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Figure S1. TCGA database analysis the expression of RBM33 in diverse solid tumors, related to
Figure 1. Data shown as medians with SEM.
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Figure S2 RBM33 depletion specifically inhibits ALKBHS m°A demethylase activity in UM-SCC-1
cells, related to Figure 1 and Figure 2. (A) Co-IP analysis suggests exogenous RBM33 associated with
endogenous ALKBHS. Co-IP analysis was performed in UM-SCC-1 cells stably expressing strep-tagged
vector, and strep-tagged RBM33 by using Step-Tactin beads. (B) Input of Fig. 1D. (C) The interaction
between RBM33 and ALKBHS relies on RNA substrate. (D) RNA m°A methylation analysis suggests that
RBM33 overexpression significantly inhibits global RNA m®A methylation in UM-SCC-1 cells. Data
shown as medians with SEM. (E) Co-IP analysis suggests RBM33 interacts with ALKBHS in HEK293T
cells. (F and G) RNA m®A methylation analysis suggests that RBM33 knockdown significantly increases
RNA m°A methylation in HEK293T cells by dot-blot and RNA m°®A methylation quantification kit
respectively. (H) Western blot analysis showing the effect of RBM33 knocking down on protein levels of
mPA writers and erasers in UM-SCC-1 cells. (I-L) RNA mSA methylation analysis suggests that RBM33
knockdown selectively inhibits RNA m®A demethylase ALKBHS activity in UM-SCC-1 cells. Data shown
as medians with SEM. (M) RNA m°A methylation analysis suggests that RBM33 knockdown significantly
inhibits ALKBHS m®A demethylase activity in UM-SCC-1 cells. Data shown as medians with SEM. (N)
RNA m®A methylation analysis showing the effect of ALKBHS knockout on RBM33-mediated down-
regulation of RNA m°A methylation in HEK293T cells. Data shown as medians with SEM. (O) Exogenous
RBM33 preferentially binds to m®A-modfied RNA oligos. Substrate pull-down analyses suggest both
exogenous and endogenous RBM33 preferentially bind to m®A-modified RNA oligos. (P) Dot-blot
analysis suggests that deletion RNA-recognition motif (RRM) of RBM33 blocks RBM33-mediated down-
regulation of global RNA mSA methylation.
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Figure S3 RBM33 binding sites are close to ALKBHS binding sites, related to Figure 2. (A) m°A-
modified RNA substrate pull-down analysis suggests that RBM33 overexpression significantly facilitates
ALKBHS substrate accessibility. (B) Input of Figure 2E. (C) Western blot analysis showing protein levels
of Flag-tagged ALKBHS5 purified from wild-type and RBM33 knockout 293T cells. (D) m®A-modified
RNA substrate pull-down analysis suggests that RBM33 knockout significantly blocks ALKBHS substrate
accessibility. Flag-tagged ALKBHS proteins purified from wild-type and RBM33 knockout 293T cells
were subjected to RNA oligo pull-down analysis. (E and F) m°A-modified RNA substrate pull-down
analysis suggests that RBM33 m°®A-binding ability can not be regulated by ALKBHS. (G) Bar figure
showing the exon content for RBM33 binding transcripts by RBM33 PAR-CLIP-seq analysis. (H) PAR-
CLIP-seq analyses suggest that the majority of RBM33 binding sites could be overlapped with ALKBHS. (I)
Overlap analysis for ALKBHS bound genes, ALKBHS5 down-bound genes upon RBM33 KO in 293T cells
and hypermethylated genes upon RBM33 KD in UM-SCC-1 cells. (J) Pie charts show the distribution of
the overlapped RBM33 and ALKBHS5 PAR-CLIP-seq reads in RNA classes. (K) Pie charts show the
distribution of the overlapped RBM33 PAR-CLIP peaks. (L) Gene ontology analysis for the co-bound
genes by RBM33 and ALKBHS via PAR-CLIP-seq analysis. (M-O) IGV browser tracks showing RBM33
and ALKBHS5 PAR-CLIP reads in three selected representative genes in wild-type and RBM33 knockout
HEK293T cells. (P) Consensus sequence motif identified after analysis of a common m®A peaks from three
replicates. (Q) Histogram showing that the majority of genes co-regulated by ALKBHS and RBM33 exhibit
an increased m®A methylation in ALKBHS5 depleted cells.
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Figure S4 RBM33/ALKBHS5 complex regulates HNSCC cell survival in an m°A dependent manner,
related to Figure 4 and Figure 5. (A) Co-IP analysis suggests that the interaction between ALKBHS and
RBM33 can not be affected by KD of SENP1. (B) Co-IP analysis suggests that the interaction between
RBM33 and SENPI can not be affected by blocking the interaction between RBM33 and ALKBHS. (C)
Denaturing IP assay suggests that SUMOylation of ALKBHS can be extensively induced by
overexpression of ALKBHS interaction defective RBM33 mutant S1101A and R1134A. (D) Co-IP analysis
suggests that the interaction between ALKBHS and SENP1 can be significantly disrupted by blocking the
interaction between RBM33 and ALKBHS. (E) Denaturing IP assay suggests that SUMOylation of
ALKBHS can be significantly induced by overexpression of RBM33 interaction defective mutant
ALKBHS5 K132A, E153A and T265A. (F) Co-IP analysis suggests that endogenous RBM33 interacts with
endogenous SENP1. (G) Illustration of the regions for truncation mutants of both human RBM33 and
ALKBHS. (H and I) Co-IP analyses suggest that the Coiled coil domain of RBM33 interacts with N-
terminal of SENP1. (J) Western blot analysis showing the knockdown efficiency of RBM33 in UM-SCC-2
cells and SCCO090 cells. (K and L) RT-qPCR analyses showing transcription levels of both RBM33 and
ALKBHS in normal control HOK cells and HNSCC cell lines. (M-P) Protein half-lives analyses for both
RBM33 and ALKBHS in normal control HOK cells and HNSCC cells. (Q) Immunohistochemical Staining
(IHC) analysis suggests that RBM33 and ALKBHS are simultaneously overexpressed in primary tumor
tissues from different TNM stages of HNSC patients. In total, we analyzed 4 samples in stage | HNSCC
TNM, 32 samples in stage 11, 34 samples in stage III and 18 samples in stage I'V. (R) Western blot analysis
showing the knockdown efficiency of ALKBHS in cell lines as indicated. (S) RNA m°A methylation levels
in normal control HOK cells, and HNSC cell line such as UM-SCC-1, UM-SCC-2, SCC090, JHU022, 93-
VU-147T, SqCC/Y1 and 1483. Data shown as medians with SEM. (T) CCKS analysis showing the effect
of wild-type and enzymatic mutant ALKBHS overexpression on ALKBHS knockdown-mediated UM-
SCC-1 cell proliferation inhibition. (U) CCKS8 analysis showing the effect of wild-type and ALKBHS5
interaction defective mutant RBM33 (RBM33 S1101A) overexpression on RBM33 knockdown-mediated
UM-SCC-1 cell proliferation inhibition. (V-X) Effect of wild-type and ALKBHS interaction-defective
mutant RBM33 overexpression on RBM33 knockdown-mediated tumor growth inhibition of UM-SCC-1
xenograft. (Y) Colony forming analysis showing the colony forming ability of UM-SCC-1 cells with or
without 2,4-PDCA treatment. Data shown as medians with SEM. (Z) Annexin V staining analysis showing
the cell apoptosis of UM-SCC-1 cells with or without 2,4-PDCA treatment. Data shown as medians with
SEM.
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Figure S5 ALKBH5/RBM33 complex regulates gene expression of DDIT4 in an m®A-dependent
manner, related to Figure 5, Figure 6 and Figure 7. (A-C) Effect of ALKBHS depletion or inhibition on
UM-SCC-1 xenograft growth in vivo. Data shown as medians with SEM. (D) Dot blot analysis showing that
ALKBHS depletion or inhibition significantly increases global mRNA m°A methylation in vivo. (E) Western
blot analysis showing the protein expression of wild-type or enzymatic mutant ALKBHS (ALKBHS H204A).
(F) Colony formation analysis showing that 2,4-PDCA-mediated inhibitory effect on UM-SCC-1 colony
forming ability could be rescued by wild-type but not enzymatic mutant ALKBHS overexpression. Data
shown as medians with SEM. (G) Annexin V staining analysis showing the 2,4-PDCA-induced UM-SCC-1
cells apoptosis could be rescued by the wild-type but not enzymatic mutant ALKBHS5 overexpression. Data
shown as medians with SEM. (H) ALKBHS5 knockdown leads to significant gene expression alterations.
Differentially expressed genes shown in volcano figure in control or ALKBHS-depleted samples. (I) The
Venn diagram shows a number of genes with both significant m°A increase and differential expression upon
RBM33 and ALKBHS knockdown. (J) RNA-Seq peak visualization of DDIT4 in control and ALKBHS-
depleted cells. (K) m°A peak visualization of DDIT4 in control and ALKBHS5-depleted cells. (L) RT-qPCR
analysis showing the effect of ALKBHS overexpression on transcripts of DDIT4 in UM-SCC-1 cells. (M)
ALKBHS RIP analysis suggests that ALKBHS directly binds to transcripts of DDIT4 in UM-SCC-1 cells.
Data shown as medians with SEM. (N and O) MeRIP analysis suggests that either RBM33 or ALKBHS5
depletion significantly increases DDIT4 mRNA m°®A methylation. Data shown as medians with SEM. (P)
ALKBHS5 RIP analysis suggests that ALKBHS enrichment at DDIT4 transcripts could be blocked by
RBM33 KD. Data shown as medians with SEM. (Q) mRNA half-life analysis indicates that RBM33 KD
significantly promotes mRNA decay of DDIT4. Data shown as medians with SEM. (R) mRNA half-life
analysis suggests that ALKBHS5 depletion significantly promotes mRNA decay of DDIT4. Data shown as
medians with SEM. (S) RT-qPCR analysis showing the effect of wild-type and enzymatic mutant ALKBHS
(ALKBHS H204A) overexpression on ALKBHS knockdown-mediated down-regulation of DDIT4. Data
shown as medians with SEM. (T) MeRIP analysis suggests that ALKBHS depletion-induced up-regulation of
DDIT4 mRNA m®A methylation can be rescued by wild-type ALKBHS5 overexpression. Data shown as
medians with SEM. (U) mRNA half-life analysis suggests that ALKBHS5 depletion-induced mRNA decay of
DDIT4 can be rescued by wild-type but not enzymatic mutant ALKBHS overexpression. Data shown as
medians with SEM. (V) RT-qPCR analysis showing the effect of wild-type and ALKBHS interaction
defective mutant RBM33 (RBM33 S1101A) overexpression on RBM33 knockdown-mediated down-
regulation of DDIT4. Data shown as medians with SEM. (W) ALKBHS5 RIP analysis suggests that only
wild-type RBM33 overexpression can rescue the decreased ALKBHS enrichment at DDIT4 transcripts
mediated by RBM33 knockdown. Data shown as medians with SEM. (X) MeRIP analysis suggests that
RBM33 depletion induced up-regulation of DDIT4 mRNA m®A methylation can be rescued by wild-type but
not ALKBHS interaction defective mutant RBM33 overexpression. Data shown as medians with SEM.
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Figure S6 HNSCC cells are more sensitive to autophagy inhibitor treatment as compared to the
normal control HOK cells, related to Figure 7 and discussion section. (A) QRT-PCR analysis showing the
KD efficiency of DDIT4 in UM-SCC-1 cells. Data shown as medians with SEM. (B) Annexin V staining
analysis showing the effect of DDIT4 KD on cell apoptosis of UM-SCC-1. Data shown as medians with
SEM. (C) Colony-forming analysis showing the effect of DDIT4 KD on colony-forming ability of UM-SCC-
1. Data shown as medians with SEM. (D and E) Western blot analysis showing the effect of RBM33 (D) or
ALKBHS depletion (E) on protein levels of DDIT4 in UM-SCC-1 cells. (F) Western blot analysis showing
the effect of wild-type and RBM33 depleting RRM domain overexpression on protein levels of DDIT4 in
UM-SCC-1 cells. (G-J) Either RBM33 or ALKBHS depletion significantly inhibits autophagy in UM-SCC-1
cells. Data shown as medians with SEM.

(K-L)Western blot analysis showing the effect of autophagy inhibitor treatment on protein levels of LC3B in
the cell lines as indicated. Data shown as medians with SEM. (M) Cell apoptosis analysis showing that
HNSC cells, UM-SCC-1 and UM-SCC-2 are more sensitive to autophagy inhibitor-induced cell apoptosis
than the normal control HOK cells. Data shown as medians with SEM. (N-R) Comparison of electrostatic
surfaces among ALKBHS, FTO, ALKBH1 and AlkB. Positively charged surface is colored in blue,
negatively charged surface is colored in red, and neutral surface is colored in white. Alkbh5 (PDB 407X) is
less positively charged compared with FTO (PDB 5ZMD), ALKBH1 (PDB 6KSF) and AlkB (PDB 4NID).
The active center is shown in a yellow ellipse.
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Figure S7 TCGA database analysis the expression of ALKBHS and DDIT4 in RBM33 overexpressed
solid tumors, related to Figure 7 and discussion section. Data shown as medians with SEM.



