Supplementary figures and tables for The origin and structural evolution of *de novo* genes in *Drosophila*

Junhui Peng, Li Zhao Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY 10065, USA *Correspondence to: lzhao@rockefeller.edu

Figure S1. Statistics of progressive cactus alignments.

Figure S2. Number of *de novo* gene candidates identified in each branch. The number generally correlated with the divergence time between *D. melanogaster* and each branch.

Figure S3. ATAC-seq peaks, intensities, and distances for de novo gene candidates in testis, head, and ovary.

Figure S4. Eig71Ei, Eig71Ej, and CG43251 might adopt new structural folds. Left panel: Eig71Ei, Eig71Ej, and CG43251 remained similar structural folds during MD simulations. Right panel: the structures in PDB with the largest TM-scores to Eig71Ei, Eig71Ej, and CG43251 were superimposed to their MD refined structural models. All the three largest TM-scores were smaller than 0.5 (Table S1). Eig71Ei and Eig71Ej are paralogs and share similar structural folds with TM-score of 0.54 (inserted panel).

Figure S5. Clustering of all *D. melanogaster* testis-biased genes. The sum of squared error (SSE) as a function of the number of clusters was shown in the bottom left panel.

Figure S6. Comparison of testis-biased *de novo* genes (cyan) and non-*de novo* genes (purple) in cluster #1. For clustering analysis, see Figure 5 for detail. In cluster #1, testis biased de novo genes are more disordered (ISD panel) and exposed (RSA panel). These de novo genes also evolve faster (ω panel) with higher adaptation rates (ω_a panel).

Figure S7. RNA-seq support of the unannotated putative orthologs of some de novo gene candidates in dyak, dana, dper, dpse, dwil.

Figure S8. Random simulations of Genewise/Spaln. We used two-phase decay function to fit the mean (left panel) and standard error (right panel) of spliced align score (Genewise, top panel, and Spaln, bottom panel).

Table S1. Proportions of optimal codons in *de novo* genes and other annotated proteincoding genes in *D. melanogaster*. The median values of the proportions were listed in the P(optimal, *de novo*) and P(optimal, other) columns. *De novo* genes show significant less optimal codon usage compared to other annotated protein coding genes. The Pvalue was computed using *scipy.stats.ttest_ind* module with option *alternative="less"*. was shown in the P(t-test) column. For most of the amino acids, the proportion of optimal codons show significant positive correlation with the origination branches as shown by the P-values of Spearmanr and Kendalltau rank correlation test.

Amino Acid	P(optimal, de novo)	P(optimal, other)	P(t-test)	P(Spearmanr)	P(Kendalltau)
Α	0.32	0.45	9.2E-70	4.4E-07	5.3E-07
С	0.62	0.73	3.1E-25	5.9E-02	5.8E-02
D	0.38	0.46	1.3E-16	5.8E-01	5.6E-01
E	0.50	0.68	7.1E-95	6E-07	9.9E-07
F	0.50	0.63	1.6E-18	2.5E-03	2.6E-03
G	0.28	0.42	2.2E-59	2.2E-07	2.2E-07
Н	0.50	0.60	5.2E-31	3E-04	3.8E-04
I	0.33	0.48	2.6E-22	1.7E-03	1.9E-03
K	0.53	0.71	1.5E-52	1.2E-01	1.2E-01
L	0.25	0.42	5.6E-94	4.5E-04	4.5E-04
М	1.00	1.00	nan	nan	nan
N	0.50	0.55	5.6E-14	3.7E-01	3.9E-01
Р	0.23	0.33	3E-40	2.6E-03	3.1E-03
Q	0.50	0.71	8.2E-71	5.9E-03	5.9E-03
R	0.14	0.30	6.8E-70	5E-07	9.7E-07
S	0.19	0.24	1.5E-18	1.8E-02	1.7E-02
Т	0.25	0.38	1.8E-38	5E-05	5.7E-05
V	0.33	0.47	3.9E-70	3.2E-04	3.7E-04
W	1.00	1.00	nan	nan	nan
Y	0.50	0.64	1.3E-09	1.5E-02	1.4E-02

FBID	pLDDT	Length	Origination lineage	pLDDT (Anc)	TM-score (ToPDB)	Similar fold in PDB	Sequence identity	Gene
FBgn0004593	0.89	98	L7	0.92	0.40	4ou6A	0.087	Eig71Ef
FBgn0014850	0.92	98	L7	0.92	0.45	4icgD	0.053	Eig71Ej
FBgn0262896	0.80	39	L5	0.70	0.49	2h4bC	0.158	CG43251
FBgn0260967	0.90	280	L8	0.91	0.56	6xgxB	0.075	CG42590
FBgn0265834	0.85	153	L4	0.84	0.68	1u89A	0.066	CG44623
FBgn0261580	0.88	137	L6	0.78	0.60	4pr9F	0.066	CG42690
FBgn0261587	0.86	139	L7	0.86	0.59	5fjeB	0.022	CG42697
FBgn0263250	0.87	127	L3	0.88	0.61	1x91A	0.023	CG43393
FBgn0261581	0.85	140	L6	0.78	0.61	6q6bD	0.028	CG42691
FBgn0262819	0.91	114	L6	0.77	0.62	5figF	0.062	CG43190
FBgn0265046	0.91	118	L6	0.81	0.64	5fjdB	0.076	CG44163
FBgn0052192	0.87	136	L3	0.86	0.64	5fjdB	0.074	CG32192
FBgn0037042	0.93	195	L8	0.92	0.65	7jh6B	0.093	CG12984
FBgn0264748	0.93	374	L6	0.90	0.66	1yrgB	0.096	CG44006
FBgn0264747	0.92	370	L6	0.90	0.66	1yrgB	0.138	CG44005
FBgn0264746	0.92	368	L6	0.90	0.67	6obnC	0.133	CG44004
FBgn0262480	0.89	126	L5	0.67	0.68	6q58D	0.064	CG43070
FBgn0262824	0.85	138	L6	0.78	0.70	1u89A	0.044	CG43195
FBgn0263647	0.92	122	L5	0.91	0.76	5me8A	0.057	CG43638

Table S2. Detailed information of potentially well folded *de novo* gene candidates. Candidates with TM-score to structures in PDB smaller than 0.5 were highlighted in red.

Table S3. MD simulations of 19 potentially well-folded <i>de novo</i> gene candidates. Details
of the calculation of structural similarity during MD simulations can be found in Material
and Methods.

FBID	Name	RMSD_FL	RMSD_CORE	TM-score
FBgn0037042	CG12984	1.24	1.24	0.95
FBgn0264748	CG44006	1.92	1.41	0.96
FBgn0264747	CG44005	1.46	1.37	0.97
FBgn0014850	Eig71Ej	1.55	1.51	0.87
FBgn0263647	CG43638	1.06	1.06	0.95
FBgn0264746	CG44004	1.49	1.29	0.97
FBgn0262819	CG43190	1.04	1.04	0.95
FBgn0265046	CG44163	1.17	1.12	0.94
FBgn0260967	CG42590	0.99	0.99	0.98
FBgn0004593	Eig71Ef	1.77	1.30	0.89
FBgn0262480	CG43070	0.72	0.72	0.97
FBgn0261580	CG42690	2.57	1.89	0.85
FBgn0052192	CG32192	1.99	1.60	0.91
FBgn0263250	CG43393	0.82	0.82	0.97
FBgn0261587	CG42697	1.14	0.99	0.96
FBgn0265834	CG44623	2.55	1.60	0.91
FBgn0261581	CG42691	1.67	1.50	0.91
FBgn0262824	CG43195	1.40	1.36	0.92
FBgn0262896	CG43251	1.28	1.02	0.81