Supplement to “Integrative High Dimensional Multiple
Testing with Heterogeneity under Data Sharing

Constraints”

Molei Liu, Yin Xia!, Kelly Cho and Tianxi Cai

In this supplement we provide proofs for the theoretical results in the paper, collect

technical lemmas that are used in the proofs and present additional simulation results.

S1.  PROOF

In this section, we present proofs of the theoretical results in the paper. Technical lemmas,
Lemmas S1-S6, used in the proofs will be collected in Section S2.

Throughout, for a vector or matrix A(t) = [4;;(¢)], a function of the scalar t € [0, 1],
define fol A(t)dt = [fol A;j(t)dt]. For any matrix A = [A;;], ||A]l,. = max;;|A;]. Addi-

tionally, we define the Restricted Eigenvalue Condition (%) for data from M studies as

follows.

Definition S1. Restricted Eigenvalue Condition (%): Let C(t,S) = {u® € RP*M :
U2 < t|ul |21}, The covariance matrices ¥ = diag{Z®, £® . B™} and set S C
[p] satisfy Restricted Eigenvalue Condition with some constant t: if there exists ¢o(t,S, %),
for any 6 € C(t,S),

16113 < &5 (8,8, 2) - |63

Here ¢o(t,S,X) > 0 is a parameter depending ont, & and S, and ||69]|x = (6*726*))z.

1Yin Xia is the corresponding author.



S1.1 Proof of Lemma 1

Proof. First, by Assumption 4(a) or 4(b), there exists positive constants ¢4 and C, such that

with probability at least 1 — ¢, M /p,

max | X;7| < Cy(logpN)®,  where ag = 1/2 under 4(a) and ag = 0 under 4(b).

)Jm

Let £, (8™) = @(m F(XTB™,Y) and we expand VLY, (ﬁ k) »1) around 3{" to obtain
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To bound v\, we note that under Assumptions 2 and 4(a) or 4(b), there exists constants

¢4, Cy > 0 such that with probability at least 1 — c4M /p,
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Then we note that when 8, ., is independent of X{™ for i € Z)., X ”(B o —BY) is sub-

|

<Cy(logpN)* - 5”1@ {HX o — B5)

o 2
gaussian and E HX;"’)T(B;;M — By ‘2 < C3Cyslogp/ny, for all m € [M] with probability




1 — ¢3M/p by Lemma S1. Thus there exists ¢5, C5 > 0 such that

< CssM (logpN)® log p

Hvkvk'Hoo < N with probability at least 1 — c¢5 M /p. (S1)
Based on (3), we have
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We next follow procedures similar to Huang and Zhang (2010); Lounici et al. (2011);
Negahban et al. (2012) to derive the bound for ,@E,:] — By First, by Lemma S1 and the
sparsity condition, Hﬁ w1 —30"]|2 is bounded by any absolute constant when N is sufficiently
large. From Lemma S2 and the fact K’ = O(1), there exists a constant ¢g, such that H(')
satisfies e on any |S| < s with parameter ¢o{t, S, H[_',j]} > ¢ when N is sufficiently large.

By Assumption 3, there exists constant cg, Cg > 0 that

1+ M-11
LE.(85)) ‘ < Cs \/w with probability at least 1 — cg/p,
2,00

n

\/—HV

where VLIL(BS) = {LOT(BY), ..., LOT(BY)}. Combining this with (S1), we have

e [ M +logp N C’5sM%(logpN)a0 logp'
2,00 n n

Then we take A = 2M 1| VLEL(BS) + v |2.00, which has the same rate as that given in

V2286 + v

Lemma 1. Adopting similar techniques used in Lounici et al. (2011); Negahban et al. (2012);

Cai et al. (2019), we can prove that with probability converging to 1,

1B — B |l21 < CssMAy  and  [|B,y — BS||2 < CssM?)3,  for some constant Cg > 0.



S1.2  Proof of Lemma 2
Proof. From linearized expression of Y™ given in section 2.3, we may write ﬁu;-m) — ﬁg"]) =

V}(m) + A;?) + Ag'g) + A;’g) with

K
.
V=K Py Xe, AR = K Z@ ) (@ — ui) Xe
k=1

=
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where R(-) is the remainder term defined in Section 2.1. We next bound S _ |A%| for
t =1,2,3 separately. First, for |Aj"§| and |Aj"§ |, by Lemma 1 and (4) in the paper, we have
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uniformly for all j = 2,...,p and that

K M
Z|AJ3|<K maX|X |max||17,(m[k] DI (m)RXTB ),

m=1 k=1 m=1
respectively. By Assumption 2 and mean value theorem, for i € Z{™, there exists 5,(;;) lying
between X{™"3{" and Xi-m)Tﬁ c» Such that
m m m m ] m ~(m) n m ~(m) m m 3
R OK B = 60X B) — XL - Sxe BN (8 - BL)|

= [poxen - | [xer (o - B0 < 0 {xe (B}




. . . ~m . . o .
Since X!™ is sub-gaussian and By is independent of {X{™ i € '™}, it follows from concen-

tration bounds like Theorem 3.4 in Kuchibhotla and Chakrabortty (2018) that

k=1 m=1 k=1 m=1
K M
<Y NE {Xim” (8 - B02) } 'BE."Z (1+0efn4})
k=1 m=1

(m)

= <CL + OP{n_%}> Z Z( E)m) - B[.k])T@m(XXT)(ﬁ(Om) - B[—k])’

for n is sufficiently large. It then follows that under Assumption 4(a) or 4(b), Lemma 1 and

Lemma S3,

M
m a o 52
> AR =0p{(log pN)®} - Op (‘ o — By 2)
m (S4)
s(logpN)* (M +logp) | s*M (logp)*(log pN)>*
n n
uniformly for all 7 = 2,...,p. We next derive the rate of Zn]\le |A;?)| Since ﬁ;rf[)k] only

depends on {X!™ i € Z\™} and data complement to the fold k, we have E(e§m)|ﬁ(j"‘[)k], XMy =0

when 7 € I,(Cm). Thus

E{ 2o (@7 — ) XX, 7 | = 0. (55)

We denote the conditional variance of (n/K)z 3/7;(;“) (u jr:‘[)k} —ug") Xe given X™ and ﬁ;’:“[)k] as

5;"}3 and by Assumption 3, 5;",3 satisfies

o .
o < (s — i) {2 XXTGXTB) b (@) — ) - max 6 (X8 R2(X).



It then follows from Assumption 3 that there exists constant Cg, with probability 1,

8 <C. (HA("‘
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Again using Assumption 2, we have
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Again using Theorem 3.4 in (Kuchibhotla and Chakrabortty, 2018) and when n > log p,

Hg’z;](cm)XXT{é(XTﬁgm) - ¢(XTBE:)}‘
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N
N|=
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It can be verified that
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By the proof of Lemma S3, it then follows that

57 (M +logp)?
:OP{ ( +0gp)}.
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Consequently §'%) i =Op {S%(M + logp)%n_i} by Lemma S3. Combining this with (S5) and

the concentration bound, we have that uniformly for all j =2,... p,

M
Z ‘A;m” =M - Op

m=1
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Combining this with (S3), (S4) and the assumption that

1
5=0 - Ay 4n J
(logpN)o (M + logp)(logp)2 M*(log p)*(M + logp)

).
we can derive the rate for the bias term 3.0 |A:
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In above equation, we again use that as s = 0{ %(logp)*%(logp]\f)_ao (M + logp)_l},

52M%(logpN)“°(M + logp)2 log p <0 s(log pN ) (M +1logp) |
ns - n 7
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Then we finish showing the result for 37 |A™|. At last, we prove that ‘( M) — (og)?

op {(logp)~'} uniformly for all j = 2, ..., p. Recalling that (\")* = K~ S ﬁ;m[?]q]][k] uji"[)lc],



we only need to prove that ;’"[}{T}J([ })u;':‘[)k] (g™ ] ) = op { log p) 1} To prove this, we let

éa;(% =u m[)k} XX"u '"[)k] and first note that
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Using Taylor series expansion, there exists 6 lying between X{™'35"” and X{™"3

[k

SXTBE) — XTTBL)

]

I um m m m N(m)
= ‘cb(e;}) (X8 - X3, )‘
<o) - dxap)

m mT 2™
X( )TIBO Xi )TIB[JC]

LNe (mT g(m) (m)T g(m) (mT 3M
+ AT (X8 - X B
(m)T 3(m) (myT 3 7 ~e (T a(m) (m)T 3(m) (myT 3

SCL (Xz ﬂo _Xz‘ B[_k]> +¢<Xz BO)‘Xz 180 _Xi /8[-]

k Y

where we again use Assumption 2 for the last inequality. Then similar to (S7) where we use

the concentration results, using Assumptions 1, 4(a) or 4(b) and the boundness of

~~(m)
‘“j,




we have
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using the sparsity assumption of Lemma 2 at last. Combining this with (S7), we have
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_ s 7 P e Ty | : s(M + logp)
_ZOP{ ~ } {L@w@@j’[k} {Y—¢(X B )} ] +0p{T .

Then use Assumption 3 and results in (S6) and (S7) to derive that uniformly for all m, j, k:
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where we again use the fact that ||7d("'[k |1 and [|ul”||; are bounded by some absolute constant,

{”} (m) XXT¢’(XT5(m))}( )

as well as Theorem 3.4 in (Kuchibhotla and Chakrabortty, 2018) to concentrate the zero-

mean sum as Op{(logp)zn~2} simultancously. Combining this with (S9) and again using



00] ‘ :0p{ log p) 1}.

the assumption for s, we have |(G\™)% —

S1.3 Proof of Theorem 1
Proof. Let Z{? = (u§") X{M)e™ [of7) for i € [ny),

1
W("‘ =nk
To bound the difference between the test statistic (; = Z%_I(VV;'")Y and its asymptotic

=M (UI™)?, we first note that

representation S; = » |
max [V"| = Op{(logp)2n "2}, ol = 0(1).
m,j

Under the null ﬁ(m) = 0 and using lemma 2, we have

M R : A(."“) 2

_ (m) (m) (m)

- Z Uim + (Uj - U; ) + iy 8(”‘) =5
m=1 J

G—5,

(m)

2
- 2 A.(jm)
R ="
g -

M R M Al M .
<2 |- |0 - U] + 2 X0 | i = | 2 30 4 (O - U
m=1 m=1 m=1 J
M M
~0p 30 S (V2|7 = @] b+ 0p § (momax v+ 1871) Dl
m=1

m=1
logp 1 1 1
<opqn-——"-(logp)” ¢ +opq(nlogp)?  ——— ¢,
(nlogp)2

which indicates that QU"] = Sj+op(1) under the null B, ; = 0, uniformly for all j € H. Lemma
=U;" + op{(logp)~'/?}.

2 and the above derivations also indicate that W

We next show that

sup |[P(S; <t) — P(X?w <t)| =0, as n,p — oo.
t

10



It is equivalent to show that, for any t,

P{ %(Uém))z <th— P, <) (810)

m=1

By Assumptions 1 (i), 3 and 4(a) or 4(b), there exists some constant ¢ > 0 such that
P(max ey maxi<i<n,, |Z;'| > ) = O{(p + n)~?} with 7, = clog(p + n). Define U" =
n;%znml Zm

©7,Tn J,Tn

— (m) (m) (m) (m) .
= Z1(127| < ) —B{ZI(|1Z;7] < 7.)}. By Assumptions 3, 4(a)
or 4(b), it can be easily seen that
-1 2} : (m) (m)
rjngnm/ '_IEHZij ‘I{’Zz’j | > 7}
1/2 (m) ™) >

<Cn}*(p+mn)~2

for any sufficiently large constant C' > 0. Hence,

™ _pm | > -2\ ~ (m| > =0(p7?).
P{rjne%idU] U™ | > (logp) } < P<maX max |ZU | > Tn> O(p™) (S11)

5T JEH 1<i<nm

By the fact that

max » (U™)? —max Y (UM )?| <2M max max |U |max max |[U™ — U™ |
jEH ‘ J 5T jEH 1<m<M ' T jen 1<m<m J,Tn
—

+ M max max |U™ — U™ |2,
JEH 1<m<M ' 7 JTn

it suffices to prove that, for any ¢, simultaneously for all j € H,
M

P{ (U )2 < t} S PG, <) (S12)

m=1

11



It follows from Theorem 1 in Zaitsev (1987) that

Nm 1/2
P<‘ ~1/2N7 m >t> < 28{t — ¢, (log p)~! _ Nm G L S13
Ny, ZZ:; i, | = —= { € ,p( ng) )} +crexp CQTn(].ng) ( )
and that
P(‘ “12NC gm s t) > 204t + €, ,(logp) 1)} — — e L S14
L2 ; 15,Tn | = = { +e 7;0( 0g p) )} €1 €Xp CoTn (lOg p) ( )

where ¢; > 0 and c; > 0 are constants, €,, — 0 which will be specified later. Because
logp = o(n*/¢") and M < C'logp for some constants C > 0 and C’ > 6, by Lemma S4, we
let €,, = O{(log p)(®=¢")/2} for some constant C” € (6,C"). This yields that

nele
_ m =n,p =0 —-B
o)
for sufficiently large B > 0, and
M
P{ (W) > t}h = (1+0(1)P(3, > 8). (S15)

m=1

Hence (S12) is proved.

S1.4 Proof of Theorem 2

Proof. Recall that \; = &1 {FM(éj)/Z} We shall first show that

P> N, = 2loga) 2} =0] 1 as (n,p) = o0,

J€Ho

and then we focus on the event that ¢ in (5) exists. Then we will show the FDP result by

dividing the null set into small subsets and controlling the variance of Ry(t) for each subset.

12



The FDR result will follow as well. To this end, we first note that

P[ > I{N; > (2logq)'?} > 1] < qomax PN > (2log )"/},

Jj€Ho

and that, P{max;cy, |(; — S;| = 0(1)} = 1. Then based on Lemma S4, equations (S13),
(S14), (S10) and (S15) in the proof of Theorem 1, we have

P[ Y HN; > (2logq)"?} > 1| < qoG{(2log ¢)/*H1 + o(1)} + o(1) = o(1),

J€Ho

where G(t) = 2®(t). Hence, we focus on the event {f exists in the range [0, (2logq —

2loglog q)/?]}. By definition of £, it is easy to show that

21 -2}y _
mac{ 3,y TN > ), 1}

Let t, = (2logq — 2loglog ¢)*/2. Tt suffices to show that

D I > 0 - G}
ogtgptq qG(t)

— 0,

in probability. Let 0 <ty <t; <--- <t =t,suchthatt, —¢,_; =v,for 1 <:<b—-1 and
ty — ty_1 < v,, where v, = {logq(log, ¢)}~'/2. Thus we have b ~ t,/v,. For any ¢ such that

t,_1 <t<t, we have

Djero ING = 1) G(t,) < Djery ING =>1) < D ieng ING > t1) G(t,y)
@G (L) Gt-a) q0G (1) - q0G (t,-1) G(t)

Hence, it is enough to show that

ZjeHO{I(-N} Z tb) - G(tb)}

0
0<%h aG(t.) s

in probability. Define F; = ZlSmSM(U;?‘T)n)Q and M; = &~ {F(F};)/2}. By equation (S11),

13



we have max;ey, |S; — Fj| = 0p(1). Note that, by Lemma S4, we have

P{x3 = t+o(1)}/P(xiy = t) = 1+o0(1),

for any ¢, and that G[t + o{(logq)~'/?}]/G(t) = 1 + o(1) uniformly in 0 < ¢t < (2logq)'/%.

Thus, by equations (S13) and (S14), it suffices to prove that

max —0

0<:<b

QOG(tb)

ZjeHo{[(Mj = tt) - G(tb)} |

in probability. Note that

o AI(M; > t,) — G(t, b I(M; >t,) - G(t,
o[ s Bl 2 0 = G| ] _ g | Sy 0, 2 ) = Gl
0<:<b q0G(t,) — qG(t.)
tq . I(M; >t b i ]M'>tL _th
1 [l D020 Vs [ S li06 2 0 -G )
Vg Jo P0G(t) ared q0G(t.)
Thus, it suffices to show, for any € > 0,
o 112 jen, (M > ) — P(M; > 1)}
p|| =i ’ > e|dt = o(v,). S16
Note that
2
£| 2ien, (M 2 8) — P(M; > )}
QG (t)
_ Ejl,jQEHO{P(Mjl > t, sz > t) - P<Mj1 > t>P(M]'2 > t)}
%GA(t) '
Let [v} ]po = U I5ug andf = (m) (v“v”)l/2 fori,7 = 1,...,p. By Assumption 1

and U§” = [H{"]~!, we have C' < Amin(UO IO < Apax (UFPISVUSY) < Cy. For some

small enough constant v > 0, define

Li(y) ={i: [vf)'] > (logq)~*", for some m =1,..., M}.

14



It yields that maxjey, [I';(7)] = o(¢7) for any 7 > 0, and that max,; [£7] < £ for some
constant £ € (0,1).

We divide the indices ji,jo € Ho into three subsets: Hor = {j1,j2 € Ho,Jj1 = Ja2}s
Hoz = {Jj1,J2 € Ho, j1 # J2,j1 € ['j,(7), or ja € I';,(7)}, which contains the highly correlated
pairs, and Hoz = Ho \ (Ho1 U Hoz). Then we have

Zj17j26H01{P(Mj1 >, Mj2 > t) - P(Mjl > t)P(MJé > t)} < C
@G (t) ~ qG(t)

(S17)

For the subset Hos, in which M, and M;, are weakly correlated with each other. Recall
that F; = ZlgmgM(U('m) )? and M; = &~ {F(F;)/2}. Then for all ji, jo € Hos,

J:Tn

P(Mj, >t Mj, > 1) =P > (U ) 2 Fy (G(1), Y (U ) > Fy (G(1))

1<m<M 1<m<M

Similarly as (S13) and (S14), by choosing €,, = 1/(logp)?, based on the condition that

log p = o(n'/'%), it is easy to check that,

1/2

caTn(log p)

for sufficiently large B > 0, and we have

P(Mj1 > 1, sz > t)

<P S (1207 + 22 R > FNGW), Y (120 + 22 > B HG()

1<m<M logp 1<m<M logp
+O(p~ 71,
where {Z](-in), m=1,...,M} and {Z;;n),m =1,..., M} are standard normal random vari-

ables, and their correlations are of the order O{(logq)™>77}. By Lemma S4, it is easy to

15



obtain that maxi<;<, Fj = o{(logp)'*} for any sufficiently small constant € > 0. Hence,

P<Mj1 > t7Mj2 > t)
<P{ ST (ZIM2 2 FHGE) = enpllogp), D (Z07)? > F3}(G(1) — enyp(logp)©

1<m<M 1<m<M

_+_O<pr+1).
On the other hand, we also have

P<Mj1 > t7Mj2 > t)
>P{ YT (ZI? 2 FHGE) + enpllogp), Y (Z07)? > FRHG(®)) + enp(log p)°

1<m<M 1<m<M

—O(p_B+l).

Since Y71 <p(Z j(:n))Q and 35, (Z gn))Q are chi-squared random variables, we can trans-

form them back to standard normal variables. By Lemma S4, we have
Far(Fy (G(1)) + €np(logp)) = (1 + €,,(log p) )G ().
Then by the fact that €,, = (logp) 2,

G(t(1 + O(enp/(logp)' ™)) = (1 + O((log p)€n,) )G (1),

—-1/2

uniformly in 0 < ¢t < (2log¢)~"/#, and by the correlation assumptions, we have

max P<Mj1 2 t, Mj2 > t) = [1 + O{(log q)_l_v}]GQ(t)'

J1,J2€Ho03

Thus we have

D ivinetos (P (M, > t, My, > t) — P(M;, > t)P(M;, > t)}
45 G2(t)

=O{(logq)"'""}.  (S18)
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Similarly as the above calculations for Hgs, by Lemma S6 and the condition that logp =

o(n'/1%), we have

> i isern AP(M;, > &, My, > t) — P(M;, > t)P(M;, > 1)}

L ., B6G2()
- P*G3(t) ~ ¢ {G) e/t
where & is a constant that satisfies 0 < £ < & < 1.
Therefore, by combining (S17), (S18) and (S19), Equation (S16) follows.
]

S1.5 Proof of Theorem 3

Proof. Note that, by the assumptions of Theorem 3, we have, with probability tending to 1,

> N > (2logq)"*} > {1/(n"?a) + 6} (log g) /7.

JEH

Therefore, with probability going to one, we have

g 1/2 -1 —1/2
> en TN, = (log q) 7}~ a{1/("%a) + 6}~ (log ) 7'/%.

Recall that ¢, = (2logq — 2loglog q)"/2. By the fact that ®(t,) ~ 1/{(2m)"/2t,} exp(—t2/2),

we have P(1 <t <t,) — 1 according to the definition of £ in (5). That is, we have
P(t exists in [0,%,]) — 1.

Hence, Theorem 3 is proved based on the proof of Theorem 2.

S52.  TECHNICAL LEMMAS

In this section, we collect technical lemmas that were used in the previous proofs.
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Lemma S1. Under assumptions of Lemma 1, there exists constants cz,cy,Cs > 0 and
Al = (logp/n)% that when n,, > csslogp, with probability at least 1 — ¢4 M /p, the local
LASSO estimator satisfies

~(m) . log p ~(m) m Csslogp
HB[-krk'] - 'BE) )Hl < Css n_ and H/B[kk] - IBE) )”g < —

m nm
for all m € [M].

Proof. By Assumption 2, the conditional variance of Y™ given X{" is upper-bounded by
C,. Then under Assumptions 1-3 and 4(a) or 4(b), Lemma S1 is a result of Section 4.4 in
Negahban et al. (2012).

O

Lemma S2. Under Assumptions in Lemma 1, for any constant t > 0 and given B sat-
isfying ||B™ — By |l = o(1) for m € [M], there exists constants Cy,co > 0 and ¢g > 0
such that: as N > CyMslogp, with probability at least 1 — coM/p, Gre is satisfied for

ﬁ;g,) = diag{ﬁgzl), o ,]I/i\l(ﬁwz)m)} on any |S| < s with parameter qﬁo{t,S,ﬁgg,)} > ¢p.

Proof. By Assumption 4(a) or 4(b), X!™ is sub-gaussian with covariance matrix of eigenval-
ues bounded away from 0 and co. By Lemma S5, H(g@) has bounded eigenvalues away from
0 and co. Then we can refer to Negahban et al. (2012) (restricted strong convexity) for the

proof of Lemma S2. O]

Lemma S3. Under the assumptions of Lemma 2, there exists

M2(M +logp)?
T =< -

N2

such that, with probability converging to 1, the group dantzig selector type problem (4) has a
m)

feasible solution with max,y, H’ii; wll1 bounded by some absolute constant for all j € {2, ..., p},

m € [M] and k € [K].
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Proof. For simplicity, we use ﬁ;m) to represent the 7™ row of the inverse of the population

) : m - . ) . . ~(®)
covariance matrix [U(Nf)'k)] = [H‘NE) k)]] ! weighted with the plugged-in estimator B, and let
u = (u’",...,a"")7. First, we prove that there exists 7 < /M (logp+ M)/N, with

probability converging to 1, u ) belongs to the feasible set of (4) for all j = 2,...,p. Since
~ ()

1By —

have X™ N0 is sub-gaussian given ,3 k], with probability converging to 1. Then there exists
k

constant Cg > 0 that with probability converging to 1,

B5"l2 = op(1) by Lemma 1 and s = o{N[M(logp + M)]7'}, by Lemma S5, we

g (e M{logp + M)
||kaf u)” — e |20 < _09\/T,
which indicates that problem (4) has feasible solution. Since (4) minimizes maxpepa [|u{”||;

and @ belongs to the feasible set, we have max,,eq ||'LAL;.'"[),€] 1 < maxyep |25 and then
the boundness of max,, ¢ ||ﬁ;m[)k] |l1 follows from Assumption 1 (i).

]

Lemma S4 (Zolotarev (1961)). Let Y be a nondegenerate gaussian mean zero random
variable (r.v.) with covariance operator 3. Let o be the largest eigenvalue of X and d be
the dimension of the corresponding eigenspace. Let 02,1 < i < d', be the positive eigenvalues
of X arranged in a nonincreasing order and taking into account the multiplicities. Further,
ifd < oo, puto? =0,i>d. Let H(X) =[], (1 —0}/c?)"2 Then fory >0,

P{|Y] >y} ~ 2A0%y* 2 exp(—y?/(207)), as y — oo,

where A := (202)~42T1(d/2)H(X) with T'(-) the gamma function.

Lemma S5. Under the same assumptions of Lemma 1, for any m € [M] and any given 3™

satisfying ||B™ — BS”||2 = o(1), there exists constant Cy > 0 such that

Ol < A {H B(m)} < Ao {H;;?m)} < Cp.
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Proof. For any x € R? satisfying ||x||2 = 1, by Assumption 2, we have

" Hw @ — 2 H o, x| = [E(e"™X)H{o(X{MB) — o(X7B™)}
<E@XPVCLXPHBET — BT < O (X EIXP(BET - 87T
By Assumption 1 (i) and Assumption 4(a) or 4(b), we have that E[z"X{™]* is bounded by
some absolute constant for all  and E[X{{3{""—B™"}]? = o(1) since || 3™ — 85" ||» = o(1).

Thus, we have

|mTHg§m)az - mTHI(Bm(L)w| = o(1),
and the conclusion follows directly from Assumption 1 (i). ]

Lemma S6 (Berman (1962)). If X and Y have a bivariate normal distribution with expec-

tation zero, unit variance and correlation coefficient p, then

lim P(X > ¢ Y > ¢)

=1,
c—00 {27(1 — p)1/202}—1 exp ( — fjp) (1+ p)1/2

uniformly for all p such that |p| < 0, for any 6, 0 < 6 < 1.
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S3.  ADDITIONAL NUMERICAL RESULTS
In this section, we present additional numerical results for binary hidden markov model.
Figure S1 illustrates that, the false discovery rate and power results for hidden markov
model design has almost the same pattern as those of the Gaussian design.

Figure S1: The empirical FDR and power of our DSILT method, the one-shot approach
and the ILMA method under the binary HMM design, with « = 0.1. The horizontal axis
represents the overall signal magnitude pu.
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