S1 Proof

MTL LINA computes a $d \times 1$ output vector, Y, that contains the predicted states of d traits from an $m \times 1$ input vector, X, that contains the genotypes of m SNPs. MTL LINA can be expressed as:

$$
Y = S(K \cdot (A \circ X) + B),
$$

$$
A = F(X),
$$

where $S(\cdot)$ is an activation function to be applied element-wise to its input column vector, K is a $d \times m$ coefficient matrix, A is a $m \times 1$ attention vector, B is a $d \times 1$ bias vector, ∙ represents the matrix-vector multiplication, and ∘ represents the element-wise multiplication. For the binary classification phenotypes where $S($) is the sigmoid function, we define the $d \times 1$ vector Logit as:

$$
Logit = \mathbf{K} \cdot (A \circ X) + B
$$

For any phenotype p we have:

$$
Logit_p = K_p^T(A \circ X) + b_p
$$

where K_p is the coefficient vector specific to phenotype p and b_p is the bias specific to phenotype p .

MTL LINA provides the first-order interpretation for phenotype p . For each phenotype, the gradient of the output logit, $Logit_p$, w.r.t the input feature X, is defined as the first-order importance score. The logit is used for the importance score computation because it produces more accurate results [1]. For phenotype p , the output gradient for feature $x_i\, \in\, X$ can be decomposed as follows:

$$
\frac{\partial Logit_p}{\partial x_i} = k_{p,i}a_i + \sum_{j=1}^m k_{p,j} \frac{\partial a_j}{\partial x_i} x_j
$$

where $k_{p,i} \in K$, $x_j \in X$, and $(a_i, a_j) \in A^2$.

 ∂ Logit $_p$ $\frac{\partial g u p}{\partial x_i}$ is the instance-wise first-order importance score of feature x_i for phenotype p .

The model-wise first-order importance score is derived as such:

$$
FP_{p,i} = \left| \frac{\partial Logit_p}{\partial x_i} \right|
$$

Where $\vert \ \vert$ represents the absolute value operator and $\bar{\hspace{0.1cm}}$ represents the mean operator.

MTL LINA provides the second-order interpretation for phenotype p . It is based on the second-order derivative for an attention neural network using the ReLU/Leaky-ReLU activation function in the hidden layers and the linear activation function in the attention layer. The second-order importance score between feature $\overline{x_i}$ and feature $\overline{x_j}$ for phenotype p is expressed as:

$$
\frac{\partial^2 Logit_p}{\partial x_i \partial x_j} = k_{p,j} \frac{\partial a_j}{\partial x_i} + k_{p,i} \frac{\partial a_i}{\partial x_j}
$$

where $(k_{p,i}, k_{p,j}) \in K^2$, $(x_i, x_j) \in X^2$, and $(a_i, a_j) \in A^2$.

The instance-wise second-order importance score for a feature pair (x_i, x_j) w.r.t. a phenotype p is defined as their second-order derivative. The model-wise second-order importance score is defined as:

$$
SP_{p,i,j} = \left| \frac{\partial^2 Logit_p}{\partial x_i \partial x_j} \right|
$$

Here, we demonstrate that the second-order derivative, under the condition of ReLU/Leaky-ReLU as the activation function in the hidden layers, can be derived as:

$$
\frac{\partial^2 Logit_p}{\partial x_i \partial x_j} = k_{p,j} \frac{\partial a_j}{\partial x_i} + k_{p,i} \frac{\partial a_i}{\partial x_j}
$$

where $(k_{p,i}, k_{p,j}) \in K^2$, $(x_i, x_j) \in X^2$, and $(a_i, a_j) \in A^2$.

Proof:

$$
\frac{\partial^2 L_{0} g_{itp}}{\partial x_i \partial x_j} = K_p \begin{bmatrix} x_1 \frac{\partial^2 a_1}{\partial x_i \partial x_j} \\ \vdots \\ x_{i-1} \frac{\partial^2 a_{i-1}}{\partial x_i \partial x_j} \\ x_i \frac{\partial^2 a_i}{\partial x_i \partial x_j} + \frac{\partial a_i}{\partial x_j} \\ x_{i+1} \frac{\partial^2 a_{i+1}}{\partial x_i \partial x_j} \\ \vdots \\ x_{j-1} \frac{\partial^2 a_{j-1}}{\partial x_i \partial x_j} \\ x_j \frac{\partial^2 a_j}{\partial x_i \partial x_j} + \frac{\partial a_j}{\partial x_i} \\ x_{j+1} \frac{\partial^2 a_{j+1}}{\partial x_i \partial x_j} \\ \vdots \\ x_n \frac{\partial^2 a_n}{\partial x_i \partial x_j} \end{bmatrix}
$$

where $K_p \in \mathbf{K}$ is the coefficient vector for phenotype p .

We aim to demonstrate that, for any neuron, q , in the attention layer that outputs A (i.e., $q \in A$

$$
\frac{\partial^2 a_q}{\partial x_i \partial x_j} = 0
$$
 for any x_i, x_j .

For any neuron $q \in A$:

$$
a_q = \sum_{k=1}^{m_l} w_{q,k,l} f_{k,l}
$$

$$
\frac{\partial a_q}{\partial x_j} = \sum_{k=1}^{m_l} w_{q,k,l} \frac{\partial f_{k,l}}{\partial x_j}
$$

$$
\frac{\partial^2 a_q}{\partial x_i \partial x_j} = \sum_{k=1}^{m_l} w_{q,k,l} \frac{\partial^2 f_{k,l}}{\partial x_i \partial x_j}
$$

where $f_{k,l}$ is the activation function output from neuron k on hidden layer l containing m_l neurons, and $w_{i,k,l}$ the coefficient of the connection between neuron q on layer A and neuron k on layer l .

For this proof, we define the activation functions:

ReLU(x) =
$$
\begin{cases} x, & \text{if } x > 0 \\ 0, & \text{else} \end{cases}
$$

and Leaky-ReLU(x) =
$$
\begin{cases} x, & \text{if } x > 0 \\ -\alpha x, & \text{else} \end{cases}
$$
, where α is a constant.

Initial case:

Let's assume the case where MTL LINA has only one hidden layer. For any neuron q on the 1^{st} hidden layer, we have:

$$
\frac{\partial f_{q,1}}{\partial x_j} = \frac{\partial f_{q,1}}{\partial o_{q,1}} \frac{\partial o_{q,1}}{\partial x_j}
$$

With $o_{q,1}$ being the output of neuron q before activation.

$$
o_{q,1} = \sum_{k=1}^{m} w_{q,k,1} x_k
$$

Because $w_{q,k,1}$ is independent of $x_j, \;$

$$
\frac{\partial o_{q,1}}{\partial x_j} = \sum_{k=1}^m w_{q,k,1} \frac{\partial x_k}{\partial x_j}
$$

Then:

$$
\frac{\partial f_{q,1}}{\partial x_j} = \frac{\partial f_{q,1}}{\partial o_{q,1}} \sum_{k=1}^m w_{q,k,1} \frac{\partial x_k}{\partial x_j}
$$

$$
\frac{\partial f_{q,1}}{\partial x_j} = \frac{\partial f_{q,1}}{\partial o_{q,1}} w_{q,j,1}
$$

Then:

$$
\frac{\partial^2 f_{q,1}}{\partial x_i \partial x_j} = \frac{\partial}{\partial x_i} \left(\frac{\partial f_{q,1}}{\partial o_{q,1}} w_{q,j,1} \right)
$$

$$
\frac{\partial^2 f_{q,1}}{\partial x_i \partial x_j} = w_{q,j,1} \frac{\partial}{\partial x_i} \left(\frac{\partial f_{q,1}}{\partial o_{q,1}} \right)
$$

When $f_{q,1}$ is ReLU or leaky-ReLU, then $\frac{\partial}{\partial x_i}\Big(\frac{\partial f_{q,1}}{\partial o_{1,1}}\Big)$ $\left(\frac{\partial f_{q,1}}{\partial o_{1,1}}\right) = 0$ because for ReLU: $\frac{\partial f_{q,1}}{\partial o_{q,1}} = 0$ \int_{0}^{1} , if $f_{q,1} > 0$ 0, or Leaky-ReLU: $\frac{\partial f_{q,1}}{\partial o_{q,1}} = \begin{cases} 1, & \text{if } f_{q,1} > 0 \\ -\alpha, & \text{else} \end{cases}$ a $-\alpha$, $else$ and so the second-order derivative $-\alpha$, $else$

of those functions is assumed to be 0 everywhere. Thus:

$$
\frac{\partial^2 f_{q,1}}{\partial x_i \partial x_j} = 0
$$

And:

$$
\frac{\partial^2 a_q}{\partial x_i \partial x_j} = \sum_{k=1}^{m_1} w_{q,k,1} \frac{\partial^2 f_{k,1}}{\partial x_i \partial x_j} = 0
$$

Induction:

We hypothesize that, for a neural network with 2 or more hidden layers, we have at layer l , for any neuron q :

$$
\frac{\partial^2 f_{q,l}}{\partial x_i \partial x_j} = 0
$$

On the next hidden layer $l + 1$, we have, for any neuron q :

$$
\frac{\partial f_{q,l+1}}{\partial x_j} = \frac{\partial f_{q,l+1}}{\partial o_{q,l+1}} \frac{\partial o_{q,l+1}}{\partial x_j}
$$

And:

$$
o_{q,l+1} = \sum_{k=1}^{m_l} w_{q,k,l} f_{k,l}
$$

Because $w_{q,k,l}$ is independent of x_j : $\,$

$$
\frac{\partial o_{q,l+1}}{\partial x_j} = \sum_{k=1}^{m_l} w_{q,k,l} \frac{\partial f_{k,l}}{\partial x_j}
$$

Then:

$$
\frac{\partial f_{q,l+1}}{\partial x_j} = \frac{\partial f_{q,l+1}}{\partial o_{q,l+1}} \sum_{k=1}^{m_l} w_{q,k,l} \frac{\partial f_{k,l}}{\partial x_j}
$$

$$
\frac{\partial^2 f_{q,l+1}}{\partial x_i \partial x_j} = \frac{\partial}{\partial x_i} \left(\frac{\partial f_{q,l+1}}{\partial o_{q,l+1}} \sum_{k=1}^{m_l} w_{q,k,l} \frac{\partial f_{k,l}}{\partial x_j} \right)
$$

$$
\frac{\partial^2 f_{q,l+1}}{\partial x_i \partial x_j} = \frac{\partial f_{q,l+1}}{\partial o_{q,l+1}} \sum_{k=1}^{m_l} w_{q,k,l} \frac{\partial}{\partial x_i} \left(\frac{\partial f_{k,l}}{\partial x_j} \right) + \frac{\partial}{\partial x_i} \left(\frac{\partial f_{q,l+1}}{\partial o_{q,l+1}} \right) \sum_{k=1}^{m_l} w_{q,k,l} \frac{\partial f_{k,l}}{\partial x_j}
$$

 ∂ $\frac{\partial}{\partial x_i} \left(\frac{\partial f_{q,l+1}}{\partial o_{q,l+1}} \right) = 0$ because the second derivative of ReLU or Leaky-ReLU is zero.

Thus,

$$
\frac{\partial^2 f_{q,l+1}}{\partial x_i \partial x_j} = \frac{\partial f_{q,l+1}}{\partial o_{q,l+1}} \sum_{k=1}^{m_l} w_{q,k,l} \frac{\partial}{\partial x_i} \left(\frac{\partial f_{k,l}}{\partial x_j} \right)
$$

For any neuron q on l (hypothesis):

$$
\frac{\partial^2 f_{q,l}}{\partial x_i \partial x_j} = 0
$$

By deduction:

$$
\frac{\partial^2 f_{q,l+1}}{\partial x_i \partial x_j} = \frac{\partial f_{q,l+1}}{\partial o_{q,l+1}} \sum_{k=1}^{m_l} w_{q,k,l} 0
$$

$$
\frac{\partial^2 f_{q,l+1}}{\partial x_i \partial x_j} = 0
$$

Conclusion:

By induction we have demonstrated that for any neuron q on any layer l :

$$
\frac{\partial^2 f_{q,l}}{\partial x_i \partial x_j} = 0
$$

Therefore,

$$
\frac{\partial^2 a_q}{\partial x_i \partial x_j} = \sum_{k=1}^{m_l} w_{q,k,l} \frac{\partial^2 f_{k,l}}{\partial x_i \partial x_j} = \sum_{k=1}^{m_l} w_{q,k,l} 0
$$

$$
\frac{\partial^2 a_q}{\partial x_i \partial x_j} = \mathbf{0}
$$

For any $a_q \in A$

$$
\frac{\partial^2 Logit_p}{\partial x_i \partial x_j} = K_p^T \begin{bmatrix} 0 \\ \vdots \\ 0 \\ \frac{\partial a_i}{\partial x_j} \\ 0 \\ 0 \\ \frac{\partial a_j}{\partial x_i} \\ 0 \\ \vdots \\ 0 \end{bmatrix}
$$

Hence:

$$
\frac{\partial^2 Logit_p}{\partial x_i \partial x_j} = k_{p,j} \frac{\partial a_j}{\partial x_i} + k_{p,i} \frac{\partial a_i}{\partial x_j}
$$

End-of-proof

Reference:

[1] K. Simonyan, A. Vedaldi, and A. Zisserman, "Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps." arXiv, Apr. 19, 2014. doi: 10.48550/arXiv.1312.6034.