Supplementary Information

Metagenomic surveillance for bacterial tick-borne pathogens using nanopore adaptive sampling

Evan J. Kipp, Laramie L. Lindsey, Benedict Khoo, Christopher Faulk, Jonathan D. Oliver, Peter A. Larsen

Supplementary Figure 1. Total raw sequencing output by run time over NAS enrichment (A) and control (B) sequencing experiments. Total data generated for each barcoded tick (Tick 1 - Tick 4) were comparable between both libraries sequenced during each experiment.

Supplementary Figure 2. Comparison of log-transformed read lengths of raw data generated during paired NAS enrichment (A) and control (B) sequencing experiments. The shorter average read length and N50 seen during NAS enrichment is suggestive of non-target sequences rejected from sequencing during adaptive sampling.

Supplementary Figure 3. Comparison of nanopores available for sequencing by run time for paired NAS enrichment (A) and control (B) sequencing experiments. Note the more rapid decrease in active pores for NAS enrichment run likely caused by pore stress imposed by NAS-based rejection of unmapped, non-target DNA molecules.

Supplementary Figure 4. Violin plots of basecalling quality scores for paired NAS enrichment (A) and control (B) sequencing experiments by run time. Both sequencing strategies generated reads of similar overall average quality scores.

Supplementary Figure 5. Circos plot of mapped data from detected tick-borne pathogen genomes recovered during paired NAS enrichment and control sequencing experiments. Individual nanopore reads are shown in gray tick marks with reads >5 kb shown in dark red, and reads >2 kb shown in light red. Histograms of mean coverage of mapped bases across each bacterial genome from ticks sequenced during NAS enrichment is shown in orange, and coverage from ticks sequenced over control experiment shown in blue.

Supplementary Table 1. Whole genome and plasmid sequences of known and potential tickborne pathogens included in enrichment FASTA file for adaptive sampling enrichment and realtime alignment.

Sequence					Accession	Length
Number	Organism	Group	Strain	Sequence Type	Number	(bp)
1	B. burgdorferi s.s.	Bacteria	JD1	Complete Genome	CP002312.1	922,801
2	B. burgdorferi s.s.	Bacteria	JD1	Plasmid	CP002316.1	26,525
3	B. burgdorferi s.s.	Bacteria	JD1	Plasmid	CP002310.1	60,739
4	B. burgdorferi s.s.	Bacteria	JD1	Plasmid	CP002323.1	30,314
5	B. burgdorferi s.s.	Bacteria	JD1	Plasmid	CP002309.1	29,902
6	B. burgdorferi s.s.	Bacteria	JD1	Plasmid	CP002321.1	30,019
7	B. burgdorferi s.s.	Bacteria	JD1	Plasmid	CP002320.1	29,707
8	B. burgdorferi s.s.	Bacteria	JD1	Plasmid	CP002307.1	30,804
9	B. burgdorferi s.s.	Bacteria	JD1	Plasmid	CP002311.1	31,085
10	B. burgdorferi s.s.	Bacteria	JD1	Plasmid	CP002322.1	30,697
11	B. burgdorferi s.s.	Bacteria	JD1	Plasmid	CP002313.1	17,522
12	B. burgdorferi s.s.	Bacteria	JD1	Plasmid	CP002308.1	22,827
13	B. burgdorferi s.s.	Bacteria	JD1	Plasmid	CP002306.1	24,354
14	B. burgdorferi s.s.	Bacteria	JD1	Plasmid	CP002314.1	28,797
15	B. burgdorferi s.s.	Bacteria	JD1	Plasmid	CP002318.1	30,096
16	B. burgdorferi s.s.	Bacteria	JD1	Plasmid	CP002317.1	24,614
17	B. burgdorferi s.s.	Bacteria	JD1	Plasmid	CP002324.1	26,981
18	B. burgdorferi s.s.	Bacteria	JD1	Plasmid	CP002319.1	29,993
19	B. burgdorferi s.s.	Bacteria	JD1	Plasmid	CP002315.1	22,808
20	B. burgdorferi s.s.	Bacteria	JD1	Plasmid	CP002325.1	27,590
21	B. burgdorferi s.s.	Bacteria	JD1	Plasmid	CP001652.1	52,916
22	A. phagocytophilum	Bacteria	JM	Complete Genome	NC_021880.1	1,481,598
23	Ba. microti	Protozoa	RI	Chromosome 1	FO082871.1	1,304,281
24	Ba. microti	Protozoa	RI	Chromosome 2	FO082872.1	1,508,385
25	Ba. microti	Protozoa	RI	Chromosome 3	LN871598.1	1,766,409
26	Ba. microti	Protozoa	RI	Chromosome 4	LN871599.1	1,816,206
				Mitochondrial		
27	Ba. microti	Protozoa	RI	Genome 1	LN871602.1	10,547
28	Ba. microti	Protozoa	RI	Genome 2	IN871600.2	11,149
				Mitochondrial		
29	Ba. microti	Protozoa	RI	Genome 3	LN871601.1	10,547
20	Da miarati	Droto	ы	Mitochondrial		
30	Bu. MICroti	Protozoa	KI DI	Genome 4		10,547
31	Bu. MICroti	Protozoa		Apicopiast Genome	LKU28575.1	28,657
32	E. muris	вастегіа	AS145			1,196,/1/
33	в. miyamotoi	Bacteria	LB-2001	Complete Genome	CP006647.2	907,293

34	B. miyamotoi	Bacteria	LB-2001	Plasmid	CP010328.2	30,673
			MN14-			
35	B. mayonii	Bacteria	15339	Complete Genome	CP015796.1	904,387
			MN14-			
36	B. mayonii	Bacteria	15339	Plasmid	CP015797.1	26,835
			MN14-			
37	B. mayonii	Bacteria	15339	Plasmid	CP015798.1	30,433
			MN14-			
38	B. mayonii	Bacteria	15339	Plasmid	CP015799.1	27,866
			MN14-			
39	B. mayonii	Bacteria	15339	Plasmid	CP015800.1	30,330
			MN14-			
40	B. mayonii	Bacteria	15339	Plasmid	CP015801.1	30,406
			MN14-			
41	B. mayonii	Bacteria	15339	Plasmid	CP015802.1	17,017
			MN14-			
42	B. mayonii	Bacteria	15339	Plasmid	CP015962.1	8,307
			MN14-			
43	B. mayonii	Bacteria	15339	Plasmid	CP015803.1	23,759
			MN14-			
44	В. тауопіі	Bacteria	15339	Plasmid	CP015804.1	24,696
45			MN14-			10 566
45	B. mayonii	Bacteria	15339	Plasmid	CP015805.1	19,566
10	D. manua mil	Destavia	MN14-	Dia analisi		27.000
46	B. mayonii	Bacteria	15339	Plasmid	CP015806.1	27,809
47	R mayonii	Dactoria	15220	Dlacmid	CD015907 1	22.260
4/	b. muyomi	Dacteria	15559	Plasifilu	CP015607.1	52,209
10	R mayonii	Pactoria	15220	Plasmid	CP015808 1	45 025
40	b. mayonii	Dacteria	13339 MNI14-	Flasifilu	CF013808.1	45,055
10	B mayonii	Bacteria	15330	Plasmid	CP015809 1	53 3/3
	D. mayonii		15555	Canadata Canada		10,000
50	Powassan virus	virus	05030	Complete Genome	AF311056.1	10,800
га	Direfilaria incresitio	طخه: مواما ا	NI / A	Iviitochondriai	NC 005205 4	12 01 4
51	ווט וומיום immitis	Heiminth	IN/A	Genome	INC_005305.1	13,814
52	Bartonella henselae	Bacteria	MVT02	Complete Genome	LN879429.1	1,905,383