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engineered microbes are constructed for testing is routine. Meanwhile, sample
preparation methods that work efficiently on broader microbial groups are desirable for
new applications of proteomics in other fields, such as microbial communities. Here,
we detail a step-by-step protocol that consists of cell lysis in alkaline chemical buffer
(NaOH/SDS) followed by protein precipitation with high-ionic strength acetone in 96-
well format. The protocol works for a broad range of microbes (e.g., Gram-negative
bacteria, Gram-positive bacteria, non-filamentous fungi) and the resulting proteins are
ready for tryptic digestion for bottom-up quantitative proteomic analysis without the
need for desalting column cleanup. The yield of protein using this protocol increases
linearly with respect to the amount of starting biomass from 0.5 - 2.0 OD*mL of cells.
By using a bench-top automated liquid dispenser, a cost-effective and environmentally-
friendly option to eliminating pipette tips and reducing reagent waste, the protocol
takes approximately 30 minutes to extract protein from 96 samples. Tests on mock
mixtures showed expected results that the biomass composition structure is in close
agreement with the experimental design. Lastly, we applied the protocol for the
composition analysis of a synthetic community of environmental isolates grown on two
different media. This protocol has been developed to facilitate rapid, low-variance
sample preparation of hundreds of samples and allow flexibility for future protocol
development.
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Abstract  

Plate-based proteomic sample preparation offers a solution to the large sample throughput demands in the 

biotechnology field where hundreds or thousands of engineered microbes are constructed for testing is 

routine. Meanwhile, sample preparation methods that work efficiently on broader microbial groups are 

desirable for new applications of proteomics in other fields, such as microbial communities. Here, we detail 

a step-by-step protocol that consists of cell lysis in alkaline chemical buffer (NaOH/SDS) followed by 

protein precipitation with high-ionic strength acetone in 96-well format. The protocol works for a broad 

range of microbes (e.g., Gram-negative bacteria, Gram-positive bacteria, non-filamentous fungi) and the 

resulting proteins are ready for tryptic digestion for bottom-up quantitative proteomic analysis without the 

need for desalting column cleanup. The yield of protein using this protocol increases linearly with respect 

to the amount of starting biomass from 0.5 - 2.0 OD*mL of cells. By using a bench-top automated liquid 
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dispenser, a cost-effective and environmentally-friendly option to eliminating pipette tips and reducing 

reagent waste, the protocol takes approximately 30 minutes to extract protein from 96 samples. Tests on 

mock mixtures showed expected results that the biomass composition structure is in close agreement with 

the experimental design. Lastly, we applied the protocol for the composition analysis of a synthetic 

community of environmental isolates grown on two different media. This protocol has been developed to 

facilitate rapid, low-variance sample preparation of hundreds of samples and allow flexibility for future 

protocol development. 

  

Introduction 

As new applications of protein analysis increase there is a concurrent impact on analytics, such as bottom-

up, quantitative proteomics, to assay the samples. The impact of this is felt most intensely in biotechnology 

where the construction of hundreds or thousands of samples for testing is routine [1] and for analyses where 

the structure of microbial communities of diverse organisms must be assayed [2]. Consequently, it is crucial 

to improve the quality and throughput of sample preparation methods that facilitate such assays. Recently, 

multiple groups have automated various steps (e.g., cell lysis, protein precipitation/isolation, protein 

quantification, tryptic digestion) of the common bottom-up proteomic sample preparation methods for 

various types of samples. There are a variety of automated protocols for the tryptic digestion and peptide 

cleanup steps [3–7] because once the protein is purified from the cells or matrices the digestion and cleanup 

steps are quite similar regardless of the original source.  

 

In contrast, there are fewer examples of automation protocols for cell lysis or protein precipitation/isolation 

because the source of the protein sample greatly impacts those methods and commonly-used mechanical 

lysis techniques (e.g., sonication, bead beating, French press) are challenging to automate. But, chemical 

lysis methods by using detergents or surfactants (e.g., SDS, Triton) [8–11], organic solvents [12,13], 

acidification [14], chelating agents (EDTA), and chaotropic agents (e.g., urea, guanidine) are more 

https://sciwheel.com/work/citation?ids=806218&pre=&suf=&sa=0
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amenable to automation. Recently, automated methods for FASP [8,15,16], SP3 [9], and several 

commercial options (e.g., iST, S-Trap tips) leveraging these methods have been developed in plate format. 

These types of protocols effectively reduce both the total and hands-on time for sample preparation [11] 

but can become quite costly for large numbers of samples. Alternatively, cell lysis by using detergents 

under alkaline conditions coupled with purification by protein precipitation are rapid, easily automated, and 

cost effective. Work by Doucette and co-workers detail how high-yield (~98%) protein precipitation can 

be achieved in only two minutes by using a high ionic strength 80% acetone solution [17–19]. Here, we 

describe a rapid protocol for samples in 96-well plate format including cell lysis, benzonase digestion of 

the nucleic acids, and precipitation of the proteins with the salt-acetone method [17] that is applicable to 

monocultures and microbial communities. Even though SDS is used for lysis, protein precipitation and 

subsequent washing steps efficiently remove the SDS from the samples, consequently, clean-up steps are 

not necessary prior to LC-MS analysis. After resuspension of the proteins, we quantify the amount of 

protein extracted and show a linear increase of protein released from Escherichia coli, Pseudomonas putida, 

Streptomyces albus, Corynebacterium glutamicum, Saccharomyces cerevisiae, and Rhodosporidium 

toruloides. Next, we used a previously described automation protocol [20] to normalize the amount of 

protein and set up tryptic digestion and then analyzed the peptides with a short 10-minute gradient LC-

MS/MS data independent acquisition (DIA) method [21] for both single organisms and mixtures of 

organisms. Lastly, we analyzed a synthetic community of five bacteria (four Gram-negative, one Gram-

positive) isolated from the environment [22] to test the methods for composition analysis by quantifying 

the contribution of each of the species to the total biomass. This protocol, combined with previously 

established automated protein quantification and protein normalization protocols, provides a rapid, cost-

effective method to prepare LC-MS proteomic samples from bacteria and non-filamentous fungi cell 

cultures.  
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Materials and Methods 

The protocol described in this peer-reviewed article is published on protocols.io, 

https://www.protocols.io/view/alkaline-sds-cell-lysis-of-microbes-with-acetone-p-6qpvr6xjpvmk/v1 and 

is included for printing as Supporting Information File 1 (S1) with this article. 

 

Expected results 

The alkaline-SDS cell lysis with acetone protein precipitation protocol (S1 File) is composed of cell lysis 

with a mixture of 200 mM NaOH and 1% sodium dodecyl sulfate (SDS), neutralization with HCl, 

benzonase treatment to remove nucleic acids, followed by the addition of acetone (80% by volume) to 

precipitate the proteins. The protocol takes approximately 30 minutes to process one full 96-well plate of 

samples, including centrifugation steps. The protocol time is scalable to the number of samples to be 

processed. Application of this protocol with an automated liquid dispenser offers cost-savings by reducing 

the number of pipette tips used in the protocol and minimizing reagent waste due to extremely low dead 

volumes. The total extracted protein amount using the described protein extraction protocol varies on our 

tested microorganisms, but the protein amounts extracted from them all show a linear relationship to the 

amount of biomass used in the test (Figure 1). With two OD*mL (~2 ×109 cells) of biomass, we obtained 

up to 92 μg and 57 ug total proteins from Gram-positive bacteria species of C. glutamicum and S. albus 

(Figure 1A), 293 ug and 203 ug total proteins from Gram-negative bacteria species of E. coli and P. putida 

(Figure 1B), and  234 ug and 148 ug total proteins from non-filamentous fungi species of S. cerevisiae and 

R. toruloides (Figure 1C). The protein amounts are sufficient for typical nano- and standard-flow LC-MS 

data acquisition methods and can easily be adjusted for applications requiring larger amounts of protein 

such as deep-proteome analysis by fractionation or post-translational modification characterization 

experiments. The upper limit on the amount of biomass that can be processed with this protocol is limited 

by the amount of SDS-alkaline based lysis buffer that can be added to the PCR plate (~25 μL). For 

applications that require larger amounts of protein, such as multi-dimensional chromatography, the protocol 



 

 

can easily be adapted to extractions in deep-well plates with correspondingly more lysis buffer and acetone. 

The protocol can also be scaled down to approximately 0.25 OD*mLs cells for gram negative bacteria and 

non-filamentous fungi species, and 0.5 OD*mLs cells for Gram-positive bacteria with consistent protein 

recovery (n = 4). Sample types other than microbial cell pellets, such as tissues and complex biofluids, 

haven’t been tested with this protocol and may need additional sample preparation steps. Microbes that are 

highly resistant to cell lysis may require stronger lysis buffer conditions or increased temperatures. 

Proteolytic digestion of proteins resulting from these samples, however, are readily suitable for LC-MS 

analysis without the need of additional desalting steps. 

 

Because of its broad applicability, we tested the protocol on mock mixtures of microbial community 

samples to assess community biomass composition structure using the metaproteomics analysis method 

established previously [23]. This method estimates the microbial community structure by calculating the 

percentage of proteinaceous contribution from each member, which is based on the quantitative 

measurements of the unique peptides that are identified in each member. High-quality, high-throughput, 

reproducible metaproteomic data will contribute to wider application of such experiments for microbial 

community analysis [2,24,25]. The expected microbial community composition results from samples 

prepared by the protocol is demonstrated in Figures 2 and 3 by using an Agilent 1290 UHPLC coupled to 

a Thermo Orbitrap Exploris 480 system operating in data-independent acquisition (DIA) mode [21]. From 

a LC-MS/MS method (15 minute total run time) we identified more than 1100 proteins and 7000 peptides 

of each microbe from a 12 μg load of the mock microbial community mixture, consistent with previous 

applications of the digestion protocols [13]. We prepared mixtures of mock microbial communities 

consisting of two Gram-negative bacteria (E. coli and P. putida) or two non-filamentous fungi (S. cerevisiae 

and R. toruloides) at four biomass ratios. The estimated biomass compositions are reproducible (0.83% 

standard deviation of the replicates; n = 4) and the measured ratios are in close agreement (<3.5%) of the 

expected ratios as designed (Figure 2, Table 1).   
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Next, we tested the protocol on a synthetic microbial community of five environmental isolates [22] 

consisting of one Gram-positive bacterium (ENIGMA isolate: FW305-3-2-15-F-LB2 (GenBank Accession 

number: OM867407) and four Gram-negative bacteria (ENIGMA isolates: GW456-12-10-14-LB3 

(GenBank Accession number: MH795608), GW458-12-9-14-LB2 (GenBank Accession number: 

MH795601), GW460-LB6 (GenBank Accession number: MH795591), GW460-11-11-14-TSB4 (GenBank 

Accession number: MH795599)) grown under different experimental conditions to determine composition 

changes. We started the culture of the five-member microbial community at 20% composition of each and 

grew them in two culture media, Reasoner’s 2A (R2A) [26] and glucose minimal medium. 

 

Table 1 

Mix % measured % expected  Mix % measured % expected 

E. coli 4.4 ± 0.2 5  S. cerevisiae 8.4 ± 0.1 5 

P. putida 95.6 ± 0.2 95  R. toruloides 91.6 ± 0.1 95 

E. coli 8.2 ± 0.1 10  S. cerevisiae 12.1 ± 0.3 10 

P. putida 92.8 ± 0.1 90  R. toruloides 87.9 ± 0.3 90 

E. coli 23.0 ± 0.3 25  S. cerevisiae 26.2 ± 0.6 25 

P. putida 77.0 ± 0.3 75  R. toruloides 73.8 ± 0.6 75 

E. coli 48.6 ± 0.5 50  S. cerevisiae 52.7 ± 0.8 50 

P. putida 51.4 ± 0.5 50  R. toruloides 47.3 ± 0.8 50 

 

We observed significant divergence from the initial composition in each culture medium after 24 hours 

(Figure 3). The GW456-12-10-14-LB3 isolate decreased in both media while GW458-12-9-14-LB2 

increased in glucose minimal medium and GW460-LB6 increased significantly in R2A medium. These 

differences in community structure reflect the impacts of medium compositions on species interactions and 

dynamics. This protocol is designed for lab-based, culture conditions and synthetic community experiments 

where complex sample matrices (e.g., feces, soil) are minimized. Additional sample preservation and/or 

protein extraction methods may be required for environmental samples to minimize protein degradation 

and maintain sample integrity.  Overall, the flexible design of this protocol enables one researcher to prepare 

https://sciwheel.com/work/citation?ids=11100205&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=2776268&pre=&suf=&sa=0


 

 

thousands of bottom-up proteomic samples per week. Supporting publications for other monoculture and 

synthetic community experiments are under development.   

 

Supporting Information 

S1: Alkaline-SDS cell lysis with acetone protein precipitation for proteomic sample preparation of microbes 
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Figure Captions 

Figure 1. Scatter plots with data points showing the total protein extracted by using the alkaline-acetone 

sample preparation protocol on different amounts of biomass from: (A) Gram-positive; (B) Gram-negative; 

and (C) fungal cells. The error bars represent two replicates performed on separate days. 

 

Figure 2. Community proteomic composition analysis of mock mixtures shows accurate estimation of 

biomass contribution. The stacked bar plots display the percentage of biomass contribution from members 

in (A) Gram-negative mock community, and (B) Non-filamentous fungi mock community. The error bar 

shows the standard deviation of calculated composition of each member (n = 4). The LCMS analysis raw 

data have been deposited to the ProteomeXchange Consortium data depository at 

http://www.proteomexchange.org/. They are publicly accessible with the dataset identifier PXD039268. 

 

Figure 3. Community proteomic composition analysis shows accurate estimation of biomass contribution 

of community structure changes upon different culture conditions. The stacked bar plots display the 

percentage of biomass contribution from members of the synthetic microbial community, and the error bars 

show the standard deviation of calculated composition of each member (n = 3). Synthetic microbial 

community shows distinct structure when culturing in different media, Reasoner’s 2A (R2A) and glucose 

minimal medium. The LCMS analysis raw data have been deposited to the ProteomeXchange Consortium 

data depository at http://www.proteomexchange.org/. They are publicly accessible with the dataset 

identifier PXD039268. 
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