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In this supplement we provide proofs for the theoretical results in the paper, collect

technical lemmas that are used in the proofs and present additional simulation results.

S1. PROOF

In this section, we present proofs of the theoretical results in the paper. Technical lemmas,

Lemmas S1-S6, used in the proofs will be collected in Section S2.

Throughout, for a vector or matrix A(t) = [Aij(t)], a function of the scalar t ∈ [0, 1],

define
∫ 1

0
A(t)dt = [

∫ 1

0
Aij(t)dt]. For any matrix A = [Aij], ‖A‖max = maxij |Aij|. Addi-

tionally, we define the Restricted Eigenvalue Condition (CRE) for data from M studies as

follows.

Definition S1. Restricted Eigenvalue Condition (CRE): Let C(t,S) = {u(•) ∈ Rp×M :

‖u(•)
Sc‖2,1 ≤ t‖u(•)

S ‖2,1}. The covariance matrices Σ = diag{Σ(1),Σ(2), . . . ,Σ(m)} and set S ⊆

[p] satisfy Restricted Eigenvalue Condition with some constant t: if there exists φ0(t,S,Σ),

for any δ(•) ∈ C(t,S),

‖δ(•)‖2
2 ≤ φ−1

0 (t,S,Σ) · ‖δ(•)‖2
Σ.

Here φ0(t,S,Σ) > 0 is a parameter depending on t, Σ and S, and ‖δ(•)‖Σ = (δ(•)TΣδ(•))
1
2 .

1Yin Xia is the corresponding author.
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S1.1 Proof of Lemma 1

Proof. First, by Assumption 4(a) or 4(b), there exists positive constants c4 and C4 such that

with probability at least 1− c4M/p,

max
i,j,m
|X (m)

ij | ≤ C4(log pN)a0 , where a0 = 1/2 under 4(a) and a0 = 0 under 4(b).

Let L̂(m)

-k,k’(β
(m)) = P̂I(m)

-k,k’
f(XTβ(m), Y ) and we expand ∇L̂(m)

-k,k’(β̂
(m)

[-k,-k’]) around β(m)

0 to obtain

∇L̂(m)

-k,k’(β̂
(m)

[-k,-k’]) = ∇L̂(m)

-k,k’(β
(m)

0 ) +

∫ 1

0

∇2L̂(m)

-k,k’

(
β(m)

0 + t[β̂
(m)

[-k,-k’] − β
(m)

0 ]
)

(β̂
(m)

[-k,-k’] − β
(m)

0 )dt

= ∇L̂(m)

-k,k’(β
(m)

0 ) + Ĥ(m)

[-k,k’](β̂
(m)

[-k,-k’] − β
(m)

0 ) + υ(m)

k,k’,

where Ĥ(m)

[-k,k’] = P̂I(m)
-k,k’

X
β̂
(m)
[-k,-k’]

XT

β̂
(m)
[-k,-k’]

, and

υ(m)

k,k’ =

∫ 1

0

{
∇2L̂(m)

-k,k’

(
β(m)

0 + t[β̂
(m)

[-k,-k’] − β
(m)

0 ]
)
− Ĥ(m)

[-k,k’]

}
(β̂

(m)

[-k,-k’] − β
(m)

0 )dt.

To bound υ(m)

k,k’, we note that under Assumptions 2 and 4(a) or 4(b), there exists constants

c4, C4 > 0 such that with probability at least 1− c4M/p,

∥∥∥∥∥
∫ 1

0

{
∇2L̂(m)

-k,k’

(
β(m)

0 + t[β̂
(m)

[-k,-k’] − β
(m)

0 ]
)
− Ĥ(m)

[-k,k’]

}
(β̂

(m)

[-k,-k’] − β
(m)

0 )dt

∥∥∥∥∥
∞

≤ max
t∈[0,1]

∥∥∥∥∥
{
∇2L̂(m)

-k,k’

(
β(m)

0 + t[β̂
(m)

[-k,-k’] − β
(m)

0 ]
)
− Ĥ(m)

[-k,k’]

}
(β̂

(m)

[-k,-k’] − β
(m)

0 )

∥∥∥∥∥
∞

≤max
i,j,m
|X (m)

ij | · max
t∈[0,1]

P̂I(m)
-k,k’

{∣∣∣XT(β̂
(m)

[-k,-k’] − β
(m)

0 )
∣∣∣ · CL ∣∣∣(1− t)XT(β̂

(m)

[-k,-k’] − β
(m)

0 )
∣∣∣}

≤C4(log pN)a0 · P̂I(m)
-k,k’

{∥∥∥XT(β̂
(m)

[-k,-k’] − β
(m)

0 )
∥∥∥2

2

}
.

Then we note that when β̂
(m)

[-k,-k’] is independent of X(m)

i for i ∈ I (m)

-k,k’, X(m)T

i (β̂
(m)

[-k,-k’]−β
(m)

0 ) is sub-

gaussian and E
∥∥∥X(m)T

i (β̂
(m)

[-k,-k’] − β
(m)

0 )
∥∥∥2

2
≤ C3CΛs log p/nm for all m ∈ [M ] with probability
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1− c3M/p by Lemma S1. Thus there exists c5, C5 > 0 such that

∥∥υ(m)

k,k’

∥∥
∞ ≤

C5sM(log pN)a0 log p

N
with probability at least 1− c5M/p. (S1)

Based on (3), we have

|I-k|−1

M∑
m=1

|I (m)

-k |(β̃
(m)

[-k] − β
(m)

0 )TĤ(m)

[-k](β̃
(m)

[-k] − β
(m)

0 ) + λN

∥∥∥β̃(•)

[-k],-1

∥∥∥
2,1

≤− 2|I-k|−1

M∑
m=1

|I (m)

-k |(β̃
(m)

[-k] − β
(m)

0 )T(K ′)−1

K′∑
k′=1

[
∇L̂(m)

-k,k’(β
(m)

0 ) + υ(m)

k,k’

]
+ λN‖β(•)

0 ‖2,1.

(S2)

We next follow procedures similar to Huang and Zhang (2010); Lounici et al. (2011);

Negahban et al. (2012) to derive the bound for β̃
(•)

[-k] − β
(•)
0 . First, by Lemma S1 and the

sparsity condition, ‖β̂
(m)

[-k,-k’]−β
(m)

0 ‖2 is bounded by any absolute constant when N is sufficiently

large. From Lemma S2 and the fact K ′ = O(1), there exists a constant φ0, such that Ĥ(•)
[-k]

satisfies CRE on any |S| ≤ s with parameter φ0{t,S, Ĥ(•)
[-k]} ≥ φ0 when N is sufficiently large.

By Assumption 3, there exists constant c6, C6 > 0 that

1√
M

∥∥∥∇L̂(•)
k,k’(β

(•)
0 )
∥∥∥

2,∞
≤ C6

√
1 +M−1 log p

n
with probability at least 1− c6/p,

where ∇L̂(•)
k,k’(β

(•)
0 ) = {L̂(1)T

k,k’ (β
(1)

0 ), . . . , L̂(m)T

-k,k’(β
(M)

0 )}T. Combining this with (S1), we have

∥∥∥∇L̂(•)
k,k’(β

(•)
0 ) + υ(•)

k,k’

∥∥∥
2,∞
≤ C6

√
M + log p

n
+
C5sM

1
2 (log pN)a0 log p

n
.

Then we take λ = 2M−1‖∇L̂(•)
k,k’(β

(•)
0 ) + υ(•)

k,k’‖2,∞, which has the same rate as that given in

Lemma 1. Adopting similar techniques used in Lounici et al. (2011); Negahban et al. (2012);

Cai et al. (2019), we can prove that with probability converging to 1,

‖β̃
(•)

[-k] − β
(•)
0 ‖2,1 ≤ C8sMλN and ‖β̃

(•)

[-k] − β
(•)
0 ‖2

2 ≤ C8sM
2λ2

N , for some constant C8 > 0.
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S1.2 Proof of Lemma 2

Proof. From linearized expression of Y (m)

i given in section 2.3, we may write β̆(m)

j − β(m)

0,j =

V (m)

j + ∆(m)

j1 + ∆(m)

j2 + ∆(m)

j3 with

V (m)

j =K−1

K∑
k=1

P̂I(m)
k
u(m)T

0,j Xε, ∆(m)

j1 = K−1

K∑
k=1

P̂I(m)
k

(
û(m)

j,[k] − u
(m)

0,j

)T

Xε

∆(m)

j2 =K−1

K∑
k=1

{
û(m)

j,[k]H̃
(m)

[k] − ej
}

(β(m)

0 − β̃
(m)

[-k]), ∆(m)

j3 = K−1

K∑
k=1

P̂I(m)
k

{
û(m)T

j,[k]XR(XTβ̃
(m)

[-k])
}
,

where R(·) is the remainder term defined in Section 2.1. We next bound
∑M

m=1 |∆
(m)

jt | for

t = 1, 2, 3 separately. First, for |∆(m)

j2 | and |∆(m)

j3 |, by Lemma 1 and (4) in the paper, we have

M∑
m=1

|∆(m)

j2 | ≤K−1

K∑
k=1

∥∥∥û(•)
j,[k]H̃

(•)
[k] − ej

∥∥∥
2,∞

∥∥∥β(•)
0 − β̃

(•)

[-k]

∥∥∥
2,1

=OP


(
M + log p

n

) 1
2

 ·OP

s
(
M + log p

n

) 1
2

+
s2M

1
2 (log pN)a0 log p

n


=OP

{
s(M + log p)

n
+
s2M

1
2 (M + log p)

1
2 (log pN)a0 log p

n
3
2

}
,

(S3)

uniformly for all j = 2, . . . , p and that

M∑
m=1

|∆(m)

j3 | ≤ K−1 max
i,j,m
|X (m)

ij |max
k,m
‖û(m)

j,[k]‖1

K∑
k=1

M∑
m=1

P̂I(m)
k
R(XTβ̃

(m)

[-k]),

respectively. By Assumption 2 and mean value theorem, for i ∈ I (m)

k , there exists θ̆(m)

ki lying

between X(m)T

i β(m)

0 and X(m)T

i β̃
(m)

[-k], such that

|R(m)

i (X(m)T

i β̃
(m)

[-k])| =
∣∣∣∣φ̇(X(m)T

i β(m)

0 )− φ̇(X(m)T

i β̃
(m)

[-k])− φ̈(X(m)T

i β̃
(m)

[-k])X
(m)T

i

(
β(m)

0 − β̃
(m)

[-k]

)∣∣∣∣
=
∣∣∣φ̈(X(m)T

i β̃
(m)

[-k])− φ̈(θ̆(m)

ki )
∣∣∣ ∣∣∣∣X(m)T

i

(
β(m)

0 − β̃
(m)

[-k]

)∣∣∣∣ ≤ CL

{
X(m)T

i

(
β(m)

0 − β̃
(m)

[-k]

)}2

.
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Since X(m)

i is sub-gaussian and β̃
(m)

[-k] is independent of {X(m)

i , i ∈ I
(m)

k }, it follows from concen-

tration bounds like Theorem 3.4 in Kuchibhotla and Chakrabortty (2018) that

K∑
k=1

M∑
m=1

P̂I(m)
k
R(XTβ̃

(m)

[-k]) ≤ CL

K∑
k=1

M∑
m=1

P̂I(m)
k

{
XT

(
β(m)

0 − β̃
(m)

[-k]

)}2

≤CL
K∑
k=1

M∑
m=1

E

{X(m)T

i

(
β(m)

0 − β̃
(m)

[-k]

)}2
∣∣∣∣∣β̃(m)

[-k]

(1 +OP{n−
1
2}
)

=
(
CL +OP{n−

1
2}
) K∑
k=1

M∑
m=1

(β(m)

0 − β̃
(m)

[-k])
TPm(XXT)(β(m)

0 − β̃
(m)

[-k]),

for n is sufficiently large. It then follows that under Assumption 4(a) or 4(b), Lemma 1 and

Lemma S3,

M∑
m=1

|∆(m)

j3 | =OP{(log pN)a0} ·OP

(∥∥∥β(•)
0 − β̃

(•)

[-k]

∥∥∥2

2

)

=OP

{
s(log pN)a0(M + log p)

n
+
s3M(log p)2(log pN)3a0

n2

}
,

(S4)

uniformly for all j = 2, . . . , p. We next derive the rate of
∑M

m=1 |∆
(m)

j1 |. Since û(m)

j,[k] only

depends on {X(m)

i , i ∈ I
(m)

k } and data complement to the fold k, we have E(ε(m)

i |û
(m)

j,[k],X
(m)

i ) = 0

when i ∈ I (m)

k . Thus

E
{

P̂I(m)
k

(û(m)

j,[k] − u
(m)

0,j)
TXε

∣∣∣X, û(m)

j,[k]

}
= 0. (S5)

We denote the conditional variance of (n/K)
1
2P̂I(m)

k
(û(m)

j,[k]−u
(m)

0,j)
TXε given X(m) and û(m)

j,[k] as

δ(m)

j,k and by Assumption 3, δ(m)

j,k satisfies

δ(m)

j,k ≤
(
û(m)

j,[k] − u
(m)

0,j

)T {
P̂I(m)

k
XXTφ̈(XTβ(m)

0 )
}(
û(m)

j,[k] − u
(m)

0,j

)
·max
i,m

φ̈−1(X(m)

i β
(m)

0 )κ2(X(m)

i ).
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It then follows from Assumption 3 that there exists constant C10, with probability 1,

δ(m)

j,k ≤Cε
(∥∥∥û(m)

j,[k]

∥∥∥
1

+
∥∥∥u(m)

0,j

∥∥∥
1

)
·
∥∥∥∥{P̂I(m)

k
XXTφ̈(XTβ(m)

0 )
}(
û(m)

j,[k] − u
(m)

0,j

)∥∥∥∥
∞

≤C10

∥∥∥∥{P̂I(m)
k

XXTφ̈(XTβ(m)

0 )
}
u(m)

0,j −
{

P̂I(m)
k

XXTφ̈(XTβ̃
(m)

[-k])
}
û(m)

j,[k]

∥∥∥∥
∞

+

+ C10

∥∥∥P̂I(m)
k

XXT{φ̈(XTβ(m)

0 )− φ̈(XTβ̃
(m)

[-k])}
∥∥∥

max

∥∥∥û(m)

j,[k]

∥∥∥
1
.

(S6)

Again using Assumption 2, we have

∥∥∥P̂I(m)
k

XXT{φ̈(XTβ(m)

0 )− φ̈(XTβ̃
(m)

[-k])}
∥∥∥

max

≤ max
r,j∈[p]

{
P̂I(m)

k
|XrXj|

∣∣∣φ̈(XTβ(m)

0 )− φ̈(XTβ̃
(m)

[-k])
∣∣∣} ≤ max

r,j∈[p]

{
P̂I(m)

k
|XrXj|CL

∣∣∣∣XT

(
β(m)

0 − β̃
(m)

[-k]

)∣∣∣∣
}

≤CL max
r,j∈[p]

[
P̂I(m)

k
X2
rX

2
j P̂I(m)

k

{
XT

(
β(m)

0 − β̃
(m)

[-k]

)}2
] 1

2

.

Again using Theorem 3.4 in (Kuchibhotla and Chakrabortty, 2018) and when n > log p,

∥∥∥P̂I(m)
k

XXT{φ̈(XTβ(m)

0 )− φ̈(XTβ̃
(m)

[-k])}
∥∥∥

max

≤CL max
r,j∈[p]


1 +OP

{
(log p)

1
2

n
1
2

} {P (m)|X2
rX

2
j |}(β

(m)

0 − β̃
(m)

[-k])
T
{
P (m)(XXT)

}
(β(m)

0 − β̃
(m)

[-k])


1
2

=OP

{
s

1
2 (M + log p)

1
2

n
1
2

+
s

3
2M

1
2 (log pN)a0 log p

n

}
.

(S7)

It can be verified that

s3M(log pN)2a0(log p)2

n2
≤ O

{
s(M + log p)

n

}
, as s = o

{
n

1
2

(M + log p)(log pN)a0(log p)
1
2

}
.
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By the proof of Lemma S3, it then follows that

∥∥∥∥{P̂I(m)
k

XXTφ̈(XTβ(m)

0 )
}
u(m)

0,j −
{

P̂I(m)
k

XXTφ̈(XTβ̃
(m)

[-k])
}
û(m)

j,[k]

∥∥∥∥
∞

= OP

{
s

1
2 (M + log p)

1
2

n
1
2

}
.

Consequently δ(m)

j,k = OP

{
s

1
2 (M + log p)

1
2n−

1
2

}
by Lemma S3. Combining this with (S5) and

the concentration bound, we have that uniformly for all j = 2, . . . , p,

M∑
m=1

|∆(m)

j1 | =M ·OP

{
s

1
4 (M + log p)

1
4

n
1
4

· (log p)
1
2

n
1
2

}
= OP

{
s

1
4M(log p)

1
2 (M + log p)

1
4

n
3
4

}
.

Combining this with (S3), (S4) and the assumption that

s = o

{
n

1
2

(log pN)a0(M + log p)(log p)
1
2

∧ n

M4(log p)4(M + log p)

}
,

we can derive the rate for the bias term
∑M

m=1 |∆
(m)

j |:

M∑
m=1

|∆(m)

j | ≤
M∑
m=1

(|∆(m)

j1 |+ |∆
(m)

j2 |+ |∆
(m)

j3 |)

=OP

{
s

1
4M(log p)

1
2 (M + log p)

1
4

n
3
4

}
+OP

{
s2M

1
2 (log pN)a0(M + log p)

1
2 log p

n
3
2

}

+OP

{
s(log pN)a0(M + log p)

n
+
s3M(log pN)3a0(log p)2

n2

}
= oP

{
1

(n log p)
1
2

}
,

In above equation, we again use that as s = o
{
n

1
2 (log p)−

1
2 (log pN)−a0(M + log p)−1

}
,

s2M
1
2 (log pN)a0(M + log p)

1
2 log p

n
3
2

≤ O

{
s(log pN)a0(M + log p)

n

}
;

and
s3M(log pN)3a0(log p)2

n2
≤ O

{
s(log pN)a0(M + log p)

n

}
.

Then we finish showing the result for
∑M

m=1 |∆
(m)

j |. At last, we prove that
∣∣∣(σ̂(m)

j )2 − (σ(m)

0,j)
2
∣∣∣ =

oP
{

(log p)−1
}

uniformly for all j = 2, . . . , p. Recalling that (σ̂(m)

j )2 = K−1
∑K

k=1 û
(m)T

j,[k]J̃
(m)

[k]û
(m)

j,[k],

7



we only need to prove that
∣∣∣û(m)T

j,[k]J̃
(m)

[k]û
(m)

j,[k] − (σ(m)

0,j)
2
∣∣∣ = oP

{
(log p)−1

}
. To prove this, we let

Ê (m)

j,[k] = û(m)

j,[k]XXTû(m)

j,[k] and first note that

∣∣∣∣û(m)T

j,[k]J̃
(m)

[-k]û
(m)

j,[k] − P̂I(m)
k
û(m)

j,[k]XXTû(m)

j,[k]

{
Y − φ̇(XTβ(m)

0 )
}2
∣∣∣∣

≤2

∣∣∣∣P̂I(m)
k
û(m)

j,[k]XXTû(m)

j,[k]

{
Y − φ̇(XTβ(m)

0 )
}{

φ̇(XTβ(m)

0 )− φ̇(XTβ̃
(m)

[-k])
}∣∣∣∣

+

∣∣∣∣P̂I(m)
k

Ê (m)

j,[k]

{
φ̇(XTβ(m)

0 )− φ̇(XTβ̃
(m)

[-k])
}2
∣∣∣∣

≤2

[
P̂I(m)

k
Ê (m)

j,[k]

{
Y − φ̇(XTβ(m)

0 )
}2
] 1

2
[
P̂I(m)

k
Ê (m)

j,[k]

{
φ̇(XTβ(m)

0 )− φ̇(XTβ̃
(m)

[-k])
}2
] 1

2

+

∣∣∣∣P̂I(m)
k

Ê (m)

j,[k]

{
φ̇(XTβ(m)

0 )− φ̇(XTβ̃
(m)

[-k])
}2
∣∣∣∣ .

(S8)

Using Taylor series expansion, there exists θ̆(m)

ki lying between X(m)T

i β(m)

0 and X(m)T

i β̃
(m)

[-k],

∣∣∣φ̇(X(m)T

i β(m)

0 )− φ̇(X(m)T

i β̃
(m)

[-k])
∣∣∣ =

∣∣∣∣φ̈(θ̆(m)

ki )
(
X(m)T

i β(m)

0 −X(m)T

i β̃
(m)

[-k]

)∣∣∣∣
≤
∣∣∣φ̈(θ̆(m)

ki )− φ̈(X(m)T

i β(m)

0 )
∣∣∣ ∣∣∣X(m)T

i β(m)

0 −X(m)T

i β̃
(m)

[-k]

∣∣∣+ φ̈(X(m)T

i β(m)

0 )
∣∣∣X(m)T

i β(m)

0 −X(m)T

i β̃
(m)

[-k]

∣∣∣
≤CL

(
X(m)T

i β(m)

0 −X(m)T

i β̃
(m)

[-k]

)2

+ φ̈(X(m)T

i β(m)

0 )
∣∣∣X(m)T

i β(m)

0 −X(m)T

i β̃
(m)

[-k]

∣∣∣ ,
where we again use Assumption 2 for the last inequality. Then similar to (S7) where we use

the concentration results, using Assumptions 1, 4(a) or 4(b) and the boundness of
∥∥∥û(m)

j,[k]

∥∥∥
1
,

8



we have

∣∣∣∣P̂I(m)
k
û(m)

j,[k]XXTû(m)

j,[k]

{
φ̇(XTβ(m)

0 )− φ̇(XTβ̃
(m)

[-k])
}2
∣∣∣∣

≤C2
L

∣∣∣∣P̂I(m)
k

Ê (m)

j,[k]

(
XTβ(m)

0 −XTβ̃
(m)

[-k]

)4
∣∣∣∣+ P̂I(m)

k
Ê (m)

j,[k]φ̈
2(XTβ(m)

0 )
(
XTβ(m)

0 −XTβ̃
(m)

[-k]

)2

≤
∥∥∥û(m)

j,[k]

∥∥∥2

1

(
C2

L

∥∥∥∥∥P̂I(m)
k

XXT

(
XTβ

(m)
0 −XTβ̃

(m)
[-k]

)4
∥∥∥∥∥
max

+

∥∥∥∥∥P̂I(m)
k

XXTφ̈2(XTβ
(m)
0 )

(
XTβ

(m)
0 −XTβ̃

(m)
[-k]

)2
∥∥∥∥∥
max

)
≤CL

∥∥∥û(m)
j,[k]

∥∥∥2
1

maxm,i

[
X

(m)T
i

(
β
(m)
0 −β̃

(m)
[-k]

)]2
maxr,j∈[p]{P(m)|XrXj |}(β

(m)
0 −β̃

(m)
[-k])

T{P(m)XXT}(β
(m)
0 −β̃

(m)
[-k])

+
∥∥∥û(m)

j,[k]

∥∥∥2
1

maxr,j∈[p]

{
P(m)

∣∣∣XrXj φ̈(XTβ
(m)
0 )

∣∣∣}(β
(m)
0 −β̃

(m)
[-k])

T
{

P(m)XXTφ̈(XTβ
(m)
0 )

}
(β

(m)
0 −β̃

(m)
[-k])

=OP

{
1 +

s2(M + log p) log p

n

}
·OP

{
s(M + log p)

n

}
= OP

{
s(M + log p)

n

}
,

using the sparsity assumption of Lemma 2 at last. Combining this with (S7), we have

∣∣∣∣û(m)T

j,[k]J̃
(m)

[-k]û
(m)

j,[k] − P̂I(m)
k

Ê (m)

j,[k]

{
Y − φ̇(XTβ(m)

0 )
}2
∣∣∣∣

=2OP

{
s

1
2 (M + log p)

1
2

n
1
2

}[
P̂I(m)

k
Ê (m)

j,[k]

{
Y − φ̇(XTβ(m)

0 )
}2
] 1

2

+OP

{
s(M + log p)

n

}
.

(S9)

Then use Assumption 3 and results in (S6) and (S7) to derive that uniformly for all m, j, k:

∣∣∣∣P̂I(m)
k
û(m)

j,[k]X
(m)

i X(m)T

i û(m)

j,[k]

{
Y (m)

i − φ̇(X(m)T

i β(m)

0 )
}2

− (σ(m)

0,j)
2

∣∣∣∣
≤

∣∣∣∣∣(û(m)

j,[k] − u
(m)

0,j

)T
{

P̂I(m)
k

XXT

{
Y − φ̇(XTβ(m)

0 )
}2
}(
û(m)

j,[k] + u(m)

0,j

)∣∣∣∣∣+OP

{
(n−1 log p)1/2

}
≤
(
û
(m)
j,[k]
−u(m)

0,j

)T{
P̂
I(m)
k

XXTφ̈(XTβ
(m)
0 )

}(
û
(m)
j,[k]
−u(m)

0,j

)
·maxi,m φ̈−1(X

(m)
i β

(m)
0 )κ2(X

(m)
i )+OP{(n−1 log p)1/2}

≤OP

(∥∥∥∥∥∥{P̂
I(m)
k

XXTφ̈(XTβ
(m)
0 )

}(
û
(m)
j,[k]
−u(m)

0,j

)∥∥∥∥∥∥
∞

)
+OP

{
(n−1 log p)1/2

}
= OP

{
s

1
2 (M + log p)

1
2

n
1
2

}
,

where we again use the fact that ‖û(m)

j,[k]‖1 and ‖u(m)

0 ‖1 are bounded by some absolute constant,

as well as Theorem 3.4 in (Kuchibhotla and Chakrabortty, 2018) to concentrate the zero-

mean sum as OP{(log p)
1
2n−

1
2} simultaneously. Combining this with (S9) and again using

9



the assumption for s, we have
∣∣∣(σ̂(m)

j )2 − (σ(m)

0,j)
2
∣∣∣ = oP

{
(log p)−1

}
.

S1.3 Proof of Theorem 1

Proof. Let Z (m)

ij = (u(m)T

0,j X(m)

i )ε(m)

i /σ
(m)

0,j for i ∈ [nm],

W (m)

j = n
1
2
m

β̆(m)

j

σ̂(m)

j

, Û (m)

j = n
1
2
m

V (m)

j

σ̂(m)

0,j

and U (m)

j = n
1
2
m

V (m)

j

σ(m)

0,j

= n
− 1

2
m

nm∑
i=1

Z (m)

ij .

To bound the difference between the test statistic ζ̆j =
∑M

m=1(W (m)

j )2 and its asymptotic

representation Sj =
∑M

m=1(U (m)

j )2, we first note that

max
m,j
|V (m)

j | = OP{(log p)
1
2n−

1
2}, σ̂(m)

j = OP(1), σ(m)

0,j = O(1).

Under the null β(m)

0,j = 0 and using lemma 2, we have

∣∣∣ζ̆j − Sj∣∣∣ =

∣∣∣∣∣∣
M∑
m=1

{
U (m)

j +
(
Û (m)

j − U
(m)

j

)
+ n

1
2
m

∆(m)

j

σ̂(m)

j

}2

− Sj

∣∣∣∣∣∣
≤2

M∑
m=1

∣∣∣U (m)

j

∣∣∣ · ∣∣∣Û (m)

j − U
(m)

j

∣∣∣+ 2
M∑
m=1

∣∣∣U (m)

j

∣∣∣ · n 1
2
m

∣∣∣∣∣∆
(m)

j

σ̂(m)

j

∣∣∣∣∣+ 2
M∑
m=1

(Û (m)

j − U
(m)

j

)2

+ nm

(
∆(m)

j

σ̂(m)

j

)2


=OP

n
M∑
m=1

(V (m)

j )2
∣∣∣(σ̂(m)

j )2 − (σ(m)

0,j)
2
∣∣∣
+OP


(
nmax

m
|V (m)

j |+ |∆
(m)

j |
) M∑
m=1

|∆(m)

j |


≤oP

{
n · log p

n
· (log p)−1

}
+ oP

{
(n log p)

1
2 · 1

(n log p)
1
2

}
,

which indicates that ζ̆j = Sj+oP(1) under the null β0,j = 0, uniformly for all j ∈ H. Lemma

2 and the above derivations also indicate that W (m)

j = U (m)

j + op{(log p)−1/2}.

We next show that

sup
t
|P(Sj ≤ t)− P(χ2

M ≤ t)| → 0, as n, p→∞.

10



It is equivalent to show that, for any t,

P
{ M∑
m=1

(U (m)

j )2 ≤ t
}
→ P(χ2

M ≤ t). (S10)

By Assumptions 1 (i), 3 and 4(a) or 4(b), there exists some constant c > 0 such that

P(maxj∈Hmax1≤i≤nm |Z
(m)

ij | ≥ τn) = O{(p + n)−2} with τn = c log(p + n). Define U (m)

j,τn
=

n
− 1

2
m

∑nm

i=1 Z
(m)

ij,τn
, Z (m)

ij,τn
= Z (m)

ij I(|Z (m)

ij | ≤ τn) − E{Z (m)

ij I(|Z (m)

ij | ≤ τn)}. By Assumptions 3, 4(a)

or 4(b), it can be easily seen that

max
j∈H

n−1/2
m

nm∑
i=1

E[|Z (m)

ij |I{|Z
(m)

ij | ≥ τn}]

≤Cn1/2
m max

1≤k≤n
max
1≤i≤p

E[|Z (m)

ij |I{|Z
(m)

ij | ≥ τn}]

≤Cn1/2
m (p+ n)−2,

for any sufficiently large constant C > 0. Hence,

P
{

max
j∈H
|U (m)

j − U
(m)

j,τn
| ≥ (log p)−2

}
≤ P

(
max
j∈H

max
1≤i≤nm

|Z (m)

ij | ≥ τn

)
= O(p−2). (S11)

By the fact that

∣∣∣max
j∈H

M∑
m=1

(U (m)

j )2 −max
j∈H

M∑
m=1

(U (m)

j,τn
)2
∣∣∣ ≤ 2M max

j∈H
max

1≤m≤M
|U (m)

j,τn
|max
j∈H

max
1≤m≤M

|U (m)

j − U
(m)

j,τn
|

+M max
j∈H

max
1≤m≤M

|U (m)

j − U
(m)

j,τn
|2,

it suffices to prove that, for any t, simultaneously for all j ∈ H,

P
{ M∑
m=1

(U (m)

j,τn
)2 ≤ t

}
→ P(χ2

M ≤ t). (S12)
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It follows from Theorem 1 in Zäıtsev (1987) that

P
(∣∣∣n−1/2

m

nm∑
i=1

Z (m)

ij,τn

∣∣∣ ≥ t
)
≤ 2Φ̄{t− εn,p(log p)−1)}+ c1 exp

{
− n

1/2
m εn,p

c2τn(log p)

}
, (S13)

and that

P
(∣∣∣n−1/2

m

nm∑
i=1

Z (m)

ij,τn

∣∣∣ ≥ t
)
≥ 2Φ̄{t+ εn,p(log p)−1)} − c1 exp

{
− n

1/2
m εn,p

c2τn(log p)

}
, (S14)

where c1 > 0 and c2 > 0 are constants, εn,p → 0 which will be specified later. Because

log p = o(n1/C′) and M ≤ C log p for some constants C > 0 and C ′ > 6, by Lemma S4, we

let εn,p = O{(log p)(6−C′′)/2} for some constant C ′′ ∈ (6, C ′). This yields that

c1 exp

{
− n

1/2
m εn,p

c2τn(log p)

}
= O(p−B)

for sufficiently large B > 0, and

P
{ M∑
m=1

(U (m)

j,τn
)2 ≥ t

}
= (1 + o(1))P(χ2

M ≥ t). (S15)

Hence (S12) is proved.

S1.4 Proof of Theorem 2

Proof. Recall that Nj = Φ̄−1
{
FM(ζ̆j)/2

}
. We shall first show that

P
[ ∑
j∈H0

I{Nj ≥ (2 log q)1/2} = 0
]
→ 1 as (n, p)→∞,

and then we focus on the event that t̂ in (5) exists. Then we will show the FDP result by

dividing the null set into small subsets and controlling the variance of R0(t) for each subset.

12



The FDR result will follow as well. To this end, we first note that

P
[ ∑
j∈H0

I{Nj ≥ (2 log q)1/2} ≥ 1
]
≤ q0 max

j∈H0

P{Nj ≥ (2 log q)1/2},

and that, P{maxj∈H0 |ζ̆j − Sj| = o(1)} = 1. Then based on Lemma S4, equations (S13),

(S14), (S10) and (S15) in the proof of Theorem 1, we have

P
[ ∑
j∈H0

I{Nj ≥ (2 log q)1/2} ≥ 1
]
≤ q0G{(2 log q)1/2}{1 + o(1)}+ o(1) = o(1),

where G(t) = 2Φ̄(t). Hence, we focus on the event {t̂ exists in the range [0, (2 log q −

2 log log q)1/2]}. By definition of t̂, it is easy to show that

2{1− Φ(t̂)}q
max{

∑
i∈H I(Nj ≥ t̂), 1}

= α.

Let tq = (2 log q − 2 log log q)1/2. It suffices to show that

sup
0≤t≤tq

∣∣∣∣∣
∑

j∈H0
{I(Nj ≥ t)−G(t)}

qG(t)

∣∣∣∣∣→ 0,

in probability. Let 0 ≤ t0 < t1 < · · · < tb = tq such that tι − tι−1 = vq for 1 ≤ ι ≤ b− 1 and

tb − tb−1 ≤ vq, where vq = {log q(log4 q)}−1/2. Thus we have b ∼ tq/vq. For any t such that

tι−1 ≤ t ≤ tι, we have

∑
j∈H0

I(Nj ≥ tι)

q0G(tι)

G(tι)

G(tι−1)
≤
∑

j∈H0
I(Nj ≥ t)

q0G(t)
≤
∑

j∈H0
I(Nj ≥ tι−1)

q0G(tι−1)

G(tι−1)

G(tι)
.

Hence, it is enough to show that

max
0≤ι≤b

∣∣∣∣∣
∑

j∈H0
{I(Nj ≥ tι)−G(tι)}

qG(tι)

∣∣∣∣∣→ 0,

in probability. Define Fj =
∑

1≤m≤M(U (m)

j,τn
)2 and Mj = Φ̄−1

{
FM(Fj)/2

}
. By equation (S11),

13



we have maxj∈H0 |Sj − Fj| = op(1). Note that, by Lemma S4, we have

P{χ2
M ≥ t+ o(1)}/P(χ2

M ≥ t) = 1 + o(1),

for any t, and that G[t + o{(log q)−1/2}]/G(t) = 1 + o(1) uniformly in 0 ≤ t ≤ (2 log q)1/2.

Thus, by equations (S13) and (S14), it suffices to prove that

max
0≤ι≤b

∣∣∣∣∣
∑

j∈H0
{I(Mj ≥ tι)−G(tι)}

q0G(tι)

∣∣∣∣∣→ 0

in probability. Note that

P

[
max
0≤ι≤b

∣∣∣∣∣
∑

j∈H0
{I(Mj ≥ tι)−G(tι)}

q0G(tι)

∣∣∣∣∣ ≥ ε

]
≤

b∑
ι=1

P

[∣∣∣∣∣
∑

j∈H0
{I(Mj ≥ tι)−G(tι)}

q0G(tι)

∣∣∣∣∣ ≥ ε

]

≤ 1

vq

∫ tq

0

P

{∣∣∣∣∣
∑

j∈H0
I(Mj ≥ t)

q0G(t)
− 1

∣∣∣∣∣ ≥ ε

}
dt+

b∑
ι=b−1

P

[∣∣∣∣∣
∑

j∈H0
{I(Mj ≥ tι)−G(tι)}

q0G(tι)

∣∣∣∣∣ ≥ ε

]
.

Thus, it suffices to show, for any ε > 0,

∫ tq

0

P

[∣∣∣∣∣
∑

j∈H0
{I(Mj ≥ t)− P(Mj ≥ t)}

q0G(t)

∣∣∣∣∣ ≥ ε

]
dt = o(vq). (S16)

Note that

E

∣∣∣∣∣
∑

j∈H0
{I(Mj ≥ t)− P(Mj ≥ t)}

q0G(t)

∣∣∣∣∣
2

=

∑
j1,j2∈H0

{P(Mj1 ≥ t,Mj2 ≥ t)− P(Mj1 ≥ t)P(Mj2 ≥ t)}
q2

0G
2(t)

.

Let [v(m)

i,j ]p×p = U(m)

0 J(m)

0 U(m)

0 and ξ(m)

i,j = v(m)

i,j /(v
(m)

i,i v
(m)

j,j )
1/2 for i, j = 1, . . . , p. By Assumption 1

and U(m)

0 = [H(m)

0 ]−1, we have C−1
Λ ≤ Λmin(U(m)

0 J(m)

0 U(m)

0 ) ≤ Λmax(U(m)

0 J(m)

0 U(m)

0 ) ≤ CΛ. For some

small enough constant γ > 0, define

Γj(γ) = {i : |v(m)

ij | ≥ (log q)−2−γ, for some m = 1, . . . ,M}.
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It yields that maxj∈H0 |Γj(γ)| = o(qτ ) for any τ > 0, and that maxi<j |ξ(m)

i,j | ≤ ξ for some

constant ξ ∈ (0, 1).

We divide the indices j1, j2 ∈ H0 into three subsets: H01 = {j1, j2 ∈ H0, j1 = j2},

H02 = {j1, j2 ∈ H0, j1 6= j2, j1 ∈ Γj2(γ), or j2 ∈ Γj1(γ)}, which contains the highly correlated

pairs, and H03 = H0 \ (H01 ∪H02). Then we have

∑
j1,j2∈H01

{P(Mj1 ≥ t,Mj2 ≥ t)− P(Mj1 ≥ t)P(Mj2 ≥ t)}
q2

0G
2(t)

≤ C

q0G(t)
. (S17)

For the subset H03, in which Mj1 and Mj2 are weakly correlated with each other. Recall

that Fj =
∑

1≤m≤M(U (m)

j,τn
)2 and Mj = Φ̄−1

{
FM(Fj)/2

}
. Then for all j1, j2 ∈ H03,

P(Mj1 ≥ t,Mj2 ≥ t) = P

 ∑
1≤m≤M

(U (m)

j1,τn
)2 ≥ F−1

M (G(t)),
∑

1≤m≤M

(U (m)

j2,τn
)2 ≥ F−1

M (G(t))


Similarly as (S13) and (S14), by choosing εn,p = 1/(log p)2, based on the condition that

log p = o(n1/10), it is easy to check that,

c1 exp

{
− n

1/2
m εn,p

c2τn(log p)

}
= O(p−B)

for sufficiently large B > 0, and we have

P(Mj1 ≥ t,Mj2 ≥ t)

≤ P

 ∑
1≤m≤M

(|Z(m)
j1
|+ εn,p

log p
)2 ≥ F−1

M (G(t)),
∑

1≤m≤M

(|Z(m)
j2
|+ εn,p

log p
)2 ≥ F−1

M (G(t))


+O(p−B+1),

where {Z(m)
j1

,m = 1, . . . ,M} and {Z(m)
j2

,m = 1, . . . ,M} are standard normal random vari-

ables, and their correlations are of the order O{(log q)−2−γ}. By Lemma S4, it is easy to
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obtain that max1≤j≤p Fj = o{(log p)1+ε} for any sufficiently small constant ε > 0. Hence,

P(Mj1 ≥ t,Mj2 ≥ t)

≤ P

 ∑
1≤m≤M

(Z
(m)
j1

)2 ≥ F−1
M (G(t))− εn,p(log p)ε,

∑
1≤m≤M

(Z
(m)
j2

)2 ≥ F−1
M (G(t))− εn,p(log p)ε


+O(p−B+1).

On the other hand, we also have

P(Mj1 ≥ t,Mj2 ≥ t)

≥ P

 ∑
1≤m≤M

(Z
(m)
j1

)2 ≥ F−1
M (G(t)) + εn,p(log p)ε,

∑
1≤m≤M

(Z
(m)
j2

)2 ≥ F−1
M (G(t)) + εn,p(log p)ε


−O(p−B+1).

Since
∑

1≤m≤M(Z
(m)
j1

)2 and
∑

1≤m≤M(Z
(m)
j2

)2 are chi-squared random variables, we can trans-

form them back to standard normal variables. By Lemma S4, we have

FM(F−1
M (G(t)) + εn,p(log p)ε) = (1 + εn,p(log p)ε)G(t).

Then by the fact that εn,p = (log p)−2,

G(t(1 +O(εn,p/(log p)1−ε))) = (1 +O((log p)εεn,p))G(t),

uniformly in 0 ≤ t ≤ (2 log q)−1/2, and by the correlation assumptions, we have

max
j1,j2∈H03

P(Mj1 ≥ t,Mj2 ≥ t) = [1 +O{(log q)−1−γ}]G2(t).

Thus we have

∑
j1,j2∈H03

{P(Mj1 ≥ t,Mj2 ≥ t)− P(Mj1 ≥ t)P(Mj2 ≥ t)}
q2

0G
2(t)

= O{(log q)−1−γ}. (S18)
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Similarly as the above calculations for H03, by Lemma S6 and the condition that log p =

o(n1/10), we have

∑
j1,j2∈H02

{P(Mj1 ≥ t,Mj2 ≥ t)− P(Mj1 ≥ t)P(Mj2 ≥ t)}
q2

0G
2(t)

≤ C
q1+τ t−2 exp{−t2/(1 + ξ1)}

q2G2(t)
≤ C

q1−τ{G(t)}2ξ1/(1+ξ1)
, (S19)

where ξ1 is a constant that satisfies 0 < ξ < ξ1 < 1.

Therefore, by combining (S17), (S18) and (S19), Equation (S16) follows.

S1.5 Proof of Theorem 3

Proof. Note that, by the assumptions of Theorem 3, we have, with probability tending to 1,

∑
j∈H

I{Nj ≥ (2 log q)1/2} ≥ {1/(π1/2α) + δ}(log q)1/2.

Therefore, with probability going to one, we have

q∑
j∈H I{Nj ≥ (2 log q)1/2}

≤ q{1/(π1/2α) + δ}−1(log q)−1/2.

Recall that tq = (2 log q − 2 log log q)1/2. By the fact that Φ̄(tq) ∼ 1/{(2π)1/2tq} exp(−t2q/2),

we have P(1 ≤ t̂ ≤ tq)→ 1 according to the definition of t̂ in (5). That is, we have

P(t̂ exists in [0, tq])→ 1.

Hence, Theorem 3 is proved based on the proof of Theorem 2.

S2. TECHNICAL LEMMAS

In this section, we collect technical lemmas that were used in the previous proofs.
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Lemma S1. Under assumptions of Lemma 1, there exists constants c3, c
′
3, C3 > 0 and

λ(m)
n � (log p/n)

1
2 that when nm ≥ c3s log p, with probability at least 1 − c′3M/p, the local

LASSO estimator satisfies

‖β̂
(m)

[-k,-k’] − β
(m)

0 ‖1 ≤ C3s

√
log p

nm
and ‖β̂

(m)

[-k,-k’] − β
(m)

0 ‖2
2 ≤

C3s log p

nm

for all m ∈ [M ].

Proof. By Assumption 2, the conditional variance of Y(m)

i given X(m)

i is upper-bounded by

Cu. Then under Assumptions 1-3 and 4(a) or 4(b), Lemma S1 is a result of Section 4.4 in

Negahban et al. (2012).

Lemma S2. Under Assumptions in Lemma 1, for any constant t > 0 and given β(•) sat-

isfying ‖β(m) − β(m)

0 ‖2 = o(1) for m ∈ [M ], there exists constants C2, c2 > 0 and φ0 > 0

such that: as N ≥ C2Ms log p, with probability at least 1 − c2M/p, CRE is satisfied for

Ĥ(•)

β(•) = diag{Ĥ(1)

β(1) , . . . , Ĥ(M)

β(M)} on any |S| ≤ s with parameter φ0{t,S, Ĥ(•)

β(•)} ≥ φ0.

Proof. By Assumption 4(a) or 4(b), X(m)

i is sub-gaussian with covariance matrix of eigenval-

ues bounded away from 0 and ∞. By Lemma S5, H(m)

β(m) has bounded eigenvalues away from

0 and ∞. Then we can refer to Negahban et al. (2012) (restricted strong convexity) for the

proof of Lemma S2.

Lemma S3. Under the assumptions of Lemma 2, there exists

τ � M
1
2 (M + log p)

1
2

N
1
2

such that, with probability converging to 1, the group dantzig selector type problem (4) has a

feasible solution with maxm ‖û(m)

j,[k]‖1 bounded by some absolute constant for all j ∈ {2, ..., p},

m ∈ [M ] and k ∈ [K].
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Proof. For simplicity, we use ũ(m)

j to represent the jth row of the inverse of the population

covariance matrix U(m)

β̃
(•)
[-k]

= [H(m)

β̃
(•)
[-k]

]−1, weighted with the plugged-in estimator β̃
(•)

[-k] and let

ũ(•)
j = (ũ(1)T

j , . . . , ũ(M)T

j )T. First, we prove that there exists τ �
√
M(log p+M)/N , with

probability converging to 1, ũ(m)

j belongs to the feasible set of (4) for all j = 2, . . . , p. Since

‖β̃
(•)

[-k] − β
(m)

0 ‖2 = oP(1) by Lemma 1 and s = o{N [M(log p + M)]−1}, by Lemma S5, we

have X(m)

i,β̃
(•)
[-k]

is sub-gaussian given β̃
(•)

[-k], with probability converging to 1. Then there exists

constant C9 > 0 that with probability converging to 1,

‖H̃(•)
[k]ũ

(•)
j − e

(•)
j ‖2,∞ ≤ C9

√
M(log p+M)

N
,

which indicates that problem (4) has feasible solution. Since (4) minimizes maxm∈[M ] ‖u(m)

j ‖1

and ũ(•)
j belongs to the feasible set, we have maxm∈[M ] ‖û(m)

j,[k]‖1 ≤ maxm∈[M ] ‖ũ(m)

j ‖1 and then

the boundness of maxm∈[M ] ‖û(m)

j,[k]‖1 follows from Assumption 1 (i).

Lemma S4 (Zolotarev (1961)). Let Y be a nondegenerate gaussian mean zero random

variable (r.v.) with covariance operator Σ. Let σ2 be the largest eigenvalue of Σ and d be

the dimension of the corresponding eigenspace. Let σ2
i , 1 ≤ i < d′, be the positive eigenvalues

of Σ arranged in a nonincreasing order and taking into account the multiplicities. Further,

if d′ <∞, put σ2
i = 0, i ≥ d′. Let H(Σ) :=

∏∞
i=d+1(1− σ2

i /σ
2)−1/2. Then for y > 0,

P{‖Y ‖ > y} ∼ 2Aσ2yd−2 exp(−y2/(2σ2)), as y →∞,

where A := (2σ2)−d/2Γ−1(d/2)H(Σ) with Γ(·) the gamma function.

Lemma S5. Under the same assumptions of Lemma 1, for any m ∈ [M ] and any given β(m)

satisfying ‖β(m) − β(m)

0 ‖2 = o(1), there exists constant C0 > 0 such that

C−1
0 ≤ Λmin

{
H(m)

β(m)

}
≤ Λmax

{
H(m)

β(m)

}
≤ C0.
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Proof. For any x ∈ Rp satisfying ‖x‖2 = 1, by Assumption 2, we have

|xTH(m)

β
(m)
0

x− xTH(m)

β(m)x| = |E(xTX(m)

i )2{φ̈(X(m)T

i β(m)

0 )− φ̈(X(m)T

i β(m))}|

≤E(xTX(m)

i )2CL|X(m)

i {β
(m)T

0 − β(m)T}| ≤ CL
(
E[xTX(m)

i ]4 · E[X(m)

i {β
(m)T

0 − β(m)T}]2
) 1

2 .

By Assumption 1 (i) and Assumption 4(a) or 4(b), we have that E[xTX(m)

i ]4 is bounded by

some absolute constant for all x and E[X(m)

i {β
(m)T

0 −β(m)T}]2 = o(1) since ‖β(m)−β(m)

0 ‖2 = o(1).

Thus, we have

|xTH(m)

β
(m)
0

x− xTH(m)

β(m)x| = o(1),

and the conclusion follows directly from Assumption 1 (i).

Lemma S6 (Berman (1962)). If X and Y have a bivariate normal distribution with expec-

tation zero, unit variance and correlation coefficient ρ, then

lim
c→∞

P(X > c, Y > c)

{2π(1− ρ)1/2c2}−1 exp
(
− c2

1+ρ

)
(1 + ρ)1/2

= 1,

uniformly for all ρ such that |ρ| ≤ δ, for any δ, 0 < δ < 1.
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S3. ADDITIONAL NUMERICAL RESULTS

In this section, we present additional numerical results for binary hidden markov model.

Figure S1 illustrates that, the false discovery rate and power results for hidden markov

model design has almost the same pattern as those of the Gaussian design.

Figure S1: The empirical FDR and power of our DSILT method, the one–shot approach
and the ILMA method under the binary HMM design, with α = 0.1. The horizontal axis
represents the overall signal magnitude µ.
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