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Supplementary Methods

Theoretical considerations of non-local priors

In Bayesian fine-mapping literature, the most common prior for the causal effects of individual variants is the

Gaussian distribution (Hutchinson, Asimit, and Wallace 2020). Literature on Bayesian polygenic modelling

(including prediction modelling) of quantitative traits have presented numerous other suggestions for the effect

size distribution, such as t-distribution, double exponential, as well as their various mixtures (de los Campos

et al. 2013; Zhou, Carbonetto, and Stephens 2013). Other propositions include the gamma distribution with

different shape parameter values (Otto and Jones 2000; Xu 2003).

Our proposition is to use the product inverse-moment (piMOM) distribution as the prior for the causal effects.

The prior originates from the inverse-moment priors presented in Johnson and Rossell (2010), where the

authors highlight benefits of the non-local formulation of the prior particularly for variable selection. The

core idea is to distinguish the estimated effects that strongly favor the ‘alternative hypothesis’, or conversely,

the effects that distinctly differ from the parameter null value. In the scenarios of multiple causal variants

per locus, piMOM achieves strong model selection due to the product formulation of the prior (Johnson

and Rossell 2012). This is because if any of the effects is at zero, this shrinks the full density to zero. In

comparison with the earlier literature, the piMOM prior bears the most resemblances to the gamma prior, as

the functional form of the iMOM prior is related to the inverse-gamma distribution (Johnson and Rossell

2010).

It is worth highlighting that we are mainly interested in variable selection to identify the correct causal

configuration. Therefore, the effect sizes themselves are not of interest, as they are integrated out in calculating

the marginal likelihood for the data, given a specific model (main text equation (5)).

Selecting a suitable value for τ based on sample size

Let ẑj = β̂j/SE(β̂j), j = 1, . . . , P . Assuming large sample size N , then under the null, approximately

ẑj ∼ N (0, 1), and if the genotype data have been standardized to mean zero and unit variance, then

SE(β̂j) ≈ N−1/2, and

β̂j ∼ N (0, (N−1/2)2).

This directly shows that the marginal distribution of each β̂j depends on the sample size.
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The inverse-moment (iMOM) prior for the marginal effect sizes βj is given by

f(βj) = τ r/2

Γ(r/2) |βj |−(r+1) exp
(

− τ

β2
j

)
,

where r regulates the tail behavior and τ controls the spread of the prior. Throughout, we set r = 1. The

value of τ can be set such that the absolute values of the marginal effect sizes βj are larger than a specific

threshold value βq with a given probability 1 − q, that is,

P(|βj | > βq) = 1 − q.

This can be solved using the known relationship between the iMOM prior and (inverse-)gamma distribution

(Johnson and Rossell 2010). In the context of genetic analysis, Sanyal et al. (2019) suggest βq = 0.01 and q

= 0.01, yielding τ = 0.0083. We propose to let τ be dependent on the sample size by setting βq = N−1/2zq,

leading to

P(|βj | > N−1/2zq) = 1 − q, (S1)

where zq is a specific quantile from a Gaussian distribution. This can be interpreted such that we assign a

probability of 1 − q for a causal variant to have the observed |ẑ| larger than zq. Importantly, we have made

explicit in equation (S1) that the detectable causal effect sizes βj depend on the sample size, such that larger

sample size allows for smaller effect sizes to be detected. In fact, similar ideas were implicitly suggested in

Otto and Jones (2000).

Equivalently, we can use equation (S1) to assign a probability of 1 − q for a causal variant to have its observed

p-value under a specific threshold α, with zq = Φ−1(1 − α/2), where Φ denotes the cumulative Gaussian

distribution function. As an example, zq = 3.89 corresponds to α = 0.0001. The different τ used in the

simulation studies in this work are listed in Supplementary Table 1. All hyperparameters in our model and

their considerations are presented in Supplementary Table 2.

Of note, the prior distribution of the detectable causal effects depends on the sample size, which is not ideal

for accurate effect estimation. However, as the aim of our method is model selection, there is a trade-off to

be made between the detection (presence or absence) and the interpretability (magnitude) of the effects. The

original argument for using non-local prior distributions is their ability to distinguish the effects that strongly

favour the “alternative hypothesis” (Johnson and Rossell 2010). In this spirit, we believe the distribution for
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Supplementary Table 1: Values for τ in the simulation study using Northern Finland Birth Cohort 1966
genotype data, N = 5400.

τ Interpretation
0.0083 P(|βj | > 0.01) = 0.99

0.00538 P(|βj | > N−1/2zq) = 0.95, where zq = 3.89 (corresponds to α = 0.0001)
0.00385 P(|βj | > N−1/2zq) = 0.95, where zq = 3.29 (corresponds to α = 0.001)
0.00320 P(|βj | > N−1/2zq) = 0.95, where zq = 3 (corresponds to α = 0.0027)

Supplementary Table 2: Hyperparameters used in FiniMOM.

Hyperparameter Role Details
r Tail behavior of the non-local prior. Set at r = 1 to provide Cauchy-like tails

known to avoid over-shrinking strong
signals.

τ Spread of the non-local prior. See Supplementary Methods for
strategies in selection.

a Parameter in the beta-binomial
distribution for the model dimension.

Set at a = 1 to provide a right-skewed
prior for the model dimension with large
variance, to prioritize smaller models.

b Parameter in the beta-binomial
distribution for the model dimension.

Set at P u, u > 1 (see next row).

u Parameter to control the model
dimension.

Controls the beta-binomial prior, with
larger values of u providing stronger
priors towards smaller dimensions.

the detectable causal effects should also take into account the distribution under the null, that is, distribution

for the non-causal effects, which is dependent on the sample size. This approach is more explicit in various

empirical Bayes approaches for multiple testing correction (Efron 2008; Muralidharan 2010). Our method is

somewhat related to the empirical Bayes methods, with the distinction that the null distribution is derived

analytically, rather than calculated based on the data. An explicit empirical Bayes approach would indeed be

a possible alternative for selecting τ in our model.

6



Approximate Laplace’s method

Consider the integral

πm(D) =
∫

π(β̂|βm)πβ(βm)dβm =
∫

e−f(βm)dβm.

Throughout, we condition on model m of dimension d, and therefore we drop the subscript m from βm for

simplicity. Assuming f is twice-differentiable, it can be approximated by a second-order Taylor expansion for

f(β) near β̃ as

f(β) ≈ f(β̃) + gβ̃(β − β̃) + 1
2(β − β̃)T Hβ̃(β − β̃), (S2)

where gβ and Hβ are the gradient and Hessian of f , respectively, evaluated at β.

Laplace’s method to approximate πm(D) (Tierney and Kadane 1986) is based on equation (S2) at β̃ =

argminβ f , where gβ̃ = 0. Moreover, the value of the following Gaussian integral is known:

∫
e− 1

2 (β−β̃)T Hβ̃(β−β̃)dβ = |2πH−1
β̃

|1/2.

This leads to the following conventional Laplace approximation (Tierney and Kadane 1986; Johnson and

Rossell 2012):

πm(D) ≈ ef(β̃)(2π)d/2|Hβ̃|−1/2. (S3)

The value of β̃ can be obtained using numerical optimization methods. While the Laplace’s method switches

the non-trivial integration problem to an optimization problem, the numerical optimization needs to be done

at every iteration in our Markov Chain Monte Carlo algorithm, and therefore it is the main bottleneck in the

computations.

As a rapid alternative, Rossell, Abril, and Bhattacharya (2021) proposed the approximate version of Laplace’s

method by evaluating the function f at a value where the gradient term does not vanish:
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πm(D) ≈
∫

exp
{

−
(

f(β̃) + gβ̃(β − β̃) + 1
2(β − β̃)T Hβ̃(β − β̃)

)}
dβ

= exp {−f(β̃) + gβ̃β̃ − 1
2 β̃T Hβ̃β̃}

∫
exp {−1

2(βT Hβ̃β + 2β(gβ − β̃Hβ̃))}dβ.

Denoting β̄ = β̃ − H−1
β̃

gβ̃ and completing the square in the exponential in the integrand, we obtain

πm(D) ≈ exp {−f(β̃) + gβ̃β̃ − 1
2 β̃T Hβ̃β̃ + 1

2 β̄T Hβ̃β̄}
∫

exp{−1
2(β − β̄)T Hβ̃(β − β̄)}dβ. (S4)

In (S4), the Gaussian integral is again known, and the exponential can be further simplified to obtain the

approximate Laplace approximation:

πm(D) ≈ exp {f(β̃) + 1
2gT

β̃
H−1

β̃
gβ̃}(2π)d/2|Hβ̃|−1/2. (S5)

Notably, equation (S5) does not involve the optimization step. We use β̃ = R−1
m β̂m, where the subscript m

refers to the indices of the proposed model m. In the context of genetic analyses, both true causal effect sizes

and the observed β̂j are typically very small, so β̃ can be considered to be in the neighborhood of β.

It should be noted that the approximate Laplace’s method requires both Hβ̃ and Rm to be invertible. We

also observed that for a near-singular Rm, the value of β̃ becomes unstable. Therefore, in cases where either

Hβ̃ or Rm are not invertible, or the maximum non-diagonal absolute value of Rm > 0.99, the conventional

Laplace’s method in equation (S3) is applied. Importantly, equation (S3) does not involve calculating the

inverse of R̂, and therefore our proposed method is flexible even in the case of non-invertible LD matrices

(see also Zou et al. (2022)). For further considerations of the accuracy of the approximations, see Tierney

and Kadane (1986) and Rossell, Abril, and Bhattacharya (2021) for the conventional Laplace’s method and

the approximate Laplace’s method, respectively.

Clumping extremely highly correlated variants

Extremely highly correlated variants, such as those with pairwise r2 > 0.99, cannot be easily distinguished

by any fine-mapping method. Therefore, we have added an option to clump such variants to be treated

as one ‘cluster’ in the posterior sampling, with the lead variant (i.e. the one with the lowest marginal

p-value) representing this group of variants in the sampling, yielding a speed improvement as a by-product.
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Consequently, any credible set that would include the lead variant from a cluster of clumped variants would

also include all other variants from the corresponding cluster.

Consistency check for out-of-sample LD reference

When using out-of-sample LD reference, there is a possibility of inconsistencies in that the observed test

statistic does not correspond to the estimated LD between the variants; Zou et al. (2022) give a toy example

of such scenario of two variants, with ẑ = (6 7)T and R̂ =
(

1 1
1 1
)
.

We present an option to distinguish such variants. Considering a cluster of variants in extremely high LD, we

assume the variant C with the lowest p-value as the true causal variant. As per Hormozdiari et al. (2014),

we assume that the observed test statistic for any non-causal variant N in this cluster depends solely on its

correlation with C. The joint distribution of the marginal z scores for C and N is therefore a multivariate

Gaussian distribution:

ẑC

ẑN

 ∼ N


 zC

rzC

 ,

1 r

r 1


 .

For testing equality of the observed and expected z-scores for a non-causal variant, we obtain a test statistic

X2 = (ẑN − rẑC)2

2(1 − rT ) ∼ χ2
1.

In the denominator, we approximate r with rT , the threshold used to define extremely highly correlated

variants. If the observed X2 > qχ2
1
, the LD structure is not considered to approximate the z scores, and the

variants are assigned to separate clusters. By default, we use qχ2
1

= E(X2) ≈ 0.45. This provides additional

robustness to the clumping and serves as a check for LD misspecification of tightly-linked variants. We

highlight that none of the variants are excluded from fine-mapping, but simply treated as separate, non-

clumped clusters in the sampling phase. In the toy example, our method would distinguish the misspecified

LD structure and treat the variants separately. Similar to SuSiE (Zou et al. 2022), our method also strongly

prefers the second variant to be the causal one.
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Credible sets

We define a credible set at level α as a set of one or more variants that contain a true causal variant with

probability larger than α. More than one credible set is allowed; the posterior distribution of model dimension

d can be used as the posterior distribution for the number of credible sets.

Our credible set definition is similar to the one described in Wang et al. (2020), and we provide a similar

toy example here. Consider 20 genetic variants G1, . . . , G20, of which two variants, G1 and G2, are causal

on a phenotype of interest. Additionally, cor(G1, G11) = 1 and cor(G2, G12) = 1. No statistical method can

distinguish between G1 and G11 (or between G2 and G12) which one is the true causal variant.

The conventional way to construct the credible set would be to consider a single set of variants that contain

all causal variants with a specified probability (The Wellcome Trust Case Control Consortium et al. 2012;

Hormozdiari et al. 2014). In the toy example, this definition would provide G1, G2, G11, G12 as the credible

set. An alternative way applied in our method is to explicitly recognize the two different signals of two

credible sets: one of G1 and G11, and the other of G2 and G12. These sets imply that the scenarios for causal

variants would be (1) G1 and G2, (2) G1 and G12, (3) G2 and G11, or (4) G11 and G12. However, G1 and

G11 or G2 and G12 cannot simultaneously be causal.

To illustrate the creation of the credible sets, consider the following posterior probabilities for the models

(PPM): PPM(G1, G2) = 0.27, PPM(G11, G2) = 0.26, PPM(G1, G12) = 0.23, PPM(G11, G12) = 0.23,

PPM(G1, G3) = 0.005 and PPM(G1, G2, G3) = 0.005. The model with the highest PPM , denoted by

mHP P M , is the one with G1 and G2. As it consists of two variants, two credible sets are created. To create a

95% credible set, we consider models in which variants can replace the ones in mHP P M up to total posterior

probability exceeding 0.95, conditioned on the number of variants in mHP P M . Now, G1 can be replaced by

G11 (in the model G11, G2), G2 can be replaced by G12 (in the model G1, G12), and both can be replaced

simultaneously (model G11, G12). This has accumulated the posterior probability, conditioned on two variants,

to (0.27 + 0.26 + 0.23 + 0.23)/(0.27 + 0.26 + 0.23 + 0.23 + 0.005) = 0.995. Therefore, the credible sets would

be (1) G1 and G11, and (2) G2 and G12. G3 is not considered for the credible set due to the accumulated

posterior probability already exceeding the desired credible set level of 0.95.

In summary, our proposed way of constructing credible sets takes two distinct types of uncertainties

simultaneously into account: the number of signals (i.e. the number of credible sets), and the uncertainty

in the signals (i.e. the particular variants in the specific sets). Of note, even though credible sets need to

be constructed at a selected level α, we do not necessarily expect the nominal coverage (say, 95%), as the

fine-mapped loci are not a random sample of loci which harbor causal variants, but only of those with the
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largest effect sizes (Hutchinson, Watson, and Wallace 2020).

Simulation studies

Real genotype data

The genotype data used for simulations were obtained from two Finnish population-based pregnancy-birth

cohorts, Northern Finland Birth Cohort 1966 (NFBC1966) (University of Oulu 2022a; Nordström et al.

2022; Sabatti et al. 2009) and Northern Finland Birth Cohort 1986 (NFBC1986) (University of Oulu 2022b;

Järvelin, Hartikainen-Sorri, and Rantakallio 1993).

Genotyping and quality control for both datasets are detailed elsewhere (Kaakinen 2012; Karhunen et al.

2021). Briefly, genotyping was done using Illumina HumanCNV-370DUO Analysis BeadChip (Illumina,

California, USA) for NFBC1966 and Illumina HumanOmniExpressExome-8v1.2 platform for NFBC1986.

After sample quality control procedures and consent withdrawals, genomic data were available for 5400 and

3743 individuals in NFBC1966 and NFBC1986, respectively. Both datasets were Imputed to Haplotype

Reference Consortium panel, and the autosomal, biallelic markers were filtered for minor allele frequency

> 0.01, imputation quality R2 > 0.5 and Hardy-Weinberg equilibrium p-value > 10−12.

In the simulation studies, the genotype data from NFBC1966 were used for phenotype simulations to

create the summary-level data, and genotype data from NFBC1986 for estimating the out-of-sample linkage

disequilibrium (LD) matrix. These data come from the same geographical region with no overlapping

individuals, therefore the different datasets provide ideal out-of-sample LD references for each other. Due to

the larger sample size in NFBC1966, we used this study to simulate the phenotype and the summary data,

and NFBC1986 for out-of-sample LD reference.

Using NFBC1966 genotype data, we simulated a quantitative trait under the model

Y = Xβ + ε,

with C causal variants explaining a total variance of ϕ in the phenotype, with C ∈ {1, 2, 5} and ϕ ∈

{0.015, 0.03}, as follows:

1. Select indices c for the causal variants uniformly from {1, . . . , P}, with the constraint that the maximum

correlation between the causal variants is 0.95.

11



2. Draw the effect sizes with the constraint that the power to detect all individual causal effect sizes was

> 0.8 at significance level = 0.05:

a. Draw C effect sizes bc from N (0, 1).

b. Scale the bc to have the desired total variance explained by simulating an unscaled phenotype Y ′ with

Y ′ = XT
c bc + εY ′ , εY ′ ∼ N (0, Var(XT

c bc)( 1
R2 − 1))

and then rescaling

βc = bc/SD(Y ′)

Y = Y ′/SD(Y ′).

c. Return to (a) if any of βc do not achieve the desired power.

The simulated phenotype was regressed separately on all variants (standardized to mean = 0 and variance =

1) within the locus assuming an additive model. The resulting summary statistics (i.e. association estimates

and their standard errors) and an LD matrix were given as inputs to the considered fine-mapping methods.

Synthetic dataset

The main simulations using NFBC1966 genotype data are for parameters which are typical in GWASs on

protein levels. However for complex traits, the heritabilities of individual loci can be considerably smaller,

and therefore require larger sample sizes. Therefore, to examine the influence of lower heritability and larger

sample size to the performance of our proposed method, we used synthetic HAPNEST genotype data created

by Wharrie et al. (2022) in additional simulations. We also used the synthetic data to compare the speed of

our method with that of SuSiE’s as a function of the number of genetic variants considered in fine-mapping.

The synthetic data generation is based on a stochastic model that simulates genotypes from existing reference

genomes while simultaneously taking genetic coalescence, recombination and mutation into account (Wharrie

et al. 2022). The full synthetic dataset consists of over 6.8 million single-nucleotide polymorphisms of 1,008,000

individuals, categorised to six different ancestries, available at https://www.ebi.ac.uk/biostudies/studies/S-

12

https://www.ebi.ac.uk/biostudies/studies/S-BSST936
https://www.ebi.ac.uk/biostudies/studies/S-BSST936


BSST936. We extracted 50,000 observations of simulated African ancestry, and extracted their genotype

data from five separate loci in chromosome 22 of 500, 1000, 2000, 5000 and 10,000 variants. The different

heritabilities considered were 0.001 and 0.015, with 1, 2 or 5 causal variants. The simulations for the lowest

heritability of 0.001 were conducted on synthetic data only as the sample size of 5400 in our real genotype

data is far too small compared to a typical sample size in GWAS summary statistics for complex traits.

The simulation strategy for the synthetic dataset was exactly the same as for the NFBC1966 dataset.

We calculated the reference LD for the synthetic data based on a separate sample of 10,000 HAPNEST

observations of simulated African ancestry. To determine a suitable value for hyperparameter τ , we solved

for P(|βj | > N−1/2zq) = 1 − q with zq = 3.29 and q = 0.05, based on the simulation results using NFBC1966

genotype data, leading to τ = 0.000416.
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Supplementary Table 3: Genomic regions used in the simulations.

Gene Chromosome Start∗ End∗ Number of variants
UMPS 3 124349213 124564040 723
RPS14 5 149722753 149929319 487
GCNT2 6 10392456 10729601 840
CSNK1A1L 13 37577398 37779803 387
MDGA2 14 47211134 48243999 2996
* ±100 kb from each gene, given in hg19 coordinates.
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Supplementary Figure 1: Prior distribution for model dimension with different values of u, with number
of variants P = 500 and the maximum model dimension K = 10, on absolute scale (left panel) and on the
log-scale (right panel).
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Supplementary Figure 2: Comparison of credible set coverage and power (mean and 95% confidence intervals)
for FiniMOM and SuSiE as a function of sample size in the simulation studies (calculated over 100 simulation
replicates across all simulated scenarios), with phenotypic variance explained set at 0.015. LD: linkage
disequilibrium; FiniMOM: Fine-mapping using inverse-moment priors; SuSiE: sum of single effects.

18



0.4

0.6

0.8

1.0

0.001 0.015 0.030

R2

C
ov

er
ag

e

0.4

0.6

0.8

1.0

0.001 0.015 0.030

R2

P
ow

er

Sample size

5400

50000

Method

FiniMOM

SuSiE

LD matrix

In−sample LD

Reference LD

Supplementary Figure 3: Comparison of credible set coverage and power (mean and 95% confidence intervals)
for FiniMOM and SuSiE with varying values for phenotypic variance explained (R2) in the simulation
studies (calculated over 100 simulation replicates across all simulated scenarios). LD: linkage disequilibrium;
FiniMOM: Fine-mapping using inverse-moment priors; SuSiE: sum of single effects.
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Supplementary Figure 4: Comparison of credible set size (median and 95% confidence intervals) for FiniMOM
and SuSiE in the simulation study in Northern Finland Birth Cohort 1966 (calculated over 100 simulation
replicates). LD: linkage disequilibrium; FiniMOM: Fine-mapping using inverse-moment priors; SuSiE: sum of
single effects.
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Supplementary Figure 5: Comparison of computing run times (median and 95% confidence intervals) for
FiniMOM and SuSiE in the simulation study using synthetic genotype data (calculated over 100 simulation
replicates across all simulated scenarios). The run times are based on a total of 12,500 Markov Chain
Monte Carlo iterations for FiniMOM and a maximum of 100 iterations for SuSiE algorithm. FiniMOM:
Fine-mapping using inverse-moment priors; SuSiE: sum of single effects.
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Supplementary Figure 6: Comparison of posterior inclusion probabilities (PIPs) and their ranks for FiniMOM
and SuSiE in the simulation study in Northern Finland Birth Cohort 1966 (calculated over 100 simulation
replicates across all simulated scenarios). Left panel: comparison of the PIPs for the causal variants. Right
panel: comparison of the ranks of the causal variants (according to PIPs) on a logarithmic scale. The ranks
were calculated by the descending order of all variants by their PIPs. In the case of ties, the mean value for
the ranks was used. FiniMOM: Fine-mapping using inverse-moment priors; SuSiE: sum of single effects.
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Supplementary Figure 8: Locus plot of genetic associations (− log10(p)) per each variant within RAD17
locus (± 1Mb from rs17229943 variant), with credible sets highlighted for FiniMOM (left panels) and SuSiE
(right panels) in the discovery GWAS (top panels) and in the replication GWAS (bottom panels). FiniMOM:
fine-mapping using inverse-moment prior; SuSiE: sum of single effects; GWAS: genome-wide association study.
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Supplementary Figure 9: Locus plot of genetic associations (− log10(p)) per each variant within BCO2 locus
(± 1Mb from rs12420140 variant), with credible sets highlighted for FiniMOM (left panels) and SuSiE (right
panels) in the discovery GWAS (top panels) and in the replication GWAS (bottom panels). FiniMOM:
fine-mapping using inverse-moment prior; SuSiE: sum of single effects; GWAS: genome-wide association study.
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Supplementary Figure 10: Comparison of posterior inclusion probabilities (PIPs) for the variants in the
credible sets within NLRC4 locus. Only variants in the credible sets are plotted. SuSiE credible set included
45 variants, while FiniMOM credible set included two variants. The variant rs385076 with the highest PIP
for both methods is labelled in the figure. FiniMOM: Fine-mapping using inverse-moment priors; SuSiE: sum
of single effects.
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