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Supplementary Figures 

  
Figure S1. (a) Representative confocal images showing protein exclusion from the inner lumen 
of GUVs. (b) Intensity distribution of protein channel along the dashed line shown in the image. 

  



 
Figure S2. Bar chart comparison of percentage of GUVs displaying protein phase separation (a), 
inward tubules (b) and average inward tubule diameter (c) when incubated with his-AP180S-
FUSLC and his-FUSLC under different salt concentrations. The data for his-FUSLC are cited from 
our previous report (12). Error bars in (a) and (b) represent the standard deviation of three 
independent trials (indicated by the dots). Error bars in (c) correspond to standard error of all data 
points measured under each condition. Statistical significance was tested using an unpaired, two-
tailed student’s t test. *: P < 0.05, **: P < 0.01, ***: P < 0.001. GUV composition is 83 mol% POPC, 
15 mol% DGS-NTA-Ni, 2 mol% DP-EG10 biotin, and 0.1 mol% Texas Red-DHPE. 

  

  



 
Figure S3. (a, b) Representative image of AP180S exclusion from his-FUSLC droplets in solution.  
(c) Intensity distribution of his-AP180S along the white dashed line across the his-FUSLC droplet 
in panel b. his-FUSLC concentration is 25 μM and his-AP180S is 5 μM. Experiment was done in 
25mM HEPES, 150mM NaCl, pH 7.4 buffer. 

  

 



Figure S4. AP180S-FUSLC is more enriched in the inward protein-lined tubules than FUSLC-
AP180S. (a) Representative super-resolution images of protein-lined tubules when GUVs were 
incubated with 1 μM of his-AP180S-FUSLC and 0.1 μM of his-FUSLC-AP180S at the same time. 
(b) Intensity distribution along the dashed line across the GUV. 

 
Supplementary Information about Simulations 
 
To the first order, the total system energy can be written as: 
𝑊!"!#$ =	𝑊%&"!'() +	𝑊*'*+&#)' =	𝐹+&,-.𝐻	 + 	𝜅(𝐻 − 𝑐/)0  Equation S1 
where 𝐹+&,-. is the protein energy density, 𝐻 is the mean curvature of the membrane, 𝜅 is the 
bending modulus, and 𝑐/ the spontaneous curvature. The first term, the product of protein energy 
density and mean curvature, captures the moment arm generated by the protein steric 
interactions which are offset from the membrane surface. The second term is the conventional 
Helfrich-Canham-Evans hamiltonian which captures the membrane’s bending elasticity. (25-27) 
 
The physics of interacting polymers grafted on surfaces has been explored in detail and the brush 
polymer theory has been developed to model the contributions to the polymer energy density (21-
24). Following the theory, the protein energy density, F brush, is defined as, 
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where 𝑠 is the local area per protein, 𝑎 is the Kuhn length, c	the protein monomer concentration 
(considered to be an amino acid residue for the IDPs of interest), 𝐴 the second virial coefficient, 
𝛷 the bulk ionic concentration, 𝑘4𝑇 is the Boltzmann constant and temperature, and 𝛼 the degree 
of ionization. While a freely jointed polymer chain is expected to form a glob like structure which 
maximizes its configurational entropy (43), high density packing conveyed by the area occupancy 
and protein concentration, can lead to stretching and subsequent entropy loss which is captured 
by the first term. The free energy density of the short-ranged interactions which can drive 
phenomena such as steric pressure and condensation is modeled by the virial expansion 
truncated to second order, the second term of Eq. S2. Here we note that 𝐴, the second virial 
coefficient, is a complex function of the specific protein chemistry/identity (44, 45) and can take a 
positive or negative value corresponding to repulsive or attractive behavior respectively. 
Conventional biochemistry and statistical mechanics further imply that 𝐴 is a function of the local 
chemical environment which can screen the strength of interactions. In lieu of detailed 
experimental characterization of 𝐴 given the combinatorial conditions, we will instead 
systematically vary the value of 𝐴 across a range of values corresponding to net protein 
attraction/aggregation and repulsion. The third term of Eq. S2, captures the loss of entropy of ions 
partitioning into the brush layer as a result of Donnan’s equilibrium. From the brush polymer 
theories, this term corresponds to the so-called quenched or strongly dissociating condition which 
assumes that the polymer has a fixed ionization extent given by 𝛼.  
 
To interrogate how the IDP layer and membrane couple to drive spontaneous curvature we can 
study how the energy of the system changes with respect to changing mean curvature, 𝜕𝑊/𝜕𝐻. 
The stationary point where 89
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= 𝐹+&,-.	 + 2𝜅𝑐/ = 0   Equation S3 
Rearranging, we obtain the classic relationship linking the moment of the protein interactions with 
the spontaneous curvature and bending rigidity, 
−2𝜅𝑐/ =	𝐹+&,-.. 
 
For a quantitative evaluation of this relationship, we further assume and prescribe values for the 
parameters. The Kuhn length, 𝑎, is twice the persistence length of a polymer. For an IDP we 
approximate this as twice the length of a residue, ~1 nm. (46) To relate the end-to-end stretch 
distance of the grafted IDP (i.e., thickness of the brush layer), 𝑑, to polymer area occupancy we 
write a conservation equation, 
𝑠	 = 	 ;

<1"
  Equation S4 

where 𝑁 is the number of amino acids, and 𝑐% is the protein monomer concentration. We further 
assume that the degree of ionization for each protein is around 10%, 𝛼 = 0.1, the brush layer is 
20 nm thick, and prescribe 150 mM ion concentration. Under these conditions we vary the second 
virial coefficient, 𝐴, from -10 – 10 nm3 corresponding to net attractive (e.g., FUSLC) and repulsive 
(e.g., AP180S) conditions respectively. We find that the extent of spontaneous curvature induced 
is a function of protein concentration in line with the experimental observations, Figure 6b. 
 
To evaluate how the spontaneous curvature influences the geometry of a membrane tube, we 
followed the approach outlined by Shurer, Derenyi and colleagues (9, 47). Considering the special 
case of a cylindrical membrane tube experiencing a pulling force at zero osmotic pressure, the 
Helfrich-Canham-Evans free energy is given by, 
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where 𝜅 is the bending modulus, 𝑅 is the radius of the cylinder, 𝑐/ is the spontaneous curvature, 
𝜎 is the tension, 𝑓 is the pulling force acting over length 𝐿. At equilibrium, where 89#$%
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= 0 and 

𝜕𝑊1=$/𝜕𝐿 = 0, the tube radius is 
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and the pulling force, 
 
𝑓	 = 	2𝜋𝜅(C𝑐/0 	+ 	2𝜎𝜅 	−	𝑐/)  Equation S7 
 
Assuming a canonical bending rigidity value of 20 kBT and membrane tension 0.01 mNm-1, and 
substituting the predicted values from Figure 6b, we obtain the radius and force predictions in 
Figure 6c and Figure S5.  
 
For a proof of principle of inward and outward tube formation with pearling, we used Mem3DG 
(28) to build a model in three dimensions without assumptions of axisymmetry. Mem3DG is a 



framework and simulation engine that enables us to solve the governing equations of membrane 
bending. Using principles from discrete differential geometry, we compute the energy of a 
geometric configuration and vertexwise forces in a consistent manner with traditional physics 
approaches; coupled with an energy minimization or time integration scheme, we get from the 
model a trajectory of the evolving domain subject to the bending and other prescribed physics. 
For the demonstration, we start from a spherical vesicle and apply a weak Gaussian point force, 
decaying in time, in an inward or outward direction to induce initial tube formation. Proteins which 
impart spontaneous curvature matching the direction of the tube bind and support the extrusion 
of pearls. Driven by the membrane tension and protein spontaneous curvature, the resulting 
configurations, shown in Figure 6d, exhibit pearled tubules similar to those observed in 
experiments, (Figure 2c, 4c) suggesting that our simple physical model captures the main features 
of our experimental system. 
 
All parameters for the Mem3DG and simple mechanical models are archived on GitHub: 
https://github.com/RangamaniLabUCSD/2023-IDP-bending. Mem3DG source code 
corresponding to commit 361affa9423d44f3cf239585ac350340a212b1f8 used to run the model 
can also be obtained from GitHub https://github.com/RangamaniLabUCSD/Mem3DG/. 
 
 
 

 
Figure S5. The equilibrium pulling force required to sustain a tube coated by differing surface 
concentrations of protein. The vertical axis is the second virial coefficient, A, which represents the 
net attraction—repulsion of the protein.  
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