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1 Methods and Optimization Details

We present the method for integrating multi-omics data, to optimize the fused
Laplacian matrix, as well as obtaining the low-dimensional representation for
the multi-omics data.

For single modal data, spectral clustering can be realized through solving op-
timization problem with given laplacian matrix L. In terms of multi-omics single
cell data, the proposed Laplacian matrix L∗ approximated by linear combina-

tion of different order modal-specific laplacian matrices in the form
∑U
i=1 λiL

(i)
µ

has several parameters yet to be determined.
How to automatically determine the parameters embedded in Laplacian ma-

trix L∗ and seek better representation capability of the common embedding
for multi-modal data thus constitutes a critical challenge. Motivated by the
framework of spectral clustering, we propose the optimization objective as min-
imization of tr(HTL∗H), while simultaneously seek optimized H as the low-
dimensional embedding for the multi-modal data, and the optimization problem
can be expressed as follows:

min
λ,H,µ

tr(HTL∗H) + ‖L∗ −
U∑
i=1

λiL(i)
µ ‖2F

s.t. L(i)
µ =

V∑
p=1

µpL
(i)
p (i = 1, 2, · · · , U),

L∗(positive-semi-definite),L∗jk ≤ 0, j 6= k

H ∈ Rn×c, HTH = Ic

µ = [µ1, µ2, . . . , µV ]T , ‖µ‖1 = 1,µ ≥ 0

λ = [λ1, λ2, . . . , λU ]T , ‖λ‖1 = 1,λ ≥ 0.

(1)

1.1 Multi-Modal Laplacian Matrix Optimization

High-order Laplacian matrix can model the hidden high-order connection infor-
mation among data, but the value of order needs properly selected as too high
order may distort the original relationship embedded in the data set. Hence,
we focus on integration of Laplacian matrix in first-order and second-order, to
preserve global data structure in a better manner, as well as improving learning
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performance. However, the positive-semi-definite property of L∗ added in the
constraints of the optimization problem makes the optimization problem hard
and inefficient to solve. Taking into consideration on the original definition of
Laplacian matrix In−D−1/2W1D

−1/2, and the symmetric property of W1 that
can be decomposed into eigen-matrix form W1 = ŨΛŨT , the optimization ter-
m L∗ can be reformulated with In −WΛWT . We here present a generalized
version of the optimization problem to improve the experimental performance:

min
λ,W,Λ,H,µ

tr(HT (In −WΛWT )H) + αµTMµ

+ ‖In −WΛWT − (λL(1)
µ + (1− λ)L(2)

µ )‖2F

s.t. L(i)
µ =

V∑
p=1

µpL
(i)
p (i = 1, 2),

W,H ∈ Rn×c,WTW = Ic, H
TH = Ic

µ = [µ1, µ2, . . . , µV ]T , ‖µ‖1 = 1,µ ≥ 0

0 ≤ Λkk ≤ 1, k = 1, 2, . . . , c, 0 ≤ λ ≤ 1.

(2)

Here Λ is a diagonal matrix, and 0 ≤ Λkk ≤ 1 makes sure the optimization
stable.

Optimization Framework
Taking into consideration on the non-convexity of the above problem, we propose
alternative optimization framework to solve the problem by updating each vari-
able iteratively. For the convenience of optimization, we rewrite ‖In−WΛWT −
(λL(1)

µ + (1− λ)L(2)
µ )‖2F into the following form:

tr[In − 2WΛWT − 2(λL(1)
µ + (1− λ)L(2)

µ )

+ 2WΛWT (λL(1)
µ + (1− λ)L(2)

µ )

+WΛ2WT + (λL(1)
µ + (1− λ)L(2)

µ )2].

The optimization process consists of the following five steps.

• Updating λ: Fixing W,Λ, H,µ, the update of λ can be realized through
solving the optimization problem:

min
0≤λ≤1

tr
[
(λL(1)

µ + (1− λ)L(2)
µ )2

]
− 2tr

[
(In −WΛWT )(λL(1)

µ + (1− λ)L(2)
µ )
] (3)

Define

a = tr
[
(L(1)

µ )2 − 2L(1)
µ L(2)

µ + (L(2)
µ )2

]
= ‖L(1)

µ − L(2)
µ ‖2F ≥ 0.

b = 2tr
[
(L(2)

µ − In +WΛWT )(L(1)
µ − L(2)

µ )
]
.
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1) If a > 0, we can obtain

λ =


0, if− b

2a < 0
1, if− b

2a > 1
− b

2a , otherwise

2) If a = 0, then we can deduce b = 0. In this case, We keep λ un-
changed. That means if λk represent the value of λ in kth iteration,
we will let λk = λk−1.

• Updating W : Given fixed λ,Λ, H,µ, the update of W can be generated
through the optimization problem below

min
W IW=Ic

tr(ΛWTBW ) (4)

where B = λL(1)
µ + (1− λ)L(2)

µ − 1
2HH

T .

The solution W of Eq.(4) can be calculated as the first c eigenvectors of
B.

• Updating Λ: Given fixed λ,W,H,µ, we optimize the following problem
to update Λ:

min
0≤Λii≤1,Λij=0(i 6=j)

tr(Λ2 + 2ΛC), (5)

where

C = WT

[
(λL(1)

µ + (1− λ)L(2)
µ )− 1

2
HHT

]
W − Ic

We can get:

Λii =

 0, Cii ≥ 0
1, Cii ≤ −1
−Cii, otherwise

• Updating H: Fixing λ,W,Λ,µ, the optimization problem with respect
to H can be reduced into the following formula

min
HTH=Ic

tr(HT (In −WΛWT )H) (6)

Then we can obtain the solution H of Eq. (6) by calculating the first c
eigenvectors of In −WΛWT .

• Updating µ: Given fixed λ,W,Λ, H, then we can optimize the problem
in the following form:

min
‖µ‖1=1,µ≥0

tr
[
− 2(λL(1)

µ + (1− λ)L(2)
µ )

+ 2WΛWT (λL(1)
µ + (1− λ)L(2)

µ )

+ (λL(1)
µ + (1− λ)L(2)

µ )2
]

+ αµTMµ

(7)
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The optimization problem can be rewritten as a standard quadratic pro-
gramming formulation, which can be effectively solved with MATLAB
quadprog.

The algorithm below presents the process of optimization for better un-
derstanding of scHoML.

Algorithm 1 High-order Laplacian Matrix Optimization for single cell multi-
omics data: scHoML
Input: Datasets:{X1, X2, · · · , XV }, dimensionality of common embedding c,
number of nearest neighbors k.
Output: Low dimensional Embedding H

1: Compute L
(i)
p of each modal Xp, p = 1, 2, . . . , V ; i = 1, 2.

2: Initialize λ,W ,Λ,µ.
3: repeat
4: Update λ by solving optimization problem in Eq.(3).
5: Update W by solving Eq.(4).
6: Update Λ by solving Eq.(5).
7: Update H by solving Eq.(6).
8: Update µ by solving Eq.(7).
9: until converge.

Convergence & Complexity

• Convergence Analysis
Since Laplacian matrix is a positive semi-definite matrix, we can conclude
that the objective function of scHoML takes zero as lower bound. Obtain-
ing its global optimal solution is difficult, because the objective function
is non convex. If alternative optimization framework is applied, the ob-
jective function value decreases while updating variables. Therefore, the
algorithm will eventually converge to a local solution.

• Complexity
The computational complexity of scHoML is mainly caused by SVD de-
composition when updating W and H, and its corresponding complexity
is O(n3). Meanwhile, the complexity of updating λ and Λ is O(1) and
O(n), respectively. Furthermore, to update µ, we need to solve a stan-
dard quadratic programming problem. Let ε be the precision of the result
and V be the number of modals, the complexity of solving the quadratic
programming problem is O(ε−1V ). If the algorithm has been run for t
iterations, the total complexity of our method is O(t(n3 + n+ ε−1V )). If
ε−1 � n2, the complexity of scHoML can be considered as O(tn3).
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1.2 Clustering with Inferred Low-dimensional Represen-
tation

In the optimization of high-order neighborhood Laplace matrix, we simultane-
ously obtain a common low dimensional embedding H ∈ Rn×c for the single cell
multi-modal data. The cell sub-populations can be identified from the matrix
H through appropriate evaluation on the cellular relationships between cells.

Assume H = [h1, h2, . . . , hn]T ∈ Rn×c, we model the distance between cell
s and cell t (s, t = 1, 2, . . . , n) as

Dis(s, t) = 1− (hs − h̄s)(ht − h̄t)T√
(hs − h̄s)(hs − h̄s)T

√
(ht − h̄t)(ht − h̄t)T

where h̄s = 1
c

∑c
j=1 xsj , s = 1, 2, . . . n. and

Dis(s, t) =

c∑
k=1

|hs(k)− ht(k)|.

Agglomerative hierarchical clustering was performed on the constructed dis-
tance matrix to entangle the heterogeneity embedded in the cells.

An appropriate evaluation of the cluster number is critical. We here provide
a grain to coarse design of the optimal cluster number. The cluster number is
determined through solving the following optimization problems.

If the involved number of samples is small, we strive to evaluate the sample
specific silhouette coefficient to measure the clustering matching degree and
optimize the mean silhouette coefficient of all samples to determine the best
cluster number c?no:

c?no = argmaxk∈K

n∑
i=1

(bk(i)− ak(i))/max(ak(i), bk(i))

where ak(i) = 1
|CI |−1

∑
j∈CI ,i6=j d(i, j) is the average distance from the i-th point

to the other points in the same cluster I as i, and bk(i) = minJ 6=I
1
|CJ |

∑
j∈CJ

d(i, j)

is the minimum average distance from the i-th point to points in a different
cluster J , minimized over clusters. For different cluster number k ∈ K, we run
agglomerative hierarchical clustering to generate different clustering results. If
most samples have a high silhouette value, the clustering solution is believed
appropriate.

If the involved number of samples is relatively large, we propose statistical
measures in terms of variance for evaluation of cluster number appropriateness.

c?no = argmaxk∈K
tr(
∑k
q=1 nq(cq − cE)(cq − cE)T )/(k − 1)

tr(
∑k
q=1

∑
x∈Cq

(x− cq)(x− cq)T ))/(n− k)
,

where Cq is the set of all data in class q, cq is the central point of class q,
cE is the central point of all data involved, and nq is the total number of
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data points in class q. It is reasonable that we evaluate inter class variance
and intra class variance to determine the optimal cluster number c?no when

tr(
∑k

q=1 nq(cq−cE)(cq−cE)T )/(k−1)

tr(
∑k

q=1

∑
x∈Cq

(x−cq)(x−cq)T ))/(n−k)
achieves maximum.

2 Figures and Tables

Table 1: Performance comparisons of different methods in terms of ARI.
Algorithm\Dataset simulation data1 simulation data2 mESC pbmc 10X pbmc inhouse

SCbest 0.2426± 0.0233 0.2323± 0.0072 0.3764± 0.0000 0.7214± 0.0411 0.6679± 0.0742
MSE 0.2709± 0.0050 0.0111± 0.0059 0.3764± 0.0000 0.7161± 0.0133 0.6807± 0.0502

CoregSC 0.2529± 0.0080 0.1368± 0.0280 0.1716± 0.0628 0.7162± 0.0164 0.5152± 0.1351
AASC 0.1755± 0.0044 0.0063± 0.0089 0.7022± 0.0235 0.6805± 0.0799 0.6027± 0.0290
RMSC 0.0423± 0.0094 0.0745± 0.0050 0.3468± 0.0000 0.5724± 0.0001 0.5212± 0.0266
AMGL 0.1424± 0.0892 −0.0246± 0.0123 0.4869± 0.4691 0.6332± 0.1047 0.7275± 0.1452
AWP 0.3338± 0.0000 0.1154± 0.0000 0.2416± 0.0000 0.7230± 0.0000 0.5693± 0.0000

OPMC 0.0241± 0.0463 0.6927± 0.3311 0.2269± 0.2012 0.6133± 0.0648 0.8778± 0.1095
scAI-hc 0.9391± 0.0000 0.6587± 0.0000 0.5480± 0.0000 0.5131± 0.0000 0.7875± 0.0000

scAI-leiden 0.9539± 0.0000 0.8042± 0.0000 0± 0.0000 0.0738± 0.0000 0.3317± 0.0000
scHoML 0.9854± 0.0000 1± 0.0000 0.9350± 0.0000 0.8737± 0.0000 0.9523± 0.0000

Table 2: Performance comparisons of different methods in terms of NMI.
Algorithm\Dataset simulation data1 simulation data2 mESC pbmc 10X pbmc inhouse

SCbest 0.2630± 0.0149 0.2572± 0.0047 0.3894± 0.0000 0.8144± 0.0070 0.8456± 0.0470
MSE 0.3196± 0.0098 0.0404± 0.0108 0.3894± 0.0000 0.8149± 0.0004 0.8536± 0.0325

CoregSC 0.2796± 0.0026 0.450± 0.0295 0.2742± 0.0341 0.8125± 0.0057 0.6456± 0.1145
AASC 0.2456± 0.0027 0.0592± 0.0120 0.6198± 0.0200 0.7374± 0.0398 0.6877± 0.0195
RMSC 0.1130± 0.0295 0.0688± 0.0027 0.3719± 0.0000 0.6705± 0.0000 0.6179± 0.0186
AMGL 0.2313± 0.0787 0.1140± 0.0231 0.5166± 0.4328 0.7106± 0.0574 0.8615± 0.0701
AWP 0.3704± 0.0000 0.1703± 0.0000 0.3122± 0.0000 0.8078± 0.0000 0.7225± 0.0000

OPMC 0.0329± 0.0450 0.7343± 0.3040 0.2372± 0.1989 0.6939± 0.0149 0.8815± 0.0298
scAI-hc 0.9112± 0.0000 0.7892± 0.0000 0.5003± 0.0000 0.6232± 0.0000 0.7906± 0.0000

scAI-leiden 0.9348± 0.0000 0.8080± 0.0000 0.3233± 0.0000 0.5128± 0.0000 0.7170± 0.0000
scHoML 0.9764± 0.0000 1± 0.0000 0.8729± 0.0000 0.8374± 0.0000 0.9470± 0.0000

Table 3: Performance comparisons of different resolution parameters in scAI-
leiden for considered datasets.

Dataset\Resolution 0.01 0.1 0.2 0.3 0.4 0.5
simulation data1 0/0.4548 0.9539/0.9348 0.7021/0.7779 0.7062/0.7886 0.7051/0.7882 0.5474/0.7359
simulation data2 0.5957/0.7457 0.8042/0.8080 0.5587/0.7225 0.3912/0.6746 0.3531/0.6631 0.3167/0.6459

mESC 0/0.3233 0/0.3233 0.3468/0.3719 0.3468/0.3719 0.3468/0.3719 0.2182/0.2993
pbmc inhouse 0.7215/0.8638 0.3317/0.7170 0.2327/0.6722 0.1804/0.6457 0.1573/0.6315 0.1429/0.6218

pbmc 10X 0.2749/0.5996 0.0738/0.5128 0.0496/0.4934 0.0398/0.4824 0.0348/0.4795 0.0296/0.4722
Dataset\Resolution 0.6 0.7 0.8 0.9 1

simulation data1 0.5474/0.7359 0.5425/0.7349 0.5348/0.7298 0.5093/0.7148 0/0.4548
simulation data2 0.2921/0.6349 0.2714/0.6266 0.2484/0.6106 0.2283/0.6128 0/0.4630

mESC 0.2182/0.2933 0.2106/0.3145 0.2727/0.3224 0.1596/0.3020 0/0.3233
pbmc inhouse 0.1211/0.6085 0.1066/0.5958 0.1044/0.5939 0.0944/0.5851 0/0.4394

pbmc 10X 0.0272/0.4687 0.0239/0.4635 0.0208/0.4600 0.0180/0.4543 0/0.4186
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(a) AASC (b) AMGL

(c) MSE (d) OPMC

(e) RMSC (f) SCbest

(g) AWP (h) CoregSC

(i) scAI (j) scHoML

Figure 1: tsne plots of different methods in obtaining low-dimensional embed-
dings for simulation data1
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(a) AASC (b) AMGL

(c) MSE (d) OPMC

(e) RMSC (f) SCbest

(g) AWP (h) CoregSC

(i) scAI (j) scHoML

Figure 2: tsne plots of different methods in obtaining low-dimensional embed-
dings for simulation data2
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(a) AASC (b) AMGL

(c) MSE (d) OPMC

(e) RMSC (f) SCbest

(g) AWP (h) CoregSC

(i) scAI (j) scHoML

Figure 3: tsne plots of different methods in obtaining low-dimensional embed-
dings for mESC data
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(a) AASC (b) AMGL

(c) MSE (d) OPMC

(e) RMSC (f) SCbest

(g) AWP (h) CoregSC

(i) scAI (j) scHoML

Figure 4: tsne plots of different methods in obtaining low-dimensional embed-
dings for pbmc inhouse data
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(a) AASC (b) AMGL

(c) MSE (d) OPMC

(e) RMSC (f) SCbest

(g) AWP (h) CoregSC

(i) scAI (j) scHoML

Figure 5: tsne plots of different methods in obtaining low-dimensional embed-
dings for pbmc 10X data
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(a) simulation data1-scRNA-seq (b) simulation data1-scATAC-seq

(c) simulation data2-scRNA-seq (d) simulation data2-scATAC-seq

(e) mESC-DNA (f) mESC-RNA

(g) pbmc inhouse-ADT (h) pbmc inhouse-RNA

(i) pbmc 10X-ADT (j) pbmc 10X-RNA

Figure 6: tsne plots for original multi-omics data
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(a) simulation data1-scRNA-seq (b) simulation data1-scATAC-seq–
reference

(c) simulation data2-scRNA-seq (d) simulation data2-scATAC-seq–
reference

(e) mESC-scRNA-seq (f) mESC-scATAC-seq–reference

(g) pbmc inhouse-ADT (h) pbmc inhouse-RNA–reference

(i) pbmc 10X-ADT (j) pbmc 10X-RNA–reference

Figure 7: tsne plots for embedding data by UnionCom

13



(a) simulation data1-scRNA-seq–
reference

(b) simulation data1-scATAC-seq

(c) simulation data2-scRNA-seq–
reference

(d) simulation data2-scATAC-seq

(e) mESC-scRNA-seq–reference (f) mESC-scATAC-seq

(g) pbmc inhouse-ADT–reference (h) pbmc inhouse-RNA

(i) pbmc 10X-ADT–reference (j) pbmc 10X-RNA

Figure 8: tsne plots for embedding data by UnionCom
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