
S1 Proof 

 

MTL LINA computes a 𝑑 × 1 output vector, 𝑌, that contains the predicted states 

of 𝑑 traits from an 𝑚 × 1 input vector, 𝑋, that contains the genotypes of 𝑚 SNPs. MTL 

LINA can be expressed as:  

𝑌 = 𝑆(𝑲 ∙ (𝐴 ∘ 𝑋) + 𝐵), 

𝐴 =  𝐹(𝑋), 

where 𝑆( ) is an activation function to be applied element-wise to its input column 

vector, 𝑲 is a 𝑑 × 𝑚 coefficient matrix, 𝐴 is a 𝑚 × 1 attention vector, 𝐵 is a 𝑑 × 1 bias 

vector, ∙ represents the matrix-vector multiplication, and ∘ represents the element-wise 

multiplication. For the binary classification phenotypes where 𝑆( ) is the sigmoid 

function, we define the 𝑑 × 1 vector 𝐿𝑜𝑔𝑖𝑡 as: 

𝐿𝑜𝑔𝑖𝑡 = 𝑲 ∙ (𝐴 ∘ 𝑋) + 𝐵 

For any phenotype 𝑝 we have: 

𝐿𝑜𝑔𝑖𝑡௣ = 𝐾௣
்(𝐴 ∘ 𝑋) + 𝑏௣ 

where 𝐾௣ is the coefficient vector specific to phenotype  𝑝 and 𝑏௣ is the bias specific to 

phenotype 𝑝. 

 

MTL LINA provides the first-order interpretation for phenotype 𝑝. For each 

phenotype, the gradient of the output logit, 𝐿𝑜𝑔𝑖𝑡௣ , w.r.t the input feature 𝑋, is defined 

as the first-order importance score. The logit is used for the importance score 

computation because it produces more accurate results [1]. For phenotype 𝑝, the output 

gradient for feature 𝑥௜  ∈  𝑋 can be decomposed as follows:   

 

𝜕𝐿𝑜𝑔𝑖𝑡௣

𝜕𝑥௜
= 𝑘௣,௜𝑎௜ + ෍ 𝑘௣,௝
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𝜕𝑥௜
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where 𝑘௣,௜  ∈  𝑲,  𝑥௝ ∈  𝑋, and ൫𝑎௜ , 𝑎௝൯  ∈  𝐴ଶ. 

డ௅௢௚௜௧೛

డ௫೔
  is the instance-wise first-order importance score of feature 𝑥௜ for phenotype 𝑝. 

The model-wise first-order importance score is derived as such:  



FP୮,୧ = ฬ
𝜕𝐿𝑜𝑔𝑖𝑡௣

𝜕𝑥௜
ฬ 

Where | | represents the absolute value operator and  represents the mean 

operator. 

 

MTL LINA provides the second-order interpretation for phenotype 𝑝. It is based 

on the second-order derivative for an attention neural network using the ReLU/Leaky-

ReLU activation function in the hidden layers and the linear activation function in the 

attention layer. The second-order importance score between feature 𝑥௜ and feature 𝑥௝ 

for phenotype 𝑝 is expressed as: 

𝜕ଶ𝐿𝑜𝑔𝑖𝑡௣

𝜕𝑥௜𝜕𝑥௝
= 𝑘௣,௝
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where ൫𝑘௣,௜ , 𝑘௣,௝൯  ∈  𝑲ଶ, ൫𝑥௜ , 𝑥௝൯  ∈  𝑋ଶ, and ൫𝑎௜ , 𝑎௝൯  ∈  𝐴ଶ. 

 

The instance-wise second-order importance score for a feature pair (𝑥௜ , 𝑥௝) w.r.t. 

a phenotype 𝑝 is defined as their second-order derivative. The model-wise second-order 

importance score is defined as:  

SP୮,୧,୨ = ቤ
𝜕ଶ𝐿𝑜𝑔𝑖𝑡௣

𝜕𝑥௜𝜕𝑥௝
ቤ 

  



 

Here, we demonstrate that the second-order derivative, under the condition of 

ReLU/Leaky-ReLU as the activation function in the hidden layers, can be derived as: 

𝜕ଶ𝐿𝑜𝑔𝑖𝑡௣
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where ൫𝑘௣,௜ , 𝑘௣,௝൯  ∈  𝑲ଶ, ൫𝑥௜ , 𝑥௝൯  ∈  𝑋ଶ, and ൫𝑎௜ , 𝑎௝൯  ∈  𝐴ଶ. 

 

Proof:  
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where 𝐾௣  ∈  𝑲 is the coefficient vector for phenotype 𝑝. 

 

We aim to demonstrate that, for any neuron, 𝑞, in the attention layer that outputs 𝐴 (i.e., 

𝑞 ∈ 𝐴) 

డమ௔೜

డ௫೔డ௫ೕ
= 0 for any 𝑥௜ , 𝑥௝ . 



 

For any neuron 𝑞 ∈ 𝐴: 

𝑎௤ = ∑ 𝑤௤,௞,௟𝑓௞,௟
௠೗
௞ୀଵ    
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where 𝑓௞,௟ is the activation function output from neuron 𝑘 on hidden layer 𝑙 containing  

𝑚௟ neurons, and 𝑤௜,௞,௟ the coefficient of the connection between neuron 𝑞 on layer 𝐴 and 

neuron 𝑘 on layer 𝑙.  

 

For this proof, we define the activation functions:  

ReLU(𝑥) = ൜
𝑥,    𝑖𝑓 𝑥 > 0
0,  𝑒𝑙𝑠𝑒         

 

and Leaky-ReLU(𝑥) = ൜
𝑥,   𝑖𝑓 𝑥 > 0
−𝛼𝑥, 𝑒𝑙𝑠𝑒

, where 𝛼 is a constant. 

 

Initial case: 

 

Let’s assume the case where MTL LINA has only one hidden layer. 

For any neuron 𝑞 on the 1௦௧ hidden layer, we have:  

𝜕𝑓௤,ଵ

𝜕𝑥௝
=

𝜕𝑓௤,ଵ

𝜕𝑜௤,ଵ

𝜕𝑜௤,ଵ
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With 𝑜௤,ଵ being the output of neuron 𝑞 before activation. 

𝑜௤,ଵ = ෍ 𝑤௤,௞,ଵ𝑥௞
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Because 𝑤௤,௞,ଵ is independent of 𝑥௝, 

𝜕𝑜௤,ଵ
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Then: 
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𝜕𝑓௤,ଵ
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Then: 
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When 𝑓௤,ଵ is ReLU or leaky-ReLU, then 
డ

డ௫೔
൬

డ௙೜,భ

డ௢భ,భ
൰ = 0 because for ReLU: 

డ௙೜,భ

డ௢೜,భ
=

൜
1,  𝑖𝑓 𝑓௤,ଵ > 0

0,  𝑒𝑙𝑠𝑒            
 or Leaky-ReLU: 

డ௙೜,భ

డ௢೜,భ
= ൜

1,  𝑖𝑓 𝑓௤,ଵ > 0

−𝛼,  𝑒𝑙𝑠𝑒       
 and so the second-order derivative 

of those functions is assumed to be 0 everywhere. Thus: 

𝜕ଶ𝑓௤,ଵ
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And: 
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Induction: 

We hypothesize that, for a neural network with 2 or more hidden layers, we have at 

layer  𝑙, for any neuron 𝑞:  

𝜕ଶ𝑓௤,௟

𝜕𝑥௜𝜕𝑥௝
= 0 

On the next hidden layer 𝑙 + 1, we have, for any neuron 𝑞: 

𝜕𝑓௤,௟ାଵ

𝜕𝑥௝
=

𝜕𝑓௤,௟ାଵ

𝜕𝑜௤,௟ାଵ

𝜕𝑜௤,௟ାଵ

𝜕𝑥௝
 

And: 
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Then: 
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൰ = 0 because the second derivative of ReLU or Leaky-ReLU is zero. 

 

Thus,  
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For any neuron 𝑞 on 𝑙  (hypothesis): 
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By deduction: 
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𝝏𝟐𝒇𝒒,𝒍ା𝟏
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Conclusion: 

By induction we have demonstrated that for any neuron  𝑞 on any layer 𝑙: 
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Hence:  

𝜕ଶ𝐿𝑜𝑔𝑖𝑡௣
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End-of-proof 
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