
S1 Proof

MTL LINA computes a 𝑑 × 1 output vector, 𝑌, that contains the predicted states

of 𝑑 traits from an 𝑚 × 1 input vector, 𝑋, that contains the genotypes of 𝑚 SNPs. MTL

LINA can be expressed as:

𝑌 = 𝑆(𝑲 ∙ (𝐴 ∘ 𝑋) + 𝐵),

𝐴 = 𝐹(𝑋),

where 𝑆() is an activation function to be applied element-wise to its input column

vector, 𝑲 is a 𝑑 × 𝑚 coefficient matrix, 𝐴 is a 𝑚 × 1 attention vector, 𝐵 is a 𝑑 × 1 bias

vector, ∙ represents the matrix-vector multiplication, and ∘ represents the element-wise

multiplication. For the binary classification phenotypes where 𝑆() is the sigmoid

function, we define the 𝑑 × 1 vector 𝐿𝑜𝑔𝑖𝑡 as:

𝐿𝑜𝑔𝑖𝑡 = 𝑲 ∙ (𝐴 ∘ 𝑋) + 𝐵

For any phenotype 𝑝 we have:

𝐿𝑜𝑔𝑖𝑡௣ = 𝐾௣
்(𝐴 ∘ 𝑋) + 𝑏௣

where 𝐾௣ is the coefficient vector specific to phenotype 𝑝 and 𝑏௣ is the bias specific to

phenotype 𝑝.

MTL LINA provides the first-order interpretation for phenotype 𝑝. For each

phenotype, the gradient of the output logit, 𝐿𝑜𝑔𝑖𝑡௣ , w.r.t the input feature 𝑋, is defined

as the first-order importance score. The logit is used for the importance score

computation because it produces more accurate results [1]. For phenotype 𝑝, the output

gradient for feature 𝑥௜ ∈ 𝑋 can be decomposed as follows:

𝜕𝐿𝑜𝑔𝑖𝑡௣

𝜕𝑥௜
= 𝑘௣,௜𝑎௜ + ෍ 𝑘௣,௝

𝜕𝑎௝

𝜕𝑥௜
𝑥௝

௠

௝ୀଵ

where 𝑘௣,௜ ∈ 𝑲, 𝑥௝ ∈ 𝑋, and ൫𝑎௜ , 𝑎௝൯ ∈ 𝐴ଶ.

డ௅௢௚௜௧೛

డ௫೔
 is the instance-wise first-order importance score of feature 𝑥௜ for phenotype 𝑝.

The model-wise first-order importance score is derived as such:

FP୮,୧ = ฬ
𝜕𝐿𝑜𝑔𝑖𝑡௣

𝜕𝑥௜
ฬ

Where | | represents the absolute value operator and represents the mean

operator.

MTL LINA provides the second-order interpretation for phenotype 𝑝. It is based

on the second-order derivative for an attention neural network using the ReLU/Leaky-

ReLU activation function in the hidden layers and the linear activation function in the

attention layer. The second-order importance score between feature 𝑥௜ and feature 𝑥௝

for phenotype 𝑝 is expressed as:

𝜕ଶ𝐿𝑜𝑔𝑖𝑡௣

𝜕𝑥௜𝜕𝑥௝
= 𝑘௣,௝

𝜕𝑎௝

𝜕𝑥௜
+ 𝑘௣,௜

𝜕𝑎௜

𝜕𝑥௝

where ൫𝑘௣,௜ , 𝑘௣,௝൯ ∈ 𝑲ଶ, ൫𝑥௜ , 𝑥௝൯ ∈ 𝑋ଶ, and ൫𝑎௜ , 𝑎௝൯ ∈ 𝐴ଶ.

The instance-wise second-order importance score for a feature pair (𝑥௜ , 𝑥௝) w.r.t.

a phenotype 𝑝 is defined as their second-order derivative. The model-wise second-order

importance score is defined as:

SP୮,୧,୨ = ቤ
𝜕ଶ𝐿𝑜𝑔𝑖𝑡௣

𝜕𝑥௜𝜕𝑥௝
ቤ

Here, we demonstrate that the second-order derivative, under the condition of

ReLU/Leaky-ReLU as the activation function in the hidden layers, can be derived as:

𝜕ଶ𝐿𝑜𝑔𝑖𝑡௣

𝜕𝑥௜𝜕𝑥௝
= 𝑘௣,௝

𝜕𝑎௝

𝜕𝑥௜
+ 𝑘௣,௜

𝜕𝑎௜

𝜕𝑥௝

where ൫𝑘௣,௜ , 𝑘௣,௝൯ ∈ 𝑲ଶ, ൫𝑥௜ , 𝑥௝൯ ∈ 𝑋ଶ, and ൫𝑎௜ , 𝑎௝൯ ∈ 𝐴ଶ.

Proof:

𝜕ଶ𝐿𝑜𝑔𝑖𝑡௣

𝜕𝑥௜𝜕𝑥௝
= 𝐾௣

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 𝑥ଵ

𝜕ଶ𝑎ଵ

𝜕𝑥௜𝜕𝑥௝

⋮

𝑥௜ିଵ

𝜕ଶ𝑎௜ିଵ

𝜕𝑥௜𝜕𝑥௝

𝒙𝒊

𝝏𝟐𝒂𝒊

𝝏𝒙𝒊𝝏𝒙𝒋
+

𝝏𝒂𝒊

𝝏𝒙𝒋

𝑥௜ାଵ

𝜕ଶ𝑎௜ାଵ

𝜕𝑥௜𝜕𝑥௝

⋮

𝑥௝ିଵ

𝜕ଶ𝑎௝ିଵ

𝜕𝑥௜𝜕𝑥௝

𝒙𝒋

𝝏𝟐𝒂𝒋

𝝏𝒙𝒊𝝏𝒙𝒋
+

𝝏𝒂𝒋

𝝏𝒙𝒊

𝑥௝ାଵ

𝜕ଶ𝑎௝ାଵ

𝜕𝑥௜𝜕𝑥௝

⋮

 𝑥௡

𝜕ଶ𝑎௡

𝜕𝑥௜𝜕𝑥௝ ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

where 𝐾௣ ∈ 𝑲 is the coefficient vector for phenotype 𝑝.

We aim to demonstrate that, for any neuron, 𝑞, in the attention layer that outputs 𝐴 (i.e.,

𝑞 ∈ 𝐴)

డమ௔೜

డ௫೔డ௫ೕ
= 0 for any 𝑥௜ , 𝑥௝ .

For any neuron 𝑞 ∈ 𝐴:

𝑎௤ = ∑ 𝑤௤,௞,௟𝑓௞,௟
௠೗
௞ୀଵ

డ௔೜

డ௫ೕ
= ∑ 𝑤௤,௞,௟

డ௙ೖ,೗

డ௫ೕ

௠೗
௞ୀଵ

డమ௔೜

డ௫೔డ௫ೕ
= ∑ 𝑤௤,௞,௟

డమ௙ೖ,೗

డ௫೔డ௫ೕ

௠೗
௞ୀଵ

where 𝑓௞,௟ is the activation function output from neuron 𝑘 on hidden layer 𝑙 containing

𝑚௟ neurons, and 𝑤௜,௞,௟ the coefficient of the connection between neuron 𝑞 on layer 𝐴 and

neuron 𝑘 on layer 𝑙.

For this proof, we define the activation functions:

ReLU(𝑥) = ൜
𝑥, 𝑖𝑓 𝑥 > 0
0, 𝑒𝑙𝑠𝑒

and Leaky-ReLU(𝑥) = ൜
𝑥, 𝑖𝑓 𝑥 > 0
−𝛼𝑥, 𝑒𝑙𝑠𝑒

, where 𝛼 is a constant.

Initial case:

Let’s assume the case where MTL LINA has only one hidden layer.

For any neuron 𝑞 on the 1௦௧ hidden layer, we have:

𝜕𝑓௤,ଵ

𝜕𝑥௝
=

𝜕𝑓௤,ଵ

𝜕𝑜௤,ଵ

𝜕𝑜௤,ଵ

𝜕𝑥௝

With 𝑜௤,ଵ being the output of neuron 𝑞 before activation.

𝑜௤,ଵ = ෍ 𝑤௤,௞,ଵ𝑥௞

௠

௞ୀଵ

Because 𝑤௤,௞,ଵ is independent of 𝑥௝,

𝜕𝑜௤,ଵ

𝜕𝑥௝
= ෍ 𝑤௤,௞,ଵ

𝜕𝑥௞

𝜕𝑥௝

௠

௞ୀଵ

Then:

𝜕𝑓௤,ଵ

𝜕𝑥௝
=

𝜕𝑓௤,ଵ

𝜕𝑜௤,ଵ
෍ 𝑤௤,௞,ଵ

𝜕𝑥௞

𝜕𝑥௝

௠

௞ୀଵ

𝜕𝑓௤,ଵ

𝜕𝑥௝
=

𝜕𝑓௤,ଵ

𝜕𝑜௤,ଵ
𝑤௤,௝,ଵ

Then:

𝜕ଶ𝑓௤,ଵ

𝜕𝑥௜𝜕𝑥௝
=

𝜕

𝜕𝑥௜
ቆ

𝜕𝑓௤,ଵ

𝜕𝑜௤,ଵ
𝑤௤,௝,ଵቇ

𝜕ଶ𝑓௤,ଵ

𝜕𝑥௜𝜕𝑥௝
= 𝑤௤,௝,ଵ

𝜕

𝜕𝑥௜
ቆ

𝜕𝑓௤,ଵ

𝜕𝑜௤,ଵ
ቇ

When 𝑓௤,ଵ is ReLU or leaky-ReLU, then
డ

డ௫೔
൬

డ௙೜,భ

డ௢భ,భ
൰ = 0 because for ReLU:

డ௙೜,భ

డ௢೜,భ
=

൜
1, 𝑖𝑓 𝑓௤,ଵ > 0

0, 𝑒𝑙𝑠𝑒
 or Leaky-ReLU:

డ௙೜,భ

డ௢೜,భ
= ൜

1, 𝑖𝑓 𝑓௤,ଵ > 0

−𝛼, 𝑒𝑙𝑠𝑒
 and so the second-order derivative

of those functions is assumed to be 0 everywhere. Thus:

𝜕ଶ𝑓௤,ଵ

𝜕𝑥௜𝜕𝑥௝
= 0

And:

𝜕ଶ𝑎௤

𝜕𝑥௜𝜕𝑥௝
= ෍ 𝑤௤,௞,ଵ

𝜕ଶ𝑓௞,ଵ

𝜕𝑥௜𝜕𝑥௝

௠భ

௞ୀଵ

= 0

Induction:

We hypothesize that, for a neural network with 2 or more hidden layers, we have at

layer 𝑙, for any neuron 𝑞:

𝜕ଶ𝑓௤,௟

𝜕𝑥௜𝜕𝑥௝
= 0

On the next hidden layer 𝑙 + 1, we have, for any neuron 𝑞:

𝜕𝑓௤,௟ାଵ

𝜕𝑥௝
=

𝜕𝑓௤,௟ାଵ

𝜕𝑜௤,௟ାଵ

𝜕𝑜௤,௟ାଵ

𝜕𝑥௝

And:

𝑜௤,௟ାଵ = ෍ 𝑤௤,௞,௟

௠೗

௞ୀଵ

𝑓௞,௟

Because 𝑤௤,௞,௟ is independent of 𝑥௝:

𝜕𝑜௤,௟ାଵ

𝜕𝑥௝
= ෍ 𝑤௤,௞,௟

௠೗

௞ୀଵ

𝜕𝑓௞,௟

𝜕𝑥௝

Then:

𝜕𝑓௤,௟ାଵ

𝜕𝑥௝
=

𝜕𝑓௤,௟ାଵ

𝜕𝑜௤,௟ାଵ
෍ 𝑤௤,௞,௟

௠೗

௞ୀଵ

𝜕𝑓௞,௟

𝜕𝑥௝

𝜕ଶ𝑓௤,௟ାଵ

𝜕𝑥௜𝜕𝑥௝
=

𝜕

𝜕𝑥௜
ቌ

𝜕𝑓௤,௟ାଵ

𝜕𝑜௤,௟ାଵ
෍ 𝑤௤,௞,௟

௠೗

௞ୀଵ

𝜕𝑓௞,௟

𝜕𝑥௝
ቍ

𝜕ଶ𝑓௤,௟ାଵ

𝜕𝑥௜𝜕𝑥௝
=

𝜕𝑓௤,௟ାଵ

𝜕𝑜௤,௟ାଵ
෍ 𝑤௤,௞,௟

௠೗

௞ୀଵ

𝜕

𝜕𝑥௜
ቆ

𝜕𝑓௞,௟

𝜕𝑥௝
ቇ +

𝜕

𝜕𝑥௜
ቆ

𝜕𝑓௤,௟ାଵ

𝜕𝑜௤,௟ାଵ
ቇ ෍ 𝑤௤,௞,௟

௠೗

௞ୀଵ

𝜕𝑓௞,௟

𝜕𝑥௝

డ

డ௫೔
൬

డ௙೜,೗శభ

డ௢೜,೗శభ
൰ = 0 because the second derivative of ReLU or Leaky-ReLU is zero.

Thus,

𝜕ଶ𝑓௤,௟ାଵ

𝜕𝑥௜𝜕𝑥௝
=

𝜕𝑓௤,௟ାଵ

𝜕𝑜௤,௟ାଵ
෍ 𝑤௤,௞,௟

௠೗

௞ୀଵ

𝜕

𝜕𝑥௜
ቆ

𝜕𝑓௞,௟

𝜕𝑥௝
ቇ

For any neuron 𝑞 on 𝑙 (hypothesis):

𝜕ଶ𝑓௤,௟

𝜕𝑥௜𝜕𝑥௝
= 0

By deduction:

𝜕ଶ𝑓௤,௟ାଵ

𝜕𝑥௜𝜕𝑥௝
=

𝜕𝑓௤,௟ାଵ

𝜕𝑜௤,௟ାଵ
෍ 𝑤௤,௞,௟

௠೗

௞ୀଵ

0

𝝏𝟐𝒇𝒒,𝒍ା𝟏

𝝏𝒙𝒊𝝏𝒙𝒋
= 𝟎

Conclusion:

By induction we have demonstrated that for any neuron 𝑞 on any layer 𝑙:

𝝏𝟐𝒇𝒒,𝒍

𝝏𝒙𝒊𝝏𝒙𝒋
= 𝟎

Therefore,

𝜕ଶ𝑎௤

𝜕𝑥௜𝜕𝑥௝
= ෍ 𝑤௤,௞,௟

𝜕ଶ𝑓௞,௟

𝜕𝑥௜𝜕𝑥௝

௠೗

௞ୀଵ

= ෍ 𝑤௤,௞,௟0

௠೗

௞ୀଵ

𝝏𝟐𝒂𝒒

𝝏𝒙𝒊𝝏𝒙𝒋
= 𝟎

For any 𝑎௤ ∈ 𝐴

𝜕ଶ𝐿𝑜𝑔𝑖𝑡௣

𝜕𝑥௜𝜕𝑥௝
= 𝐾௣

்

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

 0
⋮
0

𝝏𝒂𝒊

𝝏𝒙𝒋

0
⋮
0

𝝏𝒂𝒋

𝝏𝒙𝒊

0
⋮

 0 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

Hence:

𝜕ଶ𝐿𝑜𝑔𝑖𝑡௣

𝜕𝑥௜𝜕𝑥௝
= 𝑘௣,௝

𝜕𝑎௝

𝜕𝑥௜
+ 𝑘௣,௜

𝜕𝑎௜

𝜕𝑥௝

End-of-proof

Reference:

[1] K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep Inside Convolutional
Networks: Visualising Image Classification Models and Saliency Maps.” arXiv, Apr. 19,
2014. doi: 10.48550/arXiv.1312.6034.

