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I. PANGENOME GRAPH REPRESENTATION

This section contains a short explanation of the pangenome graph representation used in PanGraph. A pangenome
graph is essentially composed of two elements: pancontigs, which encode the alignment of homologous sequences, and
paths, that correspond to representation for genomes as a sequence of pancontigs (see fig. S1).

Each pancontig carries the full information on the alignment of homologous sequences it contains. It possesses a
single consensus sequence, and each sequence in the alignment is encoded as variations over this consensus. These can
be either mutations of single nucleotides, gaps, deletions or insertions. The alignment sequence can be reconstructed
by performing these changes in order, as displayed in fig. 2. More information on the precise encoding used can be
found in PanGraph documentation.1

Each path is an oriented collection of pancontigs that represents a genome. For each item in the sequence along
with the pancontig id, PanGraph also stores the pancontig orientation (whether homology with the consensus is on
the forward the reverse strand of the genome). Since a sequence can traverse a particular pancontig multiple times

Fig. S 1 Pangenome graph representation. Given a set of genomes PanGraph will construct a pangenome graph by con-
densing all homologous sequences in pancontigs, containing the alignment of these sequences. Genomes can then be represented
as paths through the graph, i.e. lists of pancontigs that are traversed when moving along the genome. In our representation a
pangenome graph is in essence a collection of pancontigs and paths.

∗ These two authors contributed equally
1 See https://neherlab.github.io/pangraph/tutorials/tutorial_2

https://neherlab.github.io/pangraph/tutorials/tutorial_2
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Fig. S 2 From pancontig consensus to alignment. In our pancontig representation, each sequence in the alignment is
encoded as variations over the pancontig consensus. In practice in the pangraph output json file each alignment sequence is
saved as a list of gaps to be added to the consensus, sites to be mutated, insertions to be performed in gaps, and deletions. By
performing these changes in order on the consensus each sequence in the alignment can be reconstructed. In this example we
display how each of these variations are encoded and performed.

(e.g. paralogs), an additional index labels possible repeated occurrences in the pancontig.

From knowledge of all the pancontigs and paths, every single genome can be exactly reconstructed. Every part of
the sequence is encoded in a pancontig. “Small-scale” differences between genomes (i.e. SNPs, small insertions and
deletions) are encoded in pancontigs as variations over the consensus. “Large-scale” differences, such as presence or
absence of long stretch of sequences, are instead encoded in paths as presence or absence of pancontigs. This scale
separation can be tuned using PanGraph parameters, as will be explained in following sections.

II. PANGRAPH ALGORITHM

In this section we describe in more detail the algorithmic procedure used to build a pangenome graph. In essence,
the full pangenome graph is built by placing genomes on terminal leaves of a guide tree built from a sequence mini-
mizer distance matrix. These genomes are initially considered as elementary graphs composed of a single pancontig.
These are then propagated along the tree towards the root, and at each intersection a merge operation is performed.
The full pangenome graph is then collected from the root.

Below, we discuss the following points in greater detail:

• The estimation of pairwise distances between genomes, used to build the guide tree.

• The procedure used to merge two pangenome graphs together, which is at the core of PanGraphs’s algorithm.

• The effect of the main parameters of the algorithm on the resulting graph structure.

• How pangraph processes duplicated regions and possible strategies for paralog splitting.

A. Guide tree construction and distance matrix estimation

As stated in the main text, the guide tree is built by neighbor-joining, with the pairwise distance between sequences
being approximated by the Jaccard distance between sequence minimizers. To maximize parallelization, the final
tree is a balanced binary tree with the same ordering of leaves as the one found by neighbour-joining. Here we
briefly discuss how the complexity of this distance matrix estimation scales with the number n and length L of input
sequences.
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As a first step of the distance estimation, we sketch all input sequences together and build a unique sorted list of
minimizers. This can be done in time O(L logL), where L = n× L is the total length of input sequences. With each
minimizer in the list we also keep the information of the genome of origin.
As a second step we count the number of minimizers shared by each pair of sequences. This can be done efficiently
by scrolling the sorted list of minimizers (having size at most proportional to L) only once. For each chunk of equal
minimizers in the list (having size between 1 and n, depending on common the original k-mer is) we increment
by one the corresponding pairs in a minimizer count matrix. Depending on how similar the input sequences are,
this operation has complexity between O(n2L) = O(nL) (all minimizers shared) and O(nL) = O(L) (no minimizer
shared).
In conclusion, depending on the similarity of the input sequences, evaluation of the pairwise distance matrix has
complexity between O(L logL) and O(L logL+ nL).

In practice for typical use cases of pangraph (n ∼ 100 and L ∼ 106) the computationally challenging part is the min-
imizer sketching, and not the distance matrix computation. This is partly due to some prefactors (e.g. the window size
of 100 bp used for sketching makes so that the list of minimizer is significantly shorter than the genome, and the only
operation performed n2 times is a single increment of an integer in the minimizer hit matrix). Moreover, the computa-
tional time to build the guide tree is usually negligible compared to the time required for the graph merging procedure.

B. Graph merging

At each merge operation two pangenome graphs need to be joined into a single one. Three of PanGraph’s parameters
play a role in the outcome of this procedure:

• the minimal pancontig length Lmin.

• pseudo-energy parameters α and β (cf. eq. (1) in the main text).

• the choice of alignment kernel (minimap2 or mmseqs2) and aligner precision (asm5, asm10 or asm20 for min-
imap2).

In the merging, these parameters control how much of the diversity between sequences must be stored as “large-scale”
variation (difference in paths) and how much as “fine-grained” variation (differences in alignments, stored in pancon-
tigs). This is done for example by setting a divergence limit for sequences to be stored in the same alignment.
An implicit assumption of our procedure is that the phylogeny of sequences stored inside the same pancontig is roughly
star-like, with each sequence containing independent variations from the consensus. In such cases the consensus is a
good “average” representation for the set of sequences in the alignment. In the next section we briefly discussion how
PanGraph behaves when this assumption is not satisfied, such as in the case of merging paralogs in the same pancontig.

The merging operation is performed in the following steps:

1. Using the chosen aligner kernel, we scan for homology between pancontigs of the two different graphs. This is
done by using only the consensus sequence of each pancontig.

2. The aligner will return a set of matches. Each match is characterized by an alignment length and a measure of
diversity. Using this information we rank matches by pseudo-energy, so that longer and less diverged matches
will be processed first. We refuse all matches with positive pseudo-energy and all matches shorter than the
threshold length Lmin.

3. For each of the remaining matches we attempt to merge pancontigs following these steps:

(a) We check that no prior mergers have been performed on the same two pancontigs. Sometimes multiple
matches are found on the same pancontig, and in this case we prioritize the ones with more negative
pseudo-energy. Any following match on the same pancontig will be discarded at this step. It will however
be performed later on in the self-map phase of the algorithm (see step 4).

(b) Flanking regions of the consensus sequences that are not part of the match are cut and not merged and
stored in separate pancontigs (see fig. 1 right panel in the main text). One exceptions is when any of these
flanking regions is shorter than the threshold length Lmin. In this case instead of creating a very short
pancontig the region is stored as an indel in the merged pancontig alignment.
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(c) The remaining homologous region is then a candidate for the merging. However the merging might result in
more than a single pancontig, depending on the underlying alignment. If the alignment contains insertions
or deletions longer that Lmin, these need to appear as separate pancontigs. To this end the CIGAR string
is parsed, and the long match is potentially split in multiple sub-matches, with interposed long insertions
or deletions that will be saved as separate pancontigs.

(d) At this point every (sub-)match is processed to produce a single merged pancontig. This is done by expand-
ing the alignments of the two original pancontigs, and stitching them together following the instructions
contained in the CIGAR string of the match. Once the full alignment is constructed the new consensus se-
quence is re-evaluated, and each sequence is then encoded as variations over this consensus. This completes
the creation of a new pancontig.

(e) The original starting pancontigs are then removed from the pangenome graph, and no new mergers can be
performed on them at this step of the algorithm. The newly-created pancontigs are added to the graph
and the corresponding paths are updated.

4. Once the list of all matches has been exhausted the two graphs have been merged into one. However at the
previous stage only one merger could be performed per pancontig, which could be insufficient to collapse all of
the homology contained in the graph. To this end we repeat the procedure described in step 3, but instead of
looking for matches between pancontigs of two different graphs, we perform an all-against-all homology search
between all pancontigs in the same graph. Mergers are performed following the same rules, and this procedure
is repeated until no new mergers can be performed.

5. In the final step of the procedure we perform some final grooming of the graph. This includes for example
removing transitive edges, i.e. pairs of pancontigs that are always traversed in the same way by all paths. These
pairs are merged in a single pancontig. This can happen for example when dealing with circular sequences such
as bacterial chromosomes. These sequences are transformed into a single linear pancontig at the beginning of
the algorithm, which introduces an artificial cut. When this elementary graph is propagated and the unique
pancontig is split, a transitive edge is generated across the artificial cut. We remove it in this step.

As graphs are propagated along the guide tree more and more mergers are performed. This makes pancontigs
progressively shorter but their alignments deeper.

During the graph merging procedure, only consensus sequences from each graph are used to find homologies between
pancontigs, not the individual sequences represented by the pancontig. This makes this procedure fast and is sufficient
to capture the large-scale structural variation of the pangenome, but might introduce minor inconsistencies and
artifacts in the alignment. To this end PanGraph has the command polish2. This command “polishes” alignments
by aligning all sequence represented by the pancontig using MAFFT (Katoh et al., 2002). The subcommand has a
simple interface: it takes as input a pangenome graph and produces another pangenome graph with the same structure
but improved pancontig alignments. This efficiently separates the problem of finding large-scale structural variation,
and nucleotide-level variation by using established algoritms for multiple sequence alignment only on parts of the
input genomes with established homology.

C. PanGraph parameters

After explaining the procedure we use for merging, we comment briefly on the effect of PanGraph’s parameters on
the resulting pangenome graphs.

Parameter Lmin controls the minimal size of pancontigs. Indels shorter than this size are saved as variation in
alignments, rather than as separate pancontigs. As such this parameter partially controls the fragmentation of the
graph. The appropriate value depends on the scale at which one wants to study structural variations in genomes.
The default value in PanGraph is set to 100 bp. This is done to capture structural variation at the gene scale, while
ignoring small indels. The value can, however, be tuned by the user depending on the specific use-case.
A similar role is played by the parameter α. This can be interpreted as the cost of introducing a cut in a pancontig.

2 See https://neherlab.github.io/pangraph/tutorials/tutorial_3/.

https://neherlab.github.io/pangraph/tutorials/tutorial_3/
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The length of homologous sequence to be merged must exceed this cost for a cut to be performed.

The choice of alignment kernel and the value of β set instead a limit on the divergence of sequences that are merged
in the same pancontig. The first intrinsic limit is set by the choice of alignment kernel and its sensitivity: minimap2
is significantly faster than mmseqs2, but it is in general unable to find matches between homologous sequences with
more than 20% divergence (with asm20 sensitivity).
On top of this intrinsic limit of the aligner, more explicit control of the acceptable amount of divergence can be
achieved by tuning the value of β. From the definition of the pseudo-energy (cf. eq. (1) in the main text) it follows
that matches between homologous sequence with divergence higher than 1/β will have positive pseudo-energy and
will thus not result in a merger. If the molecular clock hypothesis holds, tuning this parameter is equivalent to setting
an effective time limit beyond which contigs are not to be merged.

D. Paralog splitting

By design, in PanGraph duplicated sequences (of size larger than Lmin) will be merged in the same pancontig. This
is done by design, so that positions in which these duplications are present will correspond to a structural breakpoint
in the graph, and information on all of the contexts in which a duplicated region appears will be grouped together in
the edges connected to this duplicated pancontig.
This is however not always desirable. For example in the case of distantly related paralogs the user might want to
avoid unnecessary structural complication in the graph, and prevent merging these sequences together if they are
generated by an ancient duplication event.

This paralog splitting can be done using two different sources of information: either sequence diversity or local
context in which the duplication is inserted. Currently PanGraph does not provide a specific command to perform
paralog splitting. This is a feature that we plan on implementing in the future. However partial control of paralog
split can currently be achieved in two ways.
The first one is based on sequence divergence. By tuning the value of the energy parameter β the user can set a
divergence limit. This would prevent the merging of paralogs that have sequence divergence higher than 1/β during
graph construction.
The second method relies instead on context. The marginalize command possesses the optional --reduce-paralog
flag. When set, this flag will result in the removal of artificial splits caused by duplicated pancontigs that always
occur in the same non-duplicated context. These duplicated pancontigs are then split and absorbed in their context,
thus simplifying the graph and loosing trace of the duplication.

III. GENERATION OF SYNTHETIC DATA

As a first test we benchmark the performances and accuracy of PanGraph on synthetic data, obtained by simulating
the evolution of a population in which individuals accumulate mutations, can loose part of the sequence from deletions,
or gain new genetic material via Horizontal Sequence Transfer (HST) from other members of the population.
In the simulation a population of sizeN is evolved for T generations using a Wright-Fisher model (Hudson, 2002). Each
individual in the population has a circular genome of initial size L. At each generation single-nucleotide mutations
occur at a rate µ per position. Deletions can occur at a rate d per genome per generation. When a deletion is
suggested on isolate n, having a genome length Ln, a new desired length L′

n is extracted from a Gaussian distribution
with mean L and variance σ2. If ∆ = L′

n − Ln < 0 then a random chunk of length |∆| is removed from the genome,
reducing it to size L′

n. If ∆ > 0 no deletion is performed. This ensures that the length distribution of genomes in the
population remains close to the desired length L, with σ2 being a proxy for the variance. HST occurs at a rate h per
genome per generation. Similarly to deletions, when a HST event is suggested a new desired length L′

n is extracted
from the same Gaussian distribution, and this time the event is performed only if ∆ = L′

n − Ln > 0. In this case a
random chunk of sequence of length ∆ is extracted from a random individual in the parent population (possibly the
parent of isolate n itself) and inserted in a random position of the genome of isolate n. All parts of the sequence have
equal probability of being transferred, irrespective of homology. Finally, inversions occur at a rate i per genome per
generation. When an inversion is proposed a random length ∆ is chosen in the same way, and a random chunk of
sequence of this length is inverted. In the simulation we do not implement a notion of genes. Standard values of the
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simulation parameters are reported in Table I.

Parameter Description Standard Value

N population size 100

T n. of simulated generations 50

L average genome size 50 000 [bp]

σ s.t.d. of genome size L/10 [bp]

µ mutation rate 0.005 [1/bp · generation]
d deletion rate 0.05 [1/generation]

i inversion rate 0.01 [1/generation]

h HST rate 0.1 [1/generation]

TABLE I Simulation parameters. Description of all simulation parameters used for the generation of synthetic data. Unless
otherwise specified, the standard value is used.

At the end of the simulation the resulting mosaic genomes are collected, along with the real underlying pangenome
graph that can be used as the ground truth against which to check the performances of PanGraph. The code to
perform these simulations is shipped with PanGraph in the generate command.

IV. BENCHMARK OF PANGRAPH ON SYNTHETIC DATA

We test the performance of PanGraph on synthetic data, focusing on two aspects: the computational performances
of the algorithm (time and memory requirements) as a function of the dataset size, and the accuracy of the algorithm
in reconstructing the real pangenome graph of the population as a function of sequence divergence.

A. Computational performance

To test the computational performances of PanGraph we generated data using the model described in the previous
section, with standard value of the parameters but varying the average genome length L = [1, 5, 10, 50, 100, 500] kbp
and the population size N = [10, 20, 50, 100, 200, 500, 1000]. For each pair of N,L values we generated 50 different
datasets. On each dataset we ran the PanGraph build command, using minimap2 as alignment kernel with asm20
option. We used standard value for the energy parameters α = 100, β = 10. Runs were performed using 8 cores. For
each run we measured the wall-time of the command, the maximum memory requirements (maximum resident size)
and the average cpu percent. Results are displayed in Fig. 3. Thanks to the guide tree architecture of PanGraph the
run time scales almost linearly with the number of isolates.
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Fig. S 3 Computational performance of PanGraph algorithm on synthetic data, as a function of dataset size.
We run PanGraph on artificially generated datasets consisting of a variable number of isolates with genomes of variable length
(colorscale). For each condition we display the average and standard deviation over 50 different runs of: (A) algorithm wall-
time, (B) maximum memory requirement and (C) average percentage of cpu used on a total of 8 cores.
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B. Accuracy in reconstructing the pangenome graph

To test the accuracy of PanGraph in reconstructing the pangenome graph of a set of isolates we generated artificial
data using the procedure described in Section III. For each simulation we obtain both a set of genome sequences and
the underlying real pangenome graph. This was done using standard value of the parameters, but varying the rate
of HGT in the interval h = [0.01, 1] and the mutation rate µ = [0, 0.01]. For each (h, µ) pair 25 different sets of data
were generated.
On each set of data we executed PanGraph with values for the energy parameters α = 0 and β = 0, and with three
different alignment kernels:

• minimap2 with option asm10,

• minimap2 with option asm20,

• mmseqs2,

thus obtaining three different pangenome graphs per dataset.
To link the mutation rate parameter µ with the average pairwise SNPs distance ⟨d⟩ between homologous segments in
the population we evaluated the average pairwise distance for every pancontig in the pangenome graph with depth
greater than one. For each graph we then perform the weighted average of these divergences, using as weight the
length of the pancontig. Finally, for every pair of parameters (µ, h) we average these numbers over the 25 different
simulations. Results are displayed in Fig. 4.
For high values of µ, the average pairwise divergence of pancontigs is not influenced by the rate of HGT h, but
depends strongly on the choice of alignment kernel. With the asm20 option, minimap2 is able to correctly merge
genomes with average pairwise divergence ⟨d⟩ ∼ 7% in our simulations, while mmseqs2 reaches ⟨d⟩ ∼ 10% at the
expense of higher processing time. Notice that these values are lower than the threshold sensitivity of these aligners,
which are expected to find matches up to respectively around 10%, 20% and 30% sequence divergence. This is due
to the fact that homologous sequences in our simulations are generated by an evolutionary process, and they can
have a wide distribution of diversities and hierarchical population structure. Inability to merge sequences above a
threshold divergence in a single pancontig is expected to result in multiple pancontigs containing sub-clades with
higher similarity, and average diversity that is appreciably lower than the aligner threshold.
By performing a linear fit on the datapoints with µ ≤ 0.002 we are able to recover the conversion factor between the
mutation rate and average pairwise divergence of pancontigs in our simulations: ⟨d⟩ ∼ 20.8µ.
Once this link has been established we group simulations by the value of h and measure accuracy by comparing the

reconstructed pangenome graphs with the ground truth provided by our simulations. In particular, for each isolate we
consider the breakpoints between different pancontigs that tile the genome, and measure the displacement between
the real position of these breakpoints and the position reconstructed by pangraph.
To evaluate this displacement it is first necessary to link breakpoints on the real and reconstructed pangenome graph.
We formulate this problem as an assignment problem, and solve it numerically using the Hungarian method (Kuhn,
1955). For each isolate we call bi for i = 1, . . . , I the pancontig breakpoints on the real pangenome graph, and bj
for j = 1, . . . , J the ones on the reconstructed pangenome graph.3 We define a cost matrix Dij = d(bi, bj) whose
elements are distances on the genome of pairs of breakpoints from the two graphs. We then numerically solve the
assignment problem on this matrix, and obtain a set of K = min{I, J} pairings between breakpoints such that the
distance between the pairs is minimal and all the breakpoints of the graph with minimum number of breakpoints
have been paired. The average distance between breakpoints in these pairs is the average breakpoint distance of the
graph.
For each simulation we obtain a number of average breakpoint distances equal to the number of isolates in the
simulation. In Fig. 5 we plot the cumulative distribution of these distances, with a cutoff at 1kbp. We stratify
simulations according to the average pairwise divergence of pancontigs inferred from the value of µ. Each panel
corresponds to a different alignment kernel. As the sequence diversity increases we observe a clear transition. For
low diversity most of the breakpoints are inferred to be only a few bp away from their real position, while for highly
diverged sequences the position of breakpoints is not precisely inferred and can be hundreds of bp away from their
real position. For different alignment kernels this transition occurs at different values of the divergence, with mmseqs2
being the most accurate, as can be visualize from Fig. 3 in the main text.

3 To avoid artifacts generated by the default threshold distance d = 100 bp of PanGraph, if any pair of breakpoints on the same graph
sits at a distance smaller than this threshold, we remove one of them.
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Fig. S 4 mutation rate vs divergence on synthetic data. We compare the mutation rate µ of our simulations with the
average pairwise divergence ⟨d⟩ of sequences in pancontigs of the resulting pangenome graphs. This is done for different values
of the rate of HGT h and for three different alignment kernels. As expected, the divergence is only marginally influenced by
the HGT rate, but the saturating value of the divergence depends strongly on the choice of alignment kernel, with mmseqs2
being able to merge sequences with average divergence higher than 10%. To find the relationship between the mutation rate
µ and the average pairwise divergence of the sequences we peform a linear fit on data points for µ ≤ 0.002. This provides the
conversion factor ⟨d⟩ ∼ 20.8µ.
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Fig. S 5 Accuracy of PanGraph algorithm on synthetic data. For each of our generated datasets we evaluate the average
displacement of inferred pancontig breakpoints. The figure represents the cumulative distribution of average misplacements,
stratified by the average pairwise divergence of sequences in pancontigs (see legend on the right). Each panel corresponds to a
different alignment kernel used to infer the pangenome graph (see panel title). As divergence increases we observe a transition
in the precision of breakpoint position estimation. At low divergence the position of most breakpoints is correctly estimated
withing a few bps, while at high divergence most breakpoints can be misplaced by multiple hundreds of bps. The transition
value for the divergence depends on the alignment kernel used, with mmseqs2 having the highest accuracy at the cost of higher
computational time.

V. BENCHMARK OF PANGRAPH ON REAL DATA

We benchmark PanGraph on real data, focusing on the computational performances and the properties of the
resulting pangenome graphs.



9

A. Dataset selection

We downloaded sets of annotated and complete chromosomes from RefSeq (O’Leary et al., 2016) for 5 different
bacterial species: Klebsiella pneumoniae (KP), Helicobacter pylori (HP), Prochlorococcus marinus (PM), Mycobac-
terium tuberculosis (MT) and Escherichia coli (EC). In Table I in the main text we report some summary statistics
for these datasets. The number of isolates per species ranges from several hundreds for EC to 10 for PM.
These data has been chosen as part of a PanX (Ding et al., 2018) analysis dated March 2018.4 PanX is a pipeline
for the analysis of bacterial pangenome. The pipeline takes as input a set of annotated genomes, and it clusters and
aligns homologous genes. We used the PanX analysis to estimate the dataset diversity.
From this analysis we evaluated the average pairwise sequence divergence ⟨dcore⟩ of core genes, the average genome
length ⟨Lgen⟩, the total pangenome length Lpang, the total core genome length Lcore, and the total soft-core genome
length L95%, where soft-core genes are defined as genes being present in at least 95% of the isolates. These quantities
are reported in Table I in the main text.5

EC is the dataset with the highest number of isolates (307) and is also the one with the biggest pangenome. MT
is the species with the smallest sequence divergence (⟨dcore⟩ ∼ 0.03%) and the biggest core genome fraction. The
two datasets with highest sequence divergence are HP (⟨dcore⟩ ∼ 4%) and PM (⟨dcore⟩ ∼ 24%). For HP the average
sequence divergence sits on the limit of what PanGraph is able to accurately merge when using the minimap2 kernel
(cf. Fig. 5), but is merged correctly by the mmseqs2 kernel. The sequence divergence of PM sits instead beyond the
capabilities of all alignment kernels.

B. Pangenome graph construction

We built pangenome graphs using five different options for the alignment kernel:

• kernel minimap2 with option asm10 and default values for the energy parameters α = 100, β = 10.

• kernel minimap2 with option asm20 and default values for the energy parameters α = 100, β = 10.

• kernel mmseqs2 and default values for the energy parameters α = 100, β = 10.

• kernel minimap2 with option asm10 and null energy parameters α = 0, β = 0.

• kernel mmseqs2 and null energy parameters α = 0, β = 0.

From the results described in the previous section (see Fig. 5) we expect mmseqs2 to be able to merge sequences
with higher divergence than minimap2. Moreover from the definition of the pseudo-energy eq. (1) in the main text,
the value of the energy parameters β defines an upper threshold for sequence divergence d ∼ 1/β. Homologous
sequences with divergence higher than this value will result in positive pseudo-energy and will not be merged in a
single pancontig. For β = 10 the critical divergence threshold is d ∼ 10%. Executing pangraph with the option α = 0,
β = 0 will result in the merging of more diverged sequences, at the cost of a more fragmented pangenome graph
containing a higher number of shorter pancontigs.

C. Benchmark results

The results of the benchmark are displayed in Fig. 6. In each panel data are divided by species, with colors and
texture identifying the five possible choices for the alignment kernel.
Execution time (cf. panel B) depends on the dataset size and ranges from few minutes for PM to several hours for
EC. Aligning sequences with mmseqs2 consistently requires more time than minimap2. The time required to build
a pangenome graph for the 307 chromosomes of EC is only 5h for minimap2, and around 24h for mmseqs2. The
latter also has a higher minimum memory requirement (panel C, around 8 Gb when running on 8 cores) but this is
comparable to minimap2 when aligning several tens of isolates.

4 The list of accession numbers is available on the repository: https://github.com/neherlab/pangraph/blob/master/script/config/

accession_numbers.csv. We report for completeness that two of the isolates from the E. coli dataset from this analysis, namely
NC 020518 and NC 017663, were subsequently removed from RefSeq. We verified that their removal from the dataset does not significantly
impact core-genome and soft-core genome size, but decided to utilize the complete dataset as per original PanX analysis.

5 Lcore is the length of the alignment used to estimate sequence divergence ⟨dcore⟩. However this quantity is sensitive to annotation errors.
This is particularly evident in the E. coli dataset, for which Lcore = 0.7 Mbp is likely to be an underestimation of the real core genome
size. L95% is instead less sensitive to annotation errors and usually considered a better core-genome size estimate. For reference, the
E. coli core genome is usually considered to be around 1500-2500 genes in size, depending on the definition used (Horsfield et al., 2023;
Park et al., 2019; Sutton et al., 2021).

https://github.com/neherlab/pangraph/blob/master/script/config/accession_numbers.csv
https://github.com/neherlab/pangraph/blob/master/script/config/accession_numbers.csv


10

We quantify the properties of pancontigs by looking at three main statistics: their total number (panel D) the size
of the minimal set of pancontigs that includes at least 50% of all the graph sequence (L50 statistics, panel E) and
the length of the shortest pancontig in this minimal set (N50 statistics, panel F). As expected, the use of null energy
parameters results on average in a more fragmented graph, having more and shorter pancontigs. In general the
pangenome graphs of our datasets have around 103 / 104 pancontigs, with 50% of the sequence being contained in
around 10% of them, having N50 length of around 1-10 kbp.
The total pangenome length (panel G) depends both on the number of isolates and the ability of the alignment
kernel to merge homologous sequences. When setting the energy parameters to zero more diverged sequences are
merged into the same pancontigs and the total pangenome graph size is consistently smaller. The total graph size
is in general much smaller than the cumulative size of the genomes it contains (panel I), with compression up to
1-2% of the total size for graphs with a high number of isolates (EC) or with small accessory genome (MT). The
fraction of core sequence (panel H) is consistent with the species expectation, with MT having the highest core fraction.

Two species in our datasets hit the limits of the capabilities of PanGraph: HP and PM.
HP contains some homologous sequences with divergence higher than the default threshold d = 1/β ∼ 10%. Removing
this threshold by using null energy parameters results in a graph with fewer pancontigs, smaller L50, greater fraction
of core pangenome and higher level of sequence compression. These are all indications of more complete merging of
homologous sequences. This effect is more marked for mmseqs2 than for minimap2, in agreement with their different
divergence limit (cf. Fig. 5). The HP datasets represents an example in which relaxing the default divergence threshold
of pangraph and using a more accurate alignment kernel results in a more consistent pangenome graph.
Conversely, the PM dataset contains highly diverged isolates, whose divergence go beyond the capabilities of both
alignment kernels (⟨dcore⟩ ∼ 27%, cf. Table I in the main text). Only mmseqs2 manages to partially merge some of
the least diverged core sequences. This results in a small core genome fraction and poor sequence compression. In its
current state PanGraph cannot meaningfully merge genomes with such high divergence into a pangenome graph.

VI. GRAPH MARGINALIZATION

Given a pangenome graph containing many different genomes, PanGraph is capable of marginalizing it on a subset
of strains with the marginalize command. Marginalization removes undesired paths and merges any remaining
transitive pancontigs, i.e. pancontigs that are co-linear in all of the remaining paths. The resulting graph should be
equivalent to the one obtained by directly building a graph on the selected subset of strains, with the added advantage
that marginalization is a fast operation. This makes it more convenient to build a pangenome graph for the full set of
isolates considered, and then marginalizing it multiple times on interesting subsets, rather than building a new graph
for each subset.

We used genomes from the dataset described in the previous section to verify that marginalized graphs are com-
patible with graphs built directly from subset of strains. For each species we selected 50 different isolates (10 for
PM) and built pangenome graphs using standard parameter values and the minimap2 kernel with asm20 option.
For each species we then randomly picked 50 different pairs of isolates (all 45 for PM).6 For each pair we then built
pairwise graphs using the same parameters, and compared them to the corresponding marginalized graph, obtained
by projecting the full pangenome graph for the 50 isolates on the selected pair (cf. Fig. 6A, main text).
The comparison was performed by considering that each graph partitions a genome into pancontigs. Each pancontig
can either be shared with the other member of the pair, or can be private to the isolate (cf. Fig. 6A, main text).
For each isolate we consider the two partitions defined by the marginalized and pairwise graphs, and generate their
intersection. Each block in this intersection can belong to two different categories, depending on whether the two
partitions agree or disagree on whether the block is shared. Moreover, we can separate blocks on which we find
agreement in two further categories: blocks that are shared and blocks that are private on both graphs.
For each pair of genomes and each type of block we evaluate the fraction of the genome that they cover and their
average size. In Fig. 7 we display the distribution of these quantities across all pairs for the different species considered
and the block types described above.
In all species except HP and PM we find very good agreement between pairwise and marginalized graphs: segments on
which the graphs disagree represent only a very minor fraction of the genome (much smaller than the fraction of shared

6 The list of selected pairs for each species is available on the repository: https://github.com/neherlab/pangraph/blob/master/script/
config/marginalize_pairs.csv

https://github.com/neherlab/pangraph/blob/master/script/config/marginalize_pairs.csv
https://github.com/neherlab/pangraph/blob/master/script/config/marginalize_pairs.csv
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Fig. S 6 Benchmark on real data. We run PanGraph on datasets consisting of 5 different bacterial species, and using 5
different options for the alignment kernel as described in the text. Runs were performed using 8 cores. A: number of isolates
for each species. B: algorithm wall-time. C: maximum memory usage. D: total number of pancontigs in the pangenome graph.
E: minimum number of pancontigs that can add up to 50% of the total pangenome graph length. F: threshold length such
that the cumulative size of all pancontigs longer than this threshold is more than 50% of the full pangenome graph. G: total
length of the pangenome graph (sum of all pancontig lengths). H: fraction of the pangenome graph that is composed of core
pancontigs, i.e. pancontigs that occur exactly once per isolate. I: ratio between the length of the pangenome graph and the
total length of all genomes included in the graph. Since maximal compression also depends on the number of isolates N , we
mark with horizontal lines the value of 1/N for each species.

or private blocks), and have size compatible with the default pancontig length threshold of PanGraph (Lmin =100
bp). As described in the previous section, the divergence of the HP dataset sits on the limit of what the minimap2
alignment kernel can successfully handle. As such, the results of merging different graphs together can depend on the
order of merging, and pairwise and marginalized graphs can potentially show some disagreement. In this case the
disagreement remains minor and only extends to few percents of the genome size, with disagreement blocks having
size only slightly bigger than the 100 bp threshold of PanGraph. PM represents instead an example of a dataset
with divergence much beyond the limit of the alignment kernel (⟨dcore⟩ ∼ 27%). As a consequence, highly diverged
homologous sequences are not merged, and the great majority of segments are private and have large size. Results
also show a strong order-dependence, with some disagreement blocks having size of 10s of kbp.
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Fig. S 7 Marginalized graphs are compatible with pairwise graphs. We compare marginalized graphs with pairwise
built graphs for different random pairs of strains from 5 different species, as described in the text. Each graph defines a partition
of a genome into segments, that can either be shared in the pair or private to the genome. We intersect these two partitions, and
categorize segments based on whether the two partitions agree or disagree on their sharing. Agreement segments are further
split depending on whether the segment is shared or private on both graphs. The figure displays the distribution of the average
size of these segments (right column) and the average fraction of genome that they cover (left column) for the 50 different pairs
considered (45 for PM). For all species with sequence divergence compatible with the limit of the alignment kernel used (KP,
MT, EC), we find very good agreement between marginalized and pairwise graphs, with disagreement segment only covering a
very small fraction of the genome and having size compatible with PanGraph threshold pancontig length (100 bp).
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