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Supplementary Figure 1 | Substrate micropatterning.  a. A micropatterned elliptical footprint (Alexa 
Fluor 647 conjugated fibrinogen was mixed with the fibronectin coating solution for visualization). Image 
representative of 5 experiments. b. Fluorescence intensity profiles along the long axis of 5 representative 
elliptical footprints. Source data are provided as a Source Data file.
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Supplementary Figure 2 | Dome cell density as function of footprint diameter. 
Density of MDCK cells in spherical domes of 25 μm, 50 μm, 100 μm and 200 μm footprint diameter. 
Diamonds represent the median and the lower and upper hinges of the boxplot correspond to the first and 
third quartiles. The whiskers extend to the smallest and largest values to a maximum of 1.5 times the inter-
quartile range. Source data are provided as a Source Data file.
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Supplementary Figure 3 | Time evolution of spherical domes of different sizes. 
Time evolution of radially-averaged tractions on lateral views of domes of 200 μm, 100 μm, 50 μm and 25 
μm diameter footprints (from left to right). Blue vectors represent the radial and vertical components of the 
tractions. Scale bar, 50 μm. Scale vector, 100 Pa. Images representative of 12 independent domes (25 μm), 
11 independent domes (50 μm), 17 independent domes (100 μm) and 13 independent domes (200 μm).
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Supplementary Figure 4 | Contact angle between cells in domes. 
Confocal slices of 200 μm (left) and 25μm (right) footprint diameter domes showing the apical (blue) and 
basal (orange) contact angles between cells. Scale bar: 20μm. Images representative of n=13 independent 
domes (200 μm) and 12 independent domes (25 μm). 
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Supplementary Figure 5 | Schematic illustrating cMSM.  
The monolayer stress tensor 𝝈𝝈  is inferred from luminal pressure ∆𝑃𝑃 and monolayer shape, solving the 
two tangential equilibrium equations and the out-of-plane force balance. As a consequence of luminal 
pressure, the substrate exerts a traction 𝑻𝑻 on the free-standing monolayer (note that 𝑻𝑻 shown here has the 
opposite sign than that reported in the main text, which indicates the traction generated by the cells on the 
substrate). 
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Supplementary Figure 6 | Examples of stress maps on ellipsoidal domes. 
Each panel shows a top view and two lateral views of the ellipse and the stress reconstruction below. The 
black arrows represent the principal components of the inferred stress. The colormap represents the mean 
surface tension, 𝜎𝜎I + 𝜎𝜎II.   



 
 

8 
 

   
Supplementary Figure 7 | Effect of Y27632 on the stress and pressure of elliptical domes. a. Traction 
maps of a representative elliptical dome before treatment. The central view shows a 3D traction map, 
where yellow vectors represent the in plane (𝑇௫, 𝑇௬) components and the color map represents the vertical 



 
 

9 
 

component 𝑇𝑇𝑧𝑧. The lateral views show the tractions along the two main axes of the dome footprint. Scale 
bar, 25 μm. Scale vector, 50 Pa. b. Traction maps of the same dome after treatment with Y27632 (30 µM, 
5 min). c. Inferred stress tensor on the dome shown in a. The black arrows represent the principal 
components of the inferred stress. The colormap represents the mean surface tension, 𝜎𝜎I + 𝜎𝜎II. d. Inferred 
stress tensor on the dome shown in b. The black arrows represent the principal components of the inferred 
stress. The colormap represents the mean surface tension, 𝜎𝜎I + 𝜎𝜎II. e. Time evolution of dome pressure for 
5 independent domes. f. Time evolution of the mean dome surface tension for 5 independent domes. g. 
Time evolution of dome volume for 5 independent domes. h. Time evolution of the mean XY traction far 
from the micropatterned area for 5 independent domes. Source data are provided as a Source Data file. 
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Supplementary Figure 8 | Dependence of cell alignment with the magnitude of the maximum 
principal stress and with stress anisotropy. a,b. Alignment angle as a function of the stress anisotropy 
in each of the four regions of the domes for low (a) and  high (b) footprint eccentricity. Dashed lines 
show a linear fit to each distribution. c,d. Alignment angle as a function of the maximum principal stress 
in each of the four regions of the domes for low (c) and high (d) footprint eccentricity. Dashed lines show 
a linear fit to each distribution. Source data are provided as a Source Data file. 
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Supplementary Figure 9 | Curvature anisotropy in elliptical domes. 
Curvature anisotropy of high inflation ellipsoidal domes in the four different regions of the dome 
described in Fig. 4d. Curvature anisotropy is evaluated at each node of the mesh used to perform cMSM 
on the respective domes. The mesh nodes are binned into different dome regions using the same 
categories and thresholds used for Fig. 4. Diamond symbols indicate the median of the distributions. 
Source data are provided as a Source Data file.  
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Supplementary Figure 10 | Stiffness of the gel substrate before and after photopatterning. 
Gel stiffness was measured using the ball indentation method in photopatterned (n=15) and non-
patterned (n=16) gels. The process of patterning did not affect substrate stiffness significantly (P-
value = 0.58, two-sided Wilcoxon test). Diamonds represent the median and the lower and upper 
hinges of the boxplot correspond to the first and third quartiles. The whiskers extend to the smallest 
and largest values. Source data are provided as a Source Data file. 
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Supplementary Note 1

Computational vertex model with
curved surfaces for 3D epithelia

To study the mechanics of epithelial domes, we implement a 3D computational vertex model with
curved cell surfaces. We adopt a conventional approach according to which cell surfaces experience
constant and possibly non-uniform surface tension representing contractility of the actomyosin
cortex and cell volumes are fixed [1].

1.1 Polygonal tessellation

The epithelial cells within a monolayer are assumed to be polyhedra composed of polygonal apical
and basal faces, and rectangular lateral faces. To allow for curved surfaces, each face is further
discretized using linear triangular elements (Supplementary Fig. 11a,b). Cells are then assembled
by tying together the shared edges across contiguous cell faces through equality constraints [2].
Backed by our experimental observations, we further assume that during dome inflation, no topo-
logical rearrangements occur within the tissue. Cells retain their original connectivity and tissue
deformation is accommodated only through cell shape changes.

1.2 Surface tension generated by the actomyosin cortex

As opposed to faster loading setups [3], during spontaneous dome formation, we have previously
shown that intermediate filaments (IFs) have the time to reorganize and only become active at
extreme deformations [4]. We thus assume that the actomyosin cortex, which lines the interior
of each cell face, is the main sub-cellular element determining epithelial mechanics. Due to the
longer timescale of dome inflation compared to actomyosin dynamics, we assume that all cortical
dynamics are at steady-state during dome inflation and that the cortex generates a constant and
isotropic active surface tension γ, which can be different on each cell face (Supplementary Fig. 11a).
We therefore express the mechanics of the actomyosin cortex on a face f in the tissue using a
conventional virtual work function

δWf (x1, . . . ,xNf
) = γfδAf (x1, . . . ,xNf

) (1)

where xi denotes the position of node i in the triangulation of face f , γf is the active tension
generated by the actomyosin cortex and Af the corresponding face surface area. We assumed that
apical and basal tension is contractile, and that contractility on the lateral faces dominates over
adhesion, so that γf > 0 for all faces. For simplicity, we did not consider the effects of actin cables
or other complex cortical architectures on surface tension.
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1.3 Volume conservation

Following previous observations [3] and to avoid cell collapse due to contraction of all faces, we
assume each individual cell volume Ωc to be conserved during cellular deformations. Volume con-
servation is imposed through a Lagrange multiplier requiring that the change in cell volume remains
zero such that

Ωc(x1, . . . ,xNc)− Ω0
c = 0, (2)

where Ω0
c is the initial volume of cell c and Nc the number of nodes on cell c.

1.4 Dome inflation

We further define an adherent region of the basal surface to the substrate in which nodes’ movements
are restricted and allow for nodes in a non-adherent region to move freely. The volume of the lumen
enclosed between the non-adherent region and the substrate is then incrementally increased through
a Lagrange multiplier requiring the lumen volume at each step of the dome inflation to be equal to
the imposed volume

Ωl(x1, . . . ,xNl
) = Ω∗, (3)

where Ωl is the lumen volume calculated using nodal positions and Nl is the number of nodes that
define the surface bounding the lumen.

1.5 Lagrangian of a tissue

The Lagrangian of the tissue is simply built by taking into account the virtual work function and
the constraints of the problem for each cell and face of the tissue

δL =
∑
f

γfδAf −
∑
c

∆Pc

(
δΩc − δΩ0

c

)
+∆Pl(δΩl − δΩ∗), (4)

where the summations are performed over all faces and cells in the tissue. The Lagrange multiplier
∆Pc is the pressure difference across the cell interior and the exterior medium of cell c. The La-
grange multiplier ∆Pl gives a direct readout of the pressure inside the dome lumen (Supplementary
Fig. 11a,c). For arbitrary virtual vertex displacements, virtual cell pressure changes and virtual
lumen pressure changes; and by making the Lagrangian stationary, Eq. (4) provides a system of
coupled nonlinear equations enforcing mechanical equilibrium of the network nodes, along with cell
volume and lumen volume constraints. However, as discussed in Ref. [5], solving Eq. (4) leads to
uncontrolled mesh distortion as nodes can move tangentially without changing cell area or volume.
To avoid such tangential motions of nodes, we added an effective cortical viscosity, which vanishes
at equilibrium to avoid biasing the end results. Taking a similar approach to Ref. [6], we treated
cell cortices as hyperelastic surfaces deforming with respect to an evolving reference configuration.
However, instead of an iterative update, we considered the evolution rule of the reference configu-
ration towards the current configuration to be orders of magnitude faster than the dome inflation
process, making all stored elastic energy negligible at each increment of the dome inflation process.
Therefore, the dome inflation process can be seen as the quasi-static evolution of active-viscous
cortices with fixed cellular volume and an increasing lumen volume.

1.6 Measuring tension using Young-Laplace’s law

For spherical epithelial domes, we use Young-Laplace’s law to estimate tension within the mono-
layer. At each time-step, we compute the dome radius R from the tissue height at the apical-basal
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mid-plane h and the basal footprint radius Rb (Supplementary Fig. 11b,d)

R =
h2 +R2

b

2h
. (5)

Tension is then obtained from R and ∆Pl as

σ =
R∆Pl

2
. (6)

The areal strain εa of the dome is computed as

εa =
π(R2

b + h2)

πR2
b

− 1 =
h2

R2
b

, (7)

where π(R2
b + h2) is the dome surface area and πR2

b is the area of the basal footprint.

1.7 Tissue constitutive relation

As shown in Ref. [4], the tension-strain relationship of domes can be captured by the tension-strain
relation of an idealized tissue model. Considering the idealized tissue made of identical cells as
regular hexagonal prisms with constant volume subjected to uniform equibiaxial stretch, the tissue
surface tension was expressed through the following cellular constitutive relation [4]

σ = γa + γb − γl
k

(εc + 1)3/2
, (8)

where σ is the tissue effective surface tension, γa the apical surface tension, γb the basal surface
tension, γl the lateral surface tension, εc is the cellular areal strain and k a non-dimensional ge-
ometrical constant. As the tissue stretches, contribution to tissue tension from the lateral faces
decreases, therefore tissue tension saturates to the apico-basal surface tensions.

1.8 Tensional asymmetry

As the contact angle between adjacent cells is observed to be smaller on the apical surface compared
to the basal surface (Supplementary Figure 4), we concluded that surface tension on the apical side
was smaller compared to basal surface tension, which could give rise to bending moments affect-
ing the mechanical balance of domes. More specifically, in addition to tension, bending moments
could contribute to balance the pressure difference across the tissue. Such tensional asymmetry was
shown to produce spontaneous curls on free edges of flat free-standing cell monolayers [7], thereby
endowing the tissue with an effective spontaneous curvature. Since spontaneous curvature induces
a length-scale, we reasoned that these bending moments should manifest differently for domes of
different sizes. To examine this hypothesis, we first inflate domes of different circular footprint
diameters up to a 100% areal strain (Supplementary Fig. 12a-f) at a high apical-to-basal surface
tension ratio (1:9) and calculate tissue tension as a function of dome areal strain using Young-
Laplace’s law given by Eq. (6). Our simulations show that the tension-strain curves vary little
between the different domes sizes throughout the inflation process (Supplementary Fig. 12g) and
are close to the analytical estimate for a planar and uniform tissue given by Eq. (8), which is inde-
pendent of tension asymmetry. Furthermore, all these curves are compatible with our experimental
observations (Fig. 1.e in the main text).

To further assess the relevance of surface tension asymmetry on the tension-strain curve, we cal-
culate the tissue surface tension using Laplace’s law for large domes inflated at various apical-basal
surface tension degrees of asymmetry, with tension ratios ranging between 1:9 to 1:1 while keeping
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the average apico-basal tension fixed (Supplementary Fig. 12h), therefore varying the strength of
bending moments. We find that all tension-strain curves are very close during the entire inflation
process, and also closely follow the curve given by Eq. (8). We thus concluded that tension asymme-
try, tissue spontaneous curvature or bending moments does not have a substantial mechanical effect
in balancing the transmural pressure, and hence do not need to be included in the interpretation
of epithelial bulge tests to compute tissue tension.
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a

b

c

d

Supplementary Figure 11: Computational vertex model with curved surfaces. (a) Constant and
isotropic surface tension on each face γf along with cell volume conservation generating a cellular
pressure that bulges non-adhered surfaces outwards. (b)We defined a non-adherent region of radius
Rb on the basal footprint outside which nodes are fixed. (c) We imposed an incremental volume
increase in the non-adherent region Ωl through a Lagrangian multiplier providing a direct readout
of lumen pressure ∆Pl involved in Laplace’s law. (d) Inflated domes can be closely approximated
as spherical caps.
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Supplementary Figure 12: Surface tension measured in computational vertex model simulations
using Laplace’s law show negligible differences between different dome sizes and surface tension
asymmetries. (a-f) Cross-sections of domes for a 1:9 apical-to-basal surface tension ratio and for
different basal footprint sizes at 100% areal strain. (g) Surface tension as a function of strain
for different dome basal footprint diameters: ∼ 25 µm (blue), ∼ 40 µm (yellow), ∼ 57 µm (green),
∼ 100 µm (brown), ∼ 140 µm (red), ∼ 235 µm (purple). The black dashed curve shows the cellular
constitutive relation shown in Eq. (8) for equivalent cellular areal strains. (h) Surface tension as a
function of strain at different apical-to-basal surface tension ratios for the dome shown in (f). The
black dashed curve shows the cellular constitutive equation shown in Eq. (8) for equivalent cellular
areal strains. Parameters: γl = 0.1mNm−1 for all curves; γa = 0.1mNm−1, γb = 0.9mNm−1

(purple); γa = 0.2mNm−1, γb = 0.8mNm−1 (green); γa = 0.333mNm−1, γb = 0.666mNm−1

(yellow); γa = 0.4mNm−1, γb = 0.6mNm−1 (red); γa = 0.5mNm−1, γb = 0.5mNm−1 (blue).
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Supplementary Note 2

Curved Monolayer Stress Microscopy
(cMSM): inferring surface stresses on
inflated membranes

2.1 Balance equations for inflated membranes

We consider a thin interface represented by its midsurface Γ embedded in R3 (Supplementary
Fig. 13). The surface is parametrized by the mapping x = φ(ξ) where ξ ∈ Γ0 ⊂ R2 belongs in the
parametric space with Cartesian coordinates {ξ1, ξ2}. The covariant basis vectors tangent to the
surface are then defined as [8]

ea =
∂x

∂ξa
(9)

where a ∈ {1, 2}. The first fundamental form of the surface is expressed as

gab = ea · eb. (10)

The surface normal is a unit vector given as

n =
e1 × e2
|e1 × e2|

. (11)

We assume that the mechanics of this surface is dominated by in-plane stresses and that the
effect of bending moments is negligible. We hence adopt a membrane theory where the wall stresses
are assumed to be tangential to Γ. The membrane state of stress on Γ is captured by the surface

Supplementary Figure 13: Membrane midsurface Γ parametrized by the mapping x = φ(ξ).
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tension tensor denoted by σ = σabea⊗eb. On an open surface Γ with a boundary edge ∂Γ and edge
normal nl (tangential to the surface), the edge traction vector is given as t = σnl. The balance
of angular momentum implies that σ is symmetric. The balance of linear momentum in tangential
directions in the absence of any tangential body forces is given by [9, 10]

∇s · σ = 0, (12)

where ∇s· is the surface divergence operator. The balance of linear momentum in the normal
direction is given by the generalized Young-Laplace relation

σ : κ = ∆P, (13)

where κ is the second fundamental form of Γ and ∆P is the pressure difference across the interface.
Note that the surface divergence operator and κ depend on the shape of the surface.

We note that the description of the monolayer as a membrane with a midsurface supporting a
state of membrane stress, leading to the above equations, is a fundamental modeling assumption of
the stress inference method proposed here. This assumption may be inadequate depending on the
system and particularly for smaller domes and for domes at low inflation levels, where midsurface
deformations are of the order of monolayer thickness and bending moments may become relevant.
We have tested this assumption by analyzing 3D vertex models of finite thickness and exhibiting
strong apico-basal tension asymmetry as discussed in Supplementary note 1.

Another assumption embedded in Eqs. (12) and (13) is that the membrane is surrounded by
fluids on either sides with a uniform pressure difference ∆P across the interface. However, as is
common in several physiological contexts, the pressurized lumen can surrounded by ECM on one
side. Then in addition to the luminal pressure, contact traction forces can be present between
ECM and the inflating membrane. These contact traction forces can be resolved into tangential
and normal contributions to the midsurface given as bt and bn respectively. Then, Eqs. (12) and
(13) are modified in this situation as ∇s ·σ+bt = 0 and σ : κ = ∆P +bn. The proposed approach
can be readily modified to account for this and surface stresses can be inferred in absolute terms as
long as the contact tractions bt and bn are provided from experimental measurements, for instance
with 3D traction force microscopy, in addition to ∆P .

As in 2D, there are infinitely many divergence-free symmetric surface tensor fields on a given
deformed shape satisfying Eq. (12). Eq. (13) provides an additional constraint on such tensor
fields. Eqs. (12) and (13) constitute a system of three differential-algebraic equations that may
provide a statically determinate system to find the three independent components of the symmetric
surface tension tensor. To the best of our knowledge, the precise conditions for this problem to
be mathematically well-posed that lead to a unique surface tension tensor are not known, but
experience with computational approaches (see next section) suggest that these equations enable the
determination of the surface tension tensor. For special cases, like simply connected axisymmetric
surfaces, the problem can be analytically solved and is known to be well-posed [11, 12].

For an open patch of an inflated membrane, if the edge tension on the boundary t is prescribed,
then Eqs. (12) and (13) are augmented with an additional boundary condition t = σnl that is
necessary for static equilibrium. It is unclear whether the boundary data t is strictly required in
general for the well-posedness of the stress inference problem on an open surface. In any case, it
is clear that these tractions should satisfy a compatibility constraint

∫
∂Γ tdℓ = ∆P

∫
ΓndS coming

from global force balance condition. For special cases such as simply connected axisymmetric
surfaces, the edge tensions do not need to be specified as the symmetry of the problem dictates the
only possible value of edge traction vector that is compatible with the solution.

Next, we review some of the prominent approaches proposed previously to solve the inverse
problem of stress inference on inflated curved membranes.
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2.2 Approaches for stress inference on inflated membranes

We first discuss the solution to the surface tension inference problem on axisymmetric surfaces.
Beyond axisymmetry and for generic membrane shapes, Eqs. (12) and (13) need to be solved
numerically to determine σ. We then summarize several computational approaches that have been
proposed to address this problem.

Closed-form solution for axisymmetric membranes

For axisymmetric membranes, the governing equations are simplified to the following form:

d

dr
(σ11r) = σ22, (14)

d

dr
σ21 = −3σ21

r
, (15)

σ11κ
1
1 + σ22κ

2
2 = ∆P, (16)

where κ11 and κ22 are principal curvatures of the surface of revolution in meridian and azimuthal
directions and r is the radial distance from the axis of revolution. σab are components of σ expressed
in the principal directions. Additionally, for axisymmetric surfaces, the principal curvatures are
related by

d

dr
(rκ22) = κ11. (17)

Using this relation, Eq. (14) can be solved directly [11, 12] to obtain

σ11 =
1

κ22

(
∆P

2
+
c0
r2

)
, (18)

where c0 is a constant of integration to be determined. If the surface is simply connected, c0 = 0
is necessary to avoid the singularity at r = 0. Then using Eq. (16) the diagonal elements of the
surface tension tensor along meridian and azimuthal directions are obtained as

σ11 =
∆P

2κ22
, (19)

σ22 =
∆P

κ22

(
1− κ11

2κ22

)
. (20)

Furthermore, solving Eq. (15), the shear component of the in-plane tension is obtained as

σ21 = − c1
r3
, (21)

where c1 is a constant of integration. For simply connected axisymmetric surfaces, c1 = 0 is
necessary due to the singularity at r = 0. As σ12 = σ21 = 0, σ11 and σ22 are then the principal stresses
along meridian and azimuthal directions. Thus, for simply connected surfaces of revolution, the
membrane balance equations can be solved directly just from the deformed shape and pressure.
The edge tension t is not required in this case as the integration constants can be eliminated
based on the singularity at r = 0. In fact, for simply connected axisymmetric shapes, σ11 can be
inferred directly at any location by using balance of forces acting on the disc normal to the rotation
axis at that point. For the special case of a spherical membrane of radius R, σ = σ11 = σ22 and
κ21 = κ22 = 1/R, which results in the Young-Laplace relation σ = ∆PR/2.
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Inverse elastostatics approach

The static determinacy of the balance equations (12) and (13) can also be interpreted as the
invariance of membrane stress with respect to the constitutive behavior of the membrane. This
constitutive invariance can be leveraged to setup an inverse elastostatics problem to solve for σ. In
this approach, an arbitrary constitutive behavior is assumed for the membrane material and starting
from the known deformed configuration (including the external forces ∆P and t on ∂Γ) the stress-
free reference configuration is treated as an unknown. The stresses in deformed configurations
are determined by post-processing the results using the reference and deformed configurations
and the assumed constitutive relation. Since in principle the stress inference problem is statically
determinate, the estimated stresses should be independent of the chosen material model.

However, in practical applications, such as in vivo surface stress measurement of brain aneurysms
[13, 14], t is often not known. For such cases, rather than Neumann boundary conditions, Dirich-
let boundary conditions can be imposed on ∂Γ to solve the inverse elastostatics problem. With
Dirichlet boundary conditions, numerical experiments show that the effect of the choice of consti-
tutive relation is weak and limited to the vicinity of the fixed edge, while invariance with respect
to the constitutive relation is accurately satisfied far from the boundary [13, 15]. Thus, the stresses
inferred by the inverse elastostatics approach with fixed boundary weakly depend on the choice of
the constitutive behavior [16].

Forward elastostatics penalty approach

Another way of exploiting the constitutive invariance is proposed in Ref. [16] based on a penalty-like
approach. The deformed membrane shape itself is taken as the stress-free reference configuration
and the membrane is assumed to be sufficiently stiff such that after applying the inflation pressure
the deformed shape remains close to the target shape. The advantage of this approach is the ease
of implementation in a standard (forward) finite elements code. However, the choice of material
parameters can be delicate. Moreover, Dirichlet boundary conditions imposed at the free edge are
expected to perturb the solution close to the fixed edge in a way that depends on the constitutive
parameters.

Both inverse and forward elastostatic approaches have been applied to the estimation of mem-
brane stresses in biomedical applications and also to probe the point-wise constitutive response
from inflation tests of soft tissues. However, obtaining the solution is contingent upon the existence
of a stress-free reference configuration for the given choice of material model, parameters, and edge
boundary conditions. Hence, the application of these methods to epithelial sheets may require
using a more pertinent constitutive model for such active materials with an active pre-tension.
Therefore, a direct approach not invoking a constitutive relation is more attractive for estimating
surface stresses on inflated epithelial domes.

Direct approach

Romo et al.[17] proposed a direct approach to estimate σ that does not assume any constitutive
behavior for the membrane material. The three components of the symmetric stress tensor are
treated as the unknowns of the problem stated using Eqs. (12) and (13). The governing equations
are discretized on a surface triangulation such that force balance is established for every element in
terms of the unknown stress components defined at nodes. Additional constraints can be imposed
on the balance equations if the edge tension are partially or fully known on the boundary ∂Γ. This
results in an overdetermined system of linear equations, as there are three equations per element
and three unknowns per node and for a triangulation the number of elements is higher than the
number of nodes. Thus, a solution for σ can be obtained in a least-squares sense even if the original
problem is ill-posed. We note that restricting the degrees of freedom to be less than the equations
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introduces an implicit regularization and provides a solution that minimizes the least-squares error.
The discretization scheme proposed in Ref. [17] was motivated by force balance at the centroid of
every triangular element.

2.3 Inverse problem formulation of cMSM

Here, we present a systematic formulation of the direct method discussed above and its regulariza-
tion.

The balance equations (12) and (13) can be combined and re-expressed in a convenient vectorial
form as [9, 10]

1
√
g
(
√
gσabea),b +∆Pn = 0, (22)

where g = det gab. Note that the unknown in our inverse problem is the symmetric surface tensor σ
while ∆P and the deformed surface Γ is known i.e. e1, e2, and n are given. We intend to use finite
elements to obtain the discretized form of the governing equations. To this end, we can obtain the
following weak form of the balance equations using an arbitrary vector test function w∫

Γ

[
1
√
g
(
√
gσabea),b +∆Pn

]
·w dS = 0. (23)

To obtain the discrete form of Eq. (23), the surface Γ is discretized into finite elemental domains
by triangulation. For inflated dome shapes that are of interest in this study, we can obtain a global
parametrization for the open surface Γ with the basal footprint edge ∂Γ using well-established
parametrization methods for triangulated surfaces such as disc conformal maps [18]. This global
parametrization can then be used to calculate {e1, e2,n} at all nodes of the mesh and directly
discretize the components of the surface tensor σ defined at nodes. However, in a general case
where such a global parametrization is not available or not possible (closed surfaces), the surface
geometry can be evaluated using the local elemental parametrization and techniques to discretize
surface tensor fields [19].

Using the global parametrization of Γ, the components of surface tension tensor σ are expressed
in the basis {e1, e2} and can be interpolated using continuous basis functions, which may have
discontinuous derivatives. However, given the form of Eq. (23), it is convenient instead to interpolate
the entire term

√
gσabea by defining two vectors s1 =

√
g(σ11e1+σ

21e2) and s
2 =

√
g(σ12e1+σ

22e2)
at all nodes. First, the global parametrization is used to define eI1, eI2, nI , and gI at a node I using
Eqns. (9), (11), and (10). The surface tension components at node I are denoted as {σ11I , σ22I , σ12I }.
Then the terms in Eq. (23) are interpolated as

sb =
√
gσabea(x) =

∑
J∈E

sbJNJ ◦ψ−1(x). (24)

and
n(x) =

∑
J∈E

nJNJ ◦ψ−1(x) (25)

where x = ψ(χ) is the isoparametric mapping for the triangular element and NJ(χ) are the linear
shape functions for node J of element E [20]. The integration over Γe is performed numerically
using Gaussian quadrature using isoparametric mapping of the triangular elements. The first term
in Eq. (23) is evaluated as

(
√
gσabea),b(x) =

∑
J∈E

sbJ
∂NJ

∂χ

∂χ

∂ξb
◦ψ−1(x). (26)
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Following Galerkin method, the test function can be expressed as

w(x) =
∑
I∈E

wINI ◦ψ−1(x), (27)

where wI are the nodal values of the test function. Using Eqns. (23), (24), (25), (26), and (27)
along with arbitrariness of wI , we obtain three equations for every free node. Since we also have
three unknowns per free node, this results in a square linear system of equations. The nodal array
of unknowns is formed by combining the unknown tension components, uJ = [σ11J , σ

22
J , σ

12
J ]. The

nodal unknowns are collected together in an array u = [u1, u2, ..., uN ]T , where N is the total number
of nodes. The system of linear equations obtained from Eqs. (23) is expressed as Au = b, where
A is a square matrix of size 3N × 3N and b is a column vector of size 3N × 1 resulting from the
pressure term in Eq. (23).

2.3.1 Regularization

The inverse problem of force inference from the deformation field is often ill-posed. For instance,
in traction force microscopy (TFM) [21], the traction forces at the cell-matrix interface are inferred
from displacement of fidicuary markers embedded in the soft matrix. The inversion process is
inherently unstable due to the slow decay of the elasticity Green’s function i.e. noise in the
measured displacements results in large changes in the inferred traction field. The inverse problem
is therefore often regularized by minimizing the force balance equations along with a zeroth-order
Tikhonov regularization that penalizes the L2-norm of the unknown forces. The regularization
term is scaled by a scalar regularization parameter λ which is chosen so as to establish a balance
between regularizing the solution and satisfying the force balance equations. The parameter λ
can be chosen based on the L-curve method [21], which can be subjective as an obvious inflection
point may not always be present, or more objectively based on Bayesian inference [22]. Apart from
L2-regularization, other ways of penalizing undesirable features of traction fields have also been
explored for TFM including L1-regularization and gradient-based penalties [22].

The inverse problem of membrane tension inference is different than TFM in that we are not
solving an ill-posed inverse elasticity problem. In TFM, the in-plane momentum balance equations
alone are not sufficient to infer tractions and constitutive equations for the soft matrix are necessary
to formulate the inverse problem. In the membrane tension inference problem, the out-of-plane
balance relation in Eq. (13) renders the system statically determinate and allows one to directly
solve for surface stresses. Yet the inverse problem can become ill-posed if the given surface shape
cannot support a pressure through a membrane stress, e.g. if it is locally planar, reflecting the
sensitivity of the solution to shape and its variations inherent to the shape acquisition method
based on confocal stacks. Indeed, in practice we observe that Au = b is ill-conditioned even for
simple axisymmetric shapes such as a spherical cap (Supplementary Fig. 14). Regularization is
therefore necessary to solve this inverse problem. It amounts to minimizing with respect to u the
following function

E(u) =
1

2
||Au− b||2 + L(u), (28)

where L(u) is the discretized regularization contribution that penalizes any undesirable character-
istics in the unknown tension field.

A natural first choice for regularization is a zeroth-order Tikhonov regularization term that
penalizes magnitude of surface tensions expressed as

L0(σ) =
λ20
2

∫
Γ
σ : σ dS, (29)

where λ0 is a dimensionless regularization parameter. However, surface stresses inferred using only
this regularization are observed to exhibit sharp gradients in surface tensions. We therefore did not
include this regularization term in our analysis.
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We then considered a first-order regularization of the form

L1t(σ) =
λ2t
2

∫
Γ
∇trace(σ) ·∇trace(σ) dS =

λ2t
2

∫
Γ
σaa|eσ

b
b|fg

ef dS, (30)

where the regularization parameter λt provides a length scale to penalize tension gradients. Here
gef are the components of the inverse of the metric tensor and σbb|e denotes the components of

covariant derivative of trace(σ) [8, 10]. This regularization penalizes gradients in the mean surface
tension.

We further found that penalizing only ∇trace(σ) does not necessarily restrain sharp rotations
(swirl) in the surface tension field. To regularize such features the following term penalizing the
curl of surface tension is introduced

L1c(σ) =
λ2c
2

∫
Γ
curlσ : curlσ dS =

λ2c
2

∫
Γ
ϵgeσab|e ϵ

hfσcd|f gac gbd ggh dS, (31)

where ϵ is the Levi-Civita tensor [8].
The first-order regularization was found to work best for all cases analyzed in this study. The

discrete version of the regularization terms L1t and L1c are obtained by using linear elements to
interpolate nodal values of surface tension σabI and covariant basis vectors eI1 and eI2:

L(u) =
1

2
uT

(
λ2tQt + λ2cQc

)
u =

λ2t
2
uTQu, (32)

where Qt and Qc are the regularization matrices resulting from discretizing L1t(σ) and L1c(σ), and

Q = Qt +
λ2c
λ2t

Qc.

The surfaces fit to the experimental point clouds may have regions that are flat (zero Gaus-
sian curvature) or concave (negative Gaussian curvature). Such regions exhibit negative principal
tensions that are not compatible with a stable membrane state of stress. The regularization terms
considered above do not restrict negative principal tensions. Thus when analyzing experimental
data we additionally impose the following inequality constraint

detσJ = σ11J σ
22
J −

(
σ12J

)2
> 0

for each node J when minimizing Eq. (28). The minimization problem however becomes nonlinear
after introducing the inequality constraint and is solved using the constrained minimization function
(fmincon) in Matlab.

Taken together, application of this inverse approach to curved epithelia under luminal pressure
is termed as curved Monolayer Stress Microscopy (cMSM), which can be viewed as a generalization
of the planar MSM [23, 24]. However, in cMSM, any assumptions about the constitutive behavior
of the membrane are not necessary.

2.4 Testing the cMSM inverse approach

Axisymmetric shapes

We systematically verified our approach by reconstructing surface tensions on axisymmetric shapes
that can be directly compared with the closed-form solution given by Eqs. (19) and (20). The
difference between the inferred tension σ and the closed-form solution σCF at all nodes is quantified
using the relative error evaluated as ||σ − σCF||/||σCF||.
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We first analyze ellipsoidal caps with the aspect ratio given as α = ra/rb, where rb and ra are
the principal radii. For each case, the inverse problem is solved for a wide range of values of λt
which regularizes the gradients in tension. Regularization in the curl of surface tension is controlled
by the parameter λc. This analysis provides guidance to choose the regularization parameters when
analyzing the experimentally obtained membrane shapes. For all cases, the circular footprint is set
to have radius rb = 40 µm to be comparable to the experimental domes, while ∆P = 25Pa such
that trace(σ) = 1mN/m for a spherical dome with α = 1.

Surface tension recovery for a spherical cap (α = 1) is shown in Supplementary Fig. 15. In this
and other figures, the symmetric stress tensor is represented graphically in terms of its mutually
orthogonal principal directions of stress (eigenvectors) and principal stresses along these directions
(eigenvalues), represented by orthogonal pairs of arrows whose length is proportional to the mag-
nitude of the corresponding principal tensions and whose divergence/convergence represent their
positive/negative sign. The color of the surface shows the hydrostatic component of the surface
tension i.e. trace(σ). For a spherical cap in Supplementary Fig. 15, an isotropic state of stress is
represented by two mutually orthogonal pairs of arrows of the same length. The inferred solution
is shown by black arrows and the expected solution is shown with green arrows. Note that for a
spherical cap the expected solution is uniform and isotropic surface tension for which the orienta-
tion of the principal directions is arbitrary. Therefore, in Fig. 15e, we do not expect the directions
of black and green arrows to match.

The inverse problem is solved for a fixed λc and a range of λt values acting as a regularization
parameter. The tension obtained at every node is compared with the expected analytical solution
to quantify the error as shown in Supplementary Fig. 15a. With λc = 0, the relative error is within
1% for λt roughly between 0.002 and 0.1. For λt below this range the problem is under-regularized,
which leads to larger errors, whereas for λt above this range the problem is over-regularized, which
again leads to larger errors. Instead of performing a component-wise comparison of σ with the
analytical solution, if only trace(σ) is compared the errors are much smaller over a wider range
of regularization parameter values (Supplementary Fig. 16). This is expected since λt explicitly
penalizes gradients in trace(σ).

Introducing the curl-based regularization with λc is observed to further improve the overall
recovery of surface tensions (Supplementary Fig. 15a). For each λc, the λt value corresponding
to the minimum error in Supplementary Fig. 15a can be clearly associated with the corner in
the L-curve, where the regularization term is plotted against the residual forces (Supplementary
Fig. 15d). The regularization term is evaluated as

√
uTQu/A, where A is the total dome area.

The residual forces are quantified using ||Au − b||/||b||. This corner point can also be identified
as the regularization parameter value λt after which the residual starts increasing as shown in
Supplementary Fig. 15c.

Note that for λt < λc, the regularization is dominated by the curl-based term, which improves
the solutions obtained for low λt values. In general, we observe that introducing λc penalizes short
wavelength features in σ, which are not necessarily filtered through λt regularization. Moreover,
choosing λt for a given λc from Figs. 15c or 15d is less ambiguous compared to when λc = 0.

A spherical cap is a special case as the curvature is isotropic and constant, leading to con-
stant and isotropic surface tensions everywhere on the surface. Thus, any λc > 0 is observed to
significantly improve the solution (Supplementary Fig. 15a). However, for shapes with significant
curvature gradients, we expect to have tension gradients as well. Using a higher value of λc in such
a case might overly-penalize the tension gradients leading to larger errors. Indeed, this becomes
apparent when the surface stress recovery is performed on prolate and oblate ellipsoidal caps as
shown in Figs. 17 and 18. For instance, λc = 0.01 seems to work well for oblate ellipsoids Fig. (18)a,
while increasing λc to 0.1 leads to relatively large errors ( 10%). The comparison between inferred
and expected solutions using black and green principal stress arrows is shown in Figs. 17e and 18e.
The solutions are recovered with high accuracy making it difficult to visually differentiate between

15



Supplementary Figure 14: Membrane stress inference on a spherical cap without any regularization.
The black arrows represent the inferred membrane stresses and green arrows represent the expected
solution for a spherical cap.

the overlapping black and green arrows.

Inflated hyperelastic membrane

To further test the approach beyond axisymmetric shapes, we generate deformed membrane shapes
by inflating a flat patch of a neo-Hookean membrane with fixed edges. The basal footprints were
chosen to be elliptical with aspect ratios 1, 2, and 3. The smaller principal radius of the elliptical
footprints is fixed at 25 µm. The strain energy density per unit reference area for the neo-Hookean
membrane is of the form

ψ(I, J) = µ(I − 2) + λ(J − 1)2,

where I = trace(C), J =
√
detC, and C is the right Cauchy-Green deformation tensor [10]. The

material parameters are µ = 1mN/m and λ = 2µ, while the pressure applied is ∆P = 400Pa.
The inflation problem is solved using finite elements and membrane stresses are computed at

mesh nodes by post-processing the solution. The inferred membrane stresses obtained by solving the
inverse problem on the given deformed shapes are then compared with the finite element solution
as shown in Figs. 19, 20, and 21. In all cases, the surface tensions are recovered to be within
∼ 3% of the known numerical solution.

In each example, for a given value of λc we sweep for a wide range of λt. The choice of λt
is then based on the corner where the residual starts sharply increasing with λt (Supplementary
Fig. 19c). Note that this corner point also corresponds to the minimum relative error shown in
Supplementary Fig. 19a and the point where the residual starts increasing with λt in Supplementary
Fig. 19b. When analyzing experimental data for which the true solution is not known, this approach
based on a plot similar to Figs. 19b and c is used to select the regularization parameter.
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Supplementary Figure 15: Surface tension inference on a spherical cap. The inverse problem
solution is analyzed as a function of the regularization parameter λt for λc = {0.0, 0.01, 0.05, 0.1}.
(a) The relative error between the inferred tension and the closed-form solution is sufficiently low
(< 1%) for a wide range of λt values which depends on the choice of λc. (b) The tangential
component of the surface tension along the edge σ11 is shown as a function of angle of revolution θ.
The black line is the closed-form solution. (c) The residual of the nodal force balance equations as a
function of λt clearly shows that the optimal regularization parameter is associated with the corner
point where residual starts increasing. (d) Regularization functional plotted against the residual, in
the so-called L-curve. The corner in the L-curve can be identified with the optimal regularization
parameter λt for a given λc. (e) Surface stress solution obtained for λc = 0.1.
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Supplementary Figure 16: (a) Relative error between the inferred tension trace(σ) and closed-form
solution trace(σCF) for spherical cap shown in Supplementary Fig. 15. (b) The tension on the edge
is compared with the close-form solution shown as a solid black line.

2.5 Surface stress inference on epithelial domes

Dome segmentation

To extract dome shapes from experimental data, we generate a three-dimensional point cloud
corresponding to the basal cell faces (Supplementary Fig. 22). First, the x–y slice located roughly
2–4 µm above the substrate is identified and segmented as the dome footprint. Note that using a
x–y slice very close to the substrate can include protrusions extended by substrate bound cells that
may distort the basal footprint shape. For a given slice, points are manually selected that denote
the basal cell faces. A spline fit is obtained to the selected points which is used to generate the final
point cloud with uniformly spaced points. The x–z and y–z slices spaced roughly 7.5 µm apart are
then processed in a similar manner. The point cloud for a given dome is obtained by combining
the points from all such segmented slices.

The steps involved in fitting a surface Γ to the point cloud obtained from experimental data
are shown in Supplementary Fig. 23. The three-dimensional point cloud (Supplementary Fig. 22b)
is first triangulated (Supplementary Fig. 23a) using an implementation of the crust algorithm for
surface reconstruction from unorganized 3D sample points for open surfaces [25]. Note that the
point cloud shown in Supplementary Fig. 22b is down-sampled to aid the triangulation process.
Then, the open surface is mapped on a unit disc using disc conformal map [18], which provides
a global parametrization for Γ (Supplementary Fig. 23b). The part of unit disc corresponding
to the inflated dome surface is re-meshed using triangular elements to improve the mesh quality
(Supplementary Fig. 23c). This triangulation is then fitted back to the point cloud shown in Sup-
plementary Fig. 23a with a smoothness penalty [26] to obtain a smooth surface fit (Supplementary
Fig. 23d).

Regularization parameter selection

For all experimental data analyzed in this study, we use λc = 0.1 based on the examples presented
above, specifically the hyperelastic membrane inflation simulations. A somewhat higher regular-
ization is expected and intentional when working with experimental data due to measurement
and membrane-approximation errors, especially at low inflation levels. A representative example
of analysis performed on an experimentally obtained surface is shown in Supplementary Fig. 24.
The regularization parameter λt is chosen as shown in Supplementary Fig. 24 following the same
procedure outlined in the previous section.
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Supplementary Figure 17: Surface tension inference on a prolate cap with aspect ratio α = 1.5.
The inverse problem solution is analyzed as a function of the regularization parameter λt for
λc = {0.0, 0.01, 0.05, 0.1}. (a) The relative error between the inferred tension and the closed-form
solution is sufficiently low (< 1%) for a wide range of λt values. (b) The tangential component of
the surface tension along the edge σ11 is shown as a function of angle of revolution θ. The black
line represents the closed-form solution. (c) The residual of the nodal force balance equations as
a function of λt clearly shows that the optimal regularization parameter is associated with the
corner point where residual starts increasing. (d) The corner in the L-curve can be identified with
the optimal regularization parameter λt for a given λc. (e) Surface stress solution obtained for
λc = 0.05.
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Supplementary Figure 18: Surface tension inference on an oblate cap with aspect ratio α = 0.5.
The inverse problem solution is analyzed as a function of the regularization parameter λt for
λc = {0.0, 0.01, 0.05, 0.1}. (a) The relative error between the inferred tension and the closed-form
solution is sufficiently low (< 1%) for a much smaller range of λt values compared to Figs. 15
and 17. For λc = 0.1 the problem is over-regularized which results in higher errors. (b) The
tangential component of the surface tension along the edge σ11 is shown as a function of angle of
revolution θ. The black line represents the closed-form solution. (c) The residual of the nodal force
balance equations as a function of λt clearly shows that the optimal regularization parameter is
associated with the corner point where residual starts increasing. (d) The corner in the L-curve
can be identified with the optimal regularization parameter λt for a given λc. (e) Surface stress
solution obtained for λc = 0.01.
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Supplementary Figure 19: Surface tension inference on an inflated Neohookean membrane with
a circular footprint. The inverse problem solution is analyzed as a function of the regularization
parameter λt for λc = {0.0, 0.01, 0.05, 0.1, 0.25}. (a) The relative error between the inferred tension
and the finite element solution is minimized for λt ≈ 0.1. (b) The tangential component of the
surface tension along the edge σ11 is shown as a function of angle of revolution θ. The solution
is plotted for λt corresponding to the minimum error in (a). The black line is the finite element
solution. (c) The residual of the nodal force balance equations as a function of λt clearly shows
that the optimal regularization parameter is associated with the corner point where residual starts
increasing. (d) The corner in the L-curve can also be identified with the optimal regularization
parameter λt for a given λc. (e) Surface stress solution obtained for λc = 0.1.

21



Supplementary Figure 20: Surface tension inference on a an inflated neohookean membrane with
an elliptical footprint of aspect ratio 2. The inverse problem solution is analyzed as a function of
the regularization parameter λt for λc = {0.0, 0.01, 0.05, 0.1, 0.25}. (a) The relative error between
the inferred tension and the finite element solution is shown as a function of λt. (b) The tangential
component of the surface tension along the edge σ11 is shown as a function of angle of revolution
θ. The solution is plotted for λt corresponding to the minimum error in (a). The black line is the
finite element solution. (c) The residual of the nodal force balance equations as a function of λt
clearly shows that the optimal regularization parameter is associated with the corner point where
residual starts increasing. (d) The corner in the L-curve can also be identified with the optimal
regularization parameter λt for a given λc. (e) Surface stress solution obtained for λc = 0.1.
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Supplementary Figure 21: Surface tension inference on a an inflated neohookean membrane with
an elliptical footprint of aspect ratio 3. The inverse problem solution is analyzed as a function of
the regularization parameter λt for λc = {0.0, 0.01, 0.05, 0.1, 0.25}. (a) The relative error between
the inferred tension and the finite element solution is shown as a function of λt. (b) The tangential
component of the surface tension along the edge σ11 is shown as a function of angle of revolution
θ. The solution is plotted for λt corresponding to the minimum error in (a). The black line is the
finite element solution. (c) The residual of the nodal force balance equations as a function of λt
clearly shows that the optimal regularization parameter is associated with the corner point where
residual starts increasing. (d) The corner in the L-curve can also be identified with the optimal
regularization parameter λt for a given λc. (e) Surface stress solution obtained for λc = 0.1.
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Supplementary Figure 22: (a) Segmentation of dome by selecting points on x–y, x–z, and y–z slices
of the image stack. Spline fits obtained to the selected points are shown for the basal footprint and
selected x–z and y–z planes. (b) The point cloud representing the extracted luminal surface.

Supplementary Figure 23: Steps used to fit a smooth surface to the point cloud of epithelial dome
basal lumen. (a) The point cloud (black points) is triangulated to generate the surface mesh for the
inflated dome. The dome footprint is shown as the red line. (b) The surface triangulation in (a) is
mapped on a unit disk using a disc conformal map. (c) Re-meshed dome surface in the parametric
domain. (d) The mesh shown in (c) is fitted to the point cloud shown in (a) with a smoothness
penalty.
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Supplementary Figure 24: Surface stress inference on epithelial dome surface obtained in Supple-
mentary Fig. 23. The regularization parameter λt is determined from (a), which can be identified
as the corner point on the L-curve shown in (b). The chosen point is shown in both (a) and (b).
(c) The inferred surface stresses for the chosen regularization parameters, λc = 0.1 and λt = 0.07.
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