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Supplementary Method

MuAt architecture

The architecture of MuAt is shown in Figure 1, and detailed in Figure S1. Input to MuAt is

a set of l genomic variants. These variants are described with respect to their mutation type

and sequence context (mutation motif), genomic position and mutational annotations. Each

modality is one-hot encoded using a respective dictionary, resulting in l × m, l × p, and l × g

one-hot matrices, where m, p and g are the numbers of unique motifs, genomic positions per

1-Mbp bins, and mutation annotations, respectively. These one-hot encoded matrices are then

multiplied with embedding matrices ({m, p, g}×k), resulting in three l×k embedding matrices.

Embedding matrices are concatenated to obtain an l× 3k matrix XE , which is the input to the

MuAt attention module.

Query, key and value matrices are computed by multiplying the input embedding matrix

XE with respective 3k × 3k weight matrix, Q = XEWQ, K = XEWK and V = XEWV . The

attention mechanism Eq. 1 is then applied h times, where h is the number of attention heads.

The resulting l × 3k feature matrix is then combined with XE via skip connections, and fed to

batch normalization and fully connected (FC) layers. Finally, the l×3k matrix is average-pooled

into a 3k-vector and processed in a fully connected layer to yield f sample-level features (Fig.

4). In our experiments, we used f = 24. To obtain the final tumor type predictions, sample-level

features are inputted to a fully connected layer, and its outputs are normalized with softmax

σ(z)i =
ezi∑
j
ezj

to obtain probabilities over tumor types.

MuAt model ensembling

To create MuAt ensemble models, we took the best model for each fold found in a 10-fold cross-

validation procedure. MuAt ensemble model predictions were obtained by summing tumor type

class logit scores, and choosing the tumor type with the maximum value as the predicted type.

There are 24*10=240 tumour-level features obtained from a MuAt ensemble model.

Association of MuAt features with driver events and somatic mutation patterns

Driver events identified in PCAWG tumours [38] were associated with principal components of

MuAt ensemble model features with least-squares regression. For each pair of MuAt feature

principal component (n=240) and driver (n=298), a least-squares linear model p ∼ d + age +

sex + histology + g1 + . . . + g10 was fitted, where p is the feature principal component, d is

an indicator whether the driver event was detected in the tumour, and gi is the ith principal
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component of patient genotypes computed in PCAWG [38]. Association was computed only for

drivers with at least three tumours harboring the driver, resulting in 7,128 models. P -values

from all tests were adjusted for multiple testing with Benjamini-Hochberg method. Figure S11

shows the driver coefficients for all feature principal components from all models, as well as a

histogram and a quantile-quantile plot of unadjusted p-values against a uniform distribution

showing relatively small degree of inflation.

To analyse correspondence of MuAt features with COSMIC signatures, we carried out least-

squares linear regression for each signature separately to predict the log-transformed signature

value s based on MuAt factors, i.e., log(s+ 1) ∼ M1 + . . .+ M50. We corrected p-values with

the Benjamini-Hochberg method and reported results with false discovery rate (FDR) <10%

(Figure S18). For each signature, the variance explained by MuAt factors as adjusted R2 value

is given. This analysis was performed for both COSMIC version 2 and version 3 signatures.

Association of MuAt features with mutation counts stratified by type was quantified with

negative binomial model to predict mutation count based on MuAt factors M1 + . . .+ M50,

showing results with FDR<5% in Figure S17. Association with MSI levels was performed by

predicting the fraction of mutated microsatellites computed previously [38] from MuAt factors,

i.e., MSI ∼ M1, . . ., M50 with a least-squares regression model.

Programming environment

We implemented MuAt with PyTorch 1.8.0 deep learning framework in Python 3.7. To evaluate

the model of Jiao et al. [20], we used the code provided at https://github.com/ICGC-TCGA-PanCancer/

TumorType-WGS, and ran it with TensorFlow 2.0 in Python 3.6. For the random forest model, we

used scikit-learn 0.21.3. Statistical modelling was done with scipy 1.5.3 and statsmodels 0.12.1

packages. Packages used for data analysis and visualization included pandas 1.3.4, seaborn

0.11.2 and umap-learn 0.5.1. All deep neural network models were trained on NVidia Tesla

V100 GPUs with 16 GB memory.
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Figure S 1: Architecture of MuAt.
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Figure S 2: Top-1, top-3 and top-5 accuracy, precision, recall and F1 scores of MuAt models

trained with different mutation types in PCAWG (top) and TCGA (bottom) data. Tests where

negative examples were injected into data (see Methods) are denoted with "Neg". Tests where

genic, exonic and strand attributes (Methods) were used are denoted with "ges".

5



Figure S 3: Transfer learning performance. Top: PCAWG-MuAt on TCGA data. Bottom:

TCGA-MuAt on TCGA data. X-axis: maximum number of mutations sampled from each

tumour, Y-axis: prediction accuracy.

Figure S 4: MuAt model performance with (w/) and without (w/o) the attention module in

PCAWG data with different combinations of mutation types.
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Figure S 5: Confusion matrix of MuAt in TCGA data.
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Figure S 6: Calibration curve of MuAt trained with PCAWG data showing the binned predicted

probabilities (X-axis) versus the fraction of positive predictions (Y-axis). Error bars indicate

standard deviation in bootstrapped data (n=1000). Only bins with more than three tumours

shown, excluding the bin (20%,30%) with three tumours.
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Figure S 7: Confusion matrix for MuAt and DNN ensemble models trained on PCAWG data

and evaluated in an independent ICGC whole cancer genome dataset. X-axis: tumour types

in PCAWG training data, Y-axis: tumour types of the independent ICGC dataset: Breast

cancer (BRCA-FR), Liver hepatocellular carcinoma (LIAD-FR), Lung cancer – Squamous cell

carcinoma (LUSC-KR), Pediatric medulloblastoma (PEME-CA) and Prostate cancer (PRAD-

CN, PRAD-FR).
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Figure S 8: Confusion matrix for MuAt and DNN ensemble models trained on PCAWG and

evaluated on GEL annotated somatic mutations. X-axis: predicted PCAWG tumour types. Y-

axis: target GEL tumour types. Results shown for the best ensemble models.
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Figure S 9: Confusion matrix for MuAt trained on PCAWG WGS data and evaluated on GEL

annotated somatic mutations. X-axis: predicted PCAWG tumour types, Y-axis: target GEL

tumour types/subtypes. 11



Figure S 10: Confusion matrix for MuAt and DNN ensemble models trained on PCAWG and

evaluated on somatic mutations called with MuTect v1.1.4 in whole genomes of 256 CRCs

(genome reference GRCh37). X-axis: predicted PCAWG tumour types. Results shown for

models trained on SNVs only, and SNVs+genomic positions.
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Figure S 11: Linear association of PCAWG driver events with MuAt tumour-level feature prin-

cipal components (FPCs). Least-squares regression model was corrected with patient age and

sex, tumour histology, and first ten principal components of patient genotype. a) Volcano plot

showing coefficients of all gene-FPC pairs (X-axis) and log10(q) values (Y-axis). FDR<1%

associations are indicated with blue colour, and top 15 associations are labeled. b) A clus-

tered heatmap of FDR<1% association coefficients. Enhancer/chr7:86M denotes an enhancer at

chr7:86,865,600-86,866,400 (GRCh37). c) Histogram and d) quantile-quantile plot of p-values.
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Figure S 12: Prostate cancers with SPOP driver events. X- and Y-axis: UMAP components of

tumour-level features in the MuAt PCAWG model (coordinates are the same as in Figure 4).

Colouring indicates structural variant burden in a log scale.
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Figure S 13: MuAt tumour-level feature UMAP showing medulloblastomas in the PCAWG

dataset (coordinates are the same as in Figure 4). Tumours with driver events associating with

MuAt features are highlighted.
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Figure S 14: Pancreatic endocrine tumours of four patients cluster in MuAt tumour-level feature

UMAP (coordinates are the same as in Figure 4). These four patients carry germline mutations

of MUTYH, with loss-of-heterozygosity observed in all four tumours.
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Figure S 15: UMAP of PCAWG and GEL tumour-level features obtained from the MuAt

SNV+pos ensemble model trained on PCAWG WGS data. a) PCAWG tumours coloured by

tumour type. b) GEL tumours coloured by tumour type (Cancer Type). c) PCAWG and GEL

tumours. d) GEL tumours coloured by tumour subtype (Cancer Sub Type).
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Figure S 16: A clustered heatmap of MuAt tumour-level factors in each PCAWG tumours.
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Figure S 17: Association of MuAt tumour-level factors (Y-axis) with mutation counts by type

(X-axis). A negative binomial model was used to predict counts of each mutation type given

MuAt factors M1,. . .,M50 in PCAWG data. FDR<5% results shown as non-grey colours. a) All

somatic mutation types. b) indels only. c) SVs only. d) association to mutation type counts.

Event size of SV deletions and duplications is denoted by xs (<1 kb), s (1-10 kb), m (10-100

kb), l (100-1000 kb) and xl (>1000 kb).
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Figure S 18: Association of MuAt PCAWG model tumour-level factors (Y-axis) with COSMIC

mutational signatures (version 2; X-axis). Log-transformed number of mutations attributed

to each signature was predicted with least-squares regression given MuAt factors. FDR<10%

associations shown in non-grey colours. Variance of each signature explained indicated on the

top row.
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Figure S 19: Variance in the number of mutations attributed to signatures (COSMIC version 3)

explained by MuAt tumour-level factors.

Figure S 20: Mean attention values of genomic positions (X-axis) per tumour type (Y-axis) in

the MuAt PCAWG model. Genomic positions given as "chromosome_b", where b is the 1-Mbp

bin starting at chromosome position b× 106. Genomic positions with the highest 5% variability

in attention across tumours are shown. Many genomic position bins appear characteristic to

specific tumour types. Genomic region chr14:106,000,000-107,000,000 contains the IGH region

(leftmost bin), which is recurrently mutated in B cells.
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