S2B–S2D).

Figure S2 Effects of corynoxine B (Cory B) on autophagy after knocking down *Hmgb1*, *Hmgb2*, or both in N2a cells by siRNA. *Hmgb1* knockout N2a cells were untreated or transfected with non-target and four different pairs of siRNAs for *Hmgb2*. After transfection for 48 h, 50 µmol/L Cory B were added for another 12 h. Cell lysates were subjected to Western blot analysis. Expression levels of HMGB2 and LC3 were analyzed by Western blot. (B) N2a cells were transfected with non-target siRNA, *Hmgb1/2* specific siRNA or *Hmgb1&2* siRNAs for 48 h followed by indicated concentration of Cory B treatment for another 6 h. Cell lysates were subjected to Western blot analysis. (C, D) Normalized band intensities of p62/ β -actin and LC3II/ β actin from three independent experiments were presented as mean ± SD (****P*<0.001; ns, no significance).

Figure S3 The thermal stability of Beclin 1 did not change after 1 h of corynoxine B (Cory B) treatment. (A) Cellular thermal shift assay (CETSA) was performed in N2a cells. Cell lysates in control group and Cory B treatment group were subjected to Western blot analysis. (B, C) CETSA curves of Beclin 1 or β -actin in N2a cells were determined in the absence and presence of Cory B. Normalized band intensities ratio from three independent experiments are presented as mean ± SD.

Figure S4 No obvious dopaminergic neuron loss was observed in aged heterozygous A53T a-syn transgenic mice. Corynoxine B (Cory B) reduced α -synuclein (α -syn) in tyrosine hydroxylase (TH) positive neurons. Representative images of TH expression in the midbrain assessed by immunofluorescence in 15-month-old PD transgenic mice. (B) Quantifications of TH in three ventral midbrain regions of 3 mice per group. (C, D) The midbrain of 15-month-old mice were sequentially extracted with Triton-X100 soluble and insoluble buffers, as described in Materials and Methods. The expression levels of TH in Triton-X100 soluble fraction were analyzed by Western blot.