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Supplementary Methods 
 

Justification for Dichotomizing Pain Scores 

Pain score outcome data were dichotomized because one main research goal was to assess the performance 
of such dichotomized data in the real-world, when implemented in a closed-loop brain stimulation device that 
requires defining binary symptom states. The device used for recording neural activity in this study, Medtronic 
Activa PC+S, is also capable of adaptively adjusting brain stimulation when the output of a linear discriminant 
crosses a specified threshold from one binary state (e.g. low pain) to another (e.g. high pain). A newly released 
commercial DBS system, Medtronic Percept, follows this same framework. The linear discriminant control signal 
is computed as a function of selected power band features; therefore, one main goal of the study was to 
determine which power band features would be most predictive of dichotomized pain state to inform a future 
closed-loop control signal in each subject. Therefore, when designing the study, we sought to undertake analysis 
that closely matched the demands of available clinical technology for ease of interpretation and feasibility of 
future closed-loop stimulation control. 
 DeCoster et al.,1,2 have provided a useful framework to guide the artificial dichotomization of data. They 
argue that dichotomization is specifically acceptable when three criteria are met 1) when the underlying variable 
is naturally categorical (such as NRS), 2) the observed measure has high reliability and 3) the relative group 
sizes of the dichotomized indicator match those of the underlying variable. The dichotomized variable (pain NRS) 
in the present study meets all three criteria. Specifically, the underlying variable (NRS) is itself naturally 
categorical and has high reliability (as evidenced high correlation with the separately reported variable of pain 
VAS in Figure 1D).  Further, the group sizes of the dichotomized indicator are roughly equal in most cases 
(based on median split), and visually match the relative distribution of low vs high pain scores. Most importantly, 
the pain score dichotomization matches the intuitive grouping of the reported NRS scores as ‘high’ or ‘low’ by 
each subject, when they were queried about the median split used in our analyses.    
 Farrington and Loeber3 further highlight that dichotomization is more appropriate when distribution are 
very skewed, as is the case in all subjects in this manuscript that exhibited much more frequent high pain scores 
than medium or low scores both in the acute and chronic settings.  Further, dichotomization may be beneficial 
when a variable is not linearly related to the measured outcome; in our case only a handful of band power 
variables exhibited a linear relationship with pain score, with high pain scores being associated with both high 
and lower power in most bands. 
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Supplementary Figures and Results 
 

 
  

Figure S1. DTI based 
electrode targeting and 
signal stability  

Panel A shows a Diffusion 
Tensor Image tracing of the 
cingulum bundle bilaterally in one 
subject (green fibers represent 
those running in anterior-
posterior direction) and example 
trajectory of bilateral depth 
electrodes targeting ACC (blue 
stems). D,A,L represent dorsal, 
anterior and lateral, respectively.  
 
Panel B shows normalized power 
in multiple frequency bands from 
each brain region over time for 
each subject. There were no 
clear trends that indicated non-
neural changes in recordings 
over time. Top legend applies to 
subject CP1 while legend in box 
on right applies to CP2-4. Gaps 
in data over time indicate missing 
recordings or those eliminated 
due to misalignment with pain 
score reporting. 
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Figure S2. Confusion Matrices of LDA 
Full Models. 

Panels A-C show LDA classification tables 
with raw counts of all true versus predicted 
samples for all full models of spontaneous, 
chronic pain (A), and acute pain on the 
affected side (B) and unaffected side (C). 
Box color intensity represents proportion of 
total samples in blue for accurate 
classifications and red for false positives or 
negatives. 
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Figure S3. Chronic Pain Subregion Regression Model Performance (LASSO regression) 

Heatmap table shows coefficient of determinations (R2), root mean squared error (RMSE), and one-sided p-
values from permutation tests (n=1000, without multiple comparisons adjustment) in parenthesis for all 
calculated chronic pain models (across columns) and pain score report types (along rows) for regression. R2 also 
represented in color based on color bar scale on right. The only R2 values > 0.3 occurred for CP4 Unpleasantness 
NRS for models including OFC+ACC and for SF-MPQ, when OFC was included in models. 
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Figure S4. Chronic Pain Subregion Classification Model Performance (LDA)  

Heatmap table shows AUC and one-sided empirical p-values based on permutation tests (n=1000, without 
multiple comparisons adjustment) below in parenthesis for all cross-validated chronic pain models (across 
columns) and pain score report types (across rows) underlying Figure 2. AUC also represented in color based 
on color bar scale on right. 
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Figure S5. Example LDA classification performance at individual recording session 

level in one subject.  

Example of classifier performance over recordings using LDA with leave one out cross validation for CP2 pain 
NRS full model. Filled red circles indicate successful classification, while empty circles indicate misclassified 
pain reports. Dashed horizontal line shows median NRS value for this example. 
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Figure S6. Chronic pain subregion Model Stability over time (LDA) using 70/30 split 
training/ testing datasets. 
Heatmap table shows AUC and one-sided empirical p-values based on permutation tests (n=1000, without 
multiple comparisons adjustment) below in parenthesis for all calculated chronic pain models using the first 70% 
of data for training and the last 30% for testing (across columns) and pain score report types (across rows). For 
pain intensity NRS, all models were similarly significant to Figure S4 except for CP1 contraOFC and CP2 
IpsiACC/OFC. Note that pain intensity VAS for CP3 and CP4 were not significant (when using 70/30 split method) 
due to increased variance in the latter half of the data reflecting decreased consistency in VAS reporting during 
this period. Missing data for CP4 indicates occasions where the last 30% of data contained no variation in pain 
metric values so models could not be computed.  
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Figure S7: LSSM Schematic: Dynamic models can decode chronic pain state from 
neural activity. 

A) The decoder consists of a dynamic linear state space model (LSSM) that summarizes the information in 
neural features into a latent state, which is then provided to a classifier to estimate the probability of high 
chronic pain. Neural features consisted of log-powers computed in canonical frequency bands in non-
overlapping 1-second time windows (Methods). B) Example time series for the neural features (first row) and 
the extracted latent states (second row) are shown for several recording sessions in subject CP2. C) Predicted 
probability of the high pain class through the length of a recording session, averaged over sessions with high 
pain (red, N = 91), and over session with low pain (blue, N = 46). Shaded areas show the S.E.M. D) Extract of 
data shown in C, showing only the last time step of the recording session, which is used for final decoding. 
Predicted pain probability was significantly higher for the N = 91 sessions that had high pain compared to the 
N = 46 sessions that had low pain (***P	 = 	3.7	 ×	10!", one-sided Wilcoxon rank sum). The horizontal line on 
the box represents the median, box edges show the 25th and 75th percentiles, whiskers represent the 
minimum and maximum values of the distribution. Throughout the roughly 30s recordings, the extracted latent 
states converge to being predictive of chronic pain. E) Bar plots of pain state decoding performance (AUC) for 
all pain metrics in all subjects using LSSM full models (all brain regions). One-sided empirical p-values based 
on permutation tests (n=1000, with multiple comparisons adjustment). *p#$%&'( < 0.05 
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Figure S8. Chronic pain state decoding model 
performance for alternative pain metrics in two 
subjects (LDA). 
Bar plots of pain state decoding performance (AUC) for alternative 
pain metrics in two subjects using LDA full models (all brain 
regions). One-sided empirical p-values based on permutation 
tests (n=1000, without multiple comparisons adjustment), from left 
to right, are CP3: 0.001, 0.004, 0.003, 0.001; and CP4: 0.002, 
0.001, 0.001, 0.001. (see Figure S4 and Table S2 for all values) 
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Figure S9a. Chronic Subregion Models for Pain Differences (LDA, Sequential Pain 

Difference or “Fluctuation”) 

Heatmap table shows AUC and one-sided empirical p-values based on permutation tests (n=1000, without 
multiple comparisons adjustment) below in parenthesis for all calculated chronic pain sequential difference 
models (across columns) and pain score report types (across rows). AUC also represented in color based on 
color bar. Note this reflects classification of stable pain (no difference) vs increases or decreases (non-zero 
difference) in successive chronic pain scores. UNP = Unpleasantness 
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Figure S9b. Chronic Subregion Models for Pain Differences (LASSO, Sequential 

Pain Difference or “Fluctuation”) 

Heatmap table shows coefficient of variation (R2) and one-sided empirical p-values based on permutation tests 
(n=1000, without multiple comparisons adjustment) below in parenthesis for all calculated chronic pain 
sequential difference models (across columns) and pain score report types (across rows). R2 also represented 
in color based on color bar.  
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Figure S10. Acute Subregion Model Performance (LDA) 

Heatmap table of AUC and one-sided empirical p-values based on permutation tests (n=1000, without multiple 
comparisons adjustment) below in parenthesis for all calculated models (across columns) and pain score report 
types (across rows) for acute affected (top panel) and unaffected sides (bottom panel). Red boxes outline 
significantly decoded pain. AUC represented in color as per color bar on right. 
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Figure S11. Acute Temperature Classification - Full Model Performance (LDA) 

Heatmap table of AUC and one-sided empirical p-values based on permutation tests (n=1000, without multiple 
comparisons adjustment) below in parenthesis for full models classifying dichotomized thermal probe 
temperature during Acute Pain when stimulus was applied to affected side and unaffected side. Classification 
was significant only for CP4 on the unaffected side.  AUC value corresponds to color bar on right. 
 

 
Figure S12. Cross-trained acute pain decoding models show generalization of 

chronic pain neural features to acute pain states in only one subject (LDA). 

Decoder performance for each subject when full models trained on acute thermal pain neural features and pain 
metrics were used to classify chronic pain data. Data for acute pain stimuli applied to the chronic pain affected 
(aff-ACUTE) side reached significance for one subject, while no significant cross-decoding was seen for 
unaffected (unaff-ACUTE) side. One-sided empirical p-values based on permutation tests (n=1000, without 
multiple comparisons adjustment) *p = 0.007   
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Figure S13. Temporal Dynamics of Top 5 Power Features supporting Acute and 

Chronic Pain Decoding  

Power timeseries plots of top 5 weighted features showing temporal dynamics of relative power increases or 
decreases during dichotomized high pain states for chronic (A) and acute-affected pain (B) conditions. Red 
curves show recording clip-averaged curves for high pain reports and blue curves show average for low pain 
reports (shaded area = s.e.m.). Colored square in top left corner shows feature importance of that feature taken 
from Figure 2E for chronic (A) and Figure 3G for acute pain (B). Note that when the feature weight was 
negatively signed (blue square), average feature power was lower during high pain states and vice versa (red 
square = positive sign weight). Text at bottom quantifies bouts (number of times higher curve crossed above 
lower curve), mean bout duration (mean duration higher curve was above lower curve before passing under), 
and total duration above (total duration higher curve was higher than lower curve). See Figure 5.  
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Figure S14. Diurnal patterns of pain intensity NRS and neural power features are 

not correlated.  

Blue points indicate z-scored pain NRS values (top row) or feature power (indicated in top left text) organized by 
time-of-day of report for each subject (in columns).  Red overlying line shows linear trend line of diurnal 
association, sampled at 3-hour resolution. See Table S4 for pain NRS trend vs feature trend correlations. 
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Supplementary Tables 
 
Patient ID 

 
CP1 CP2 CP3 CP4 

 
Demographics 

Age (years) 58 63 56 59 
Sex Female Female Male Male 
Pain 
Duration 
(years) 

7 4 6 3 

Pain 
Syndrome Post-Stroke  Phantom 

Limb Post-Stroke Post-Stroke 

Brain Lesion Large Right 
MCA infarct None Punctate Left 

thalamic infarct 

Moderate Left 
PCA and MCA 
second division 
infarcts 

Side of Body 
Affected with 
Chronic Pain 

Left Right Right Right 

Handedness Right Right Right Right 
Preoperative 
depression 
and anxiety 
(BDI/BAI) 

46/401 17/17 4/16 13/7 

MOCA Score 26 30 27 25 

Recording 
Details 

Depth lead 
side/target Right ACC Bilateral ACC Bilateral ACC Bilateral ACC 

Cortical 
paddle 
side/target 

Right OFC Bilateral OFC Bilateral OFC Bilateral OFC 

# recordings 
with pain 
reports 

89 137 234 452 

Pain NRS 
(mean ± SD) 8.65 ± 1.12 8.29 ± 0.79 6.68 ± 1.06 8.25 ± 0.64 

Chronic pain 
Metrics 
Reported 

 
pain intensity 
NRS 

pain intensity 
NRS 

pain intensity 
NRS and VAS, 
pain 
unpleasantness 
NRS and VAS, 
SF-MPQ 

pain intensity 
NRS and VAS, 
pain 
unpleasantness 
NRS and VAS, 
SF-MPQ 

Active Pain 
Medications  

Acetaminophen, 
Gabapentin, 
Oxycodone  

none Duloxetine, 
Pregabalin 

Oxycodone, 
Pregabalin 

 
Table S1: Patient characteristics, recording/reporting details. 

  

 
 
1  Despite an elevated preoperative score for the BDI/BAI, the subject was recommended for inclusion for the study by the 
evaluating psychiatrist due to the observation that clinical symptoms of depression and anxiety were adequately managed.  
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Table S2: Decoding Characteristics for all full binary LDA models. 

Full models include all available neural data. Threshold indicates optimal LDA decision boundary. PPV = 
positive predictive value. AUC = area under the curve. CI = Confidence Interval. One-sided P-values were 
determined based on permutation tests (n=1000, without multiple comparisons adjustment) 
 
  

 
 
2 Acute pain measured via verbal NRS 

Subject/ 
Pain Metric Threshold Sensitivity Specificity PPV Accuracy (95% CI) AUC 

(p-value) 

CP1 chronic NRS 0.633 0.79 0.56 0.83 0.729 
(0.597, 0.836) 0.596 (0.09) 

CP2 chronic NRS 0.699 0.84 0.76 0.87 0.81 
(0.734, 0.872) 0.851 (0.001) 

CP3 chronic NRS 0.876 0.62 0.77 0.93 0.647 
(0.579, 0.71) 0.705 (0.001) 

CP4 chronic NRS 0.833 0.69 0.82 0.93 0.717 
(0.673, 0.758) 0.802 (0.001) 

CP1 acute2 
(unaffected side) 0.774 0.77 0.33 0.84 0.688 

(0.413, 0.89) 0.385 (0.42) 

CP2 acute 
(unaffected side) 1 0.07 1.0 1.0 0.35 

(0.154, 0.592) 0.226 (0.84) 

CP3 acute 
(unaffected side) 0.99 0.21 1.0 1.0 0.5 

(0.313, 0.687) 0.545 (0.27) 

CP4 acute 
(unaffected side) 0.061 0.85 0.25 0.55 0.56 

(0.349, 0.756) 0.301 (0.80) 

CP1 acute 
(affected side) 0.88 0.43 0.83 0.75 0.615 

(0.316, 0.861) 0.476 (0.37) 

CP2 acute 
(affected side) 0.668 0.92 0.88 0.92 0.9 

(0.683, 0.988) 0.833 (0.01) 

CP3 acute 
(affected side) 0.981 0.3 0.89 0.83 0.52 

(0.313, 0.722) 0.444 (0.51) 

CP4 acute 
(affected side) 0.98 0.15 1.0 1.0 0.56 

(0.349, 0.756) 0.365 (0.69) 

CP3 chronic 
unpleasantness NRS 0.915 0.56 0.81 0.93 0.596 

(0.527, 0.663) 0.696 (0.003) 

CP4 chronic 
unpleasantness NRS 0.927 0.87 0.85 0.97 0.865 

(0.83, 0.895) 0.885 (0.001) 

CP3 chronic 
unpleasantness VAS 0.533 0.65 0.59 0.64 0.62 

(0.554, 0.682) 0.649 (0.002) 

CP4 chronic 
unpleasantness VAS 0.855 0.81 0.75 0.94 0.801 

(0.757, 0.84) 0.776 (0.001) 

CP3 chronic VAS 0.473 0.68 0.63 0.65 0.654 
(0.589, 0.715) 0.688 (0.001) 

CP4 chronic VAS 0.501 0.81 0.473 0.66 0.661 
(0.611, 0.709) 0.615 (0.001) 

CP3 chronic SF-MPQ 0.686 0.51 0.75 0.77 0.603 
(0.537, 0.666) 0.623 (0.005) 

CP4 chronic SF-MPQ 0.956 0.97 0.97 0.99 0.973 
(0.951, 0.987) 0.995 (0.001) 
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 AFFECTED SIDE   UNAFFECTED SIDE 

Subject 
Temp 
(Celsius) Pain NRS S.D.  

Temp 
(Celsius)2 Pain NRS S.D. 

CP1 28 5.33 3.79  37 1.00 1.41 
 30 7.33 2.08  40 0.00 0.00 
 32 8.00 0.00  42 1.40 1.95 
 34 8.83 0.29  44 5.00 1.41 
 36 8.67 0.58  46 8.50 0.71 
          

CP2 38 0.00 0.00  38 0.50 1.00 
 42 1.25 1.50  42 1.00 1.15 
 44 1.25 0.96  44 2.25 1.26 
 46 5.75 0.96  46 7.00 0.00 
 48 7.25 0.50  48 7.00 0.00         

          
CP3 34 0.20 0.45  34 0.00 0.00 

 38 1.20 1.10  38 0.20 0.45 
 42 2.00 1.87  42 1.50 0.84 
 44 3.00 0.00  44 2.20 0.45 
 46 8.40 0.55  46 4.0 0.55 
         

CP4 34 1.80 1.30  34 1.60 0.89 
 38 4.00 1.22  38 2.20 0.84 
 40 3.60 1.14  40 2.20 1.10 
 44 7.80 1.64  44 3.40 1.67 
 46 10.00 0.00  46 7.40 1.67 

  
 
 
Table S3. Acute Pain Calibrated Temperatures and Associated Pain Scores  

Table shows temperatures calibrated for each patient for Acute pain thermal task showing  mean reported pain 
NRS score and standard deviation (S.D.). Compare to ‘Brief Patient Descriptions’ in methods for description of 
allodynia / hypersensitivity. 
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Feature CP1 CP2 CP3 CP4 
'rightaccdelta' -0.48 0.46 -0.44 -0.10 
FDR adj p-value 1.00 0.99 0.74 0.94 
'rightacctheta' -0.31 -0.01 0.46 -0.15  

1.00 0.99 0.74 0.93 
'rightaccalpha' 0.02 -0.03 0.83 -0.25  

1.00 0.99 0.24 0.89 
'rightaccbeta' 0.67 0.43 0.67 0.69  

1.00 0.99 0.57 0.61 
'rightaccLgamma' 0.72 0.29 0.64 0.57  

1.00 0.99 0.57 0.61 
'rightaccHgamma' 0.37 0.29 0.03 0.15  

1.00 0.99 0.95 0.93 
'rightofcdelta' -0.68 -0.03 0.27 -0.51  

1.00 0.99 0.82 0.61 
'rightofctheta' -0.51 0.33 0.36 -0.65  

1.00 0.99 0.80 0.61 
'rightofcalpha' -0.28 -0.11 0.30 -0.64  

1.00 0.99 0.82 0.61 
'rightofcbeta' 0.25 -0.29 0.40 -0.51  

1.00 0.99 0.74 0.61 
'rightofcLgamma' 0.38 -0.25 0.40 -0.21  

1.00 0.99 0.74 0.93 
'rightofcHgamma' 0.51 -0.36 0.40 -0.09  

1.00 0.99 0.74 0.94 
'leftaccdelta' 

 
0.07 0.23 -0.53   
0.99 0.82 0.61 

'leftacctheta' 
 

0.53 0.14 -0.64   
0.99 0.90 0.61 

'leftaccalpha' 
 

0.49 0.08 -0.43   
0.99 0.90 0.66 

'leftaccbeta' 
 

0.80 -0.08 -0.04   
0.99 0.90 0.94 

'leftaccLgamma' 
 

0.58 -0.21 -0.06   
0.99 0.82 0.94 

'leftaccHgamma' 
 

0.31 -0.23 -0.49   
0.99 0.82 0.61 

'leftofcdelta' 
 

0.27 0.11 -0.69   
0.99 0.90 0.61 

'leftofctheta' 
 

0.15 0.65 -0.71   
0.99 0.57 0.61 

'leftofcalpha' 
 

-0.08 0.91 0.40   
0.99 0.11 0.66 

'leftofcbeta' 
 

0.20 0.54 0.59   
0.99 0.72 0.61 

'leftofcLgamma' 
 

-0.16 0.59 0.61   
0.99 0.65 0.61 

'leftofcHgamma' 
 

-0.66 0.33 -0.41   
0.99 0.80 0.66 

 
 
 
 
 
  

Table S4: Lack of correlation between 

diurnal NRS trend and diurnal feature 

trends 

Pearson’s correlation values (in bold) and 
corresponding p-values (two-sided t-statistic, with 
correction for multiple comparisons) are shown 
comparing the diurnal trend of each feature with 
diurnal trend of pain intensity NRS (see Figure S14). 
There are no significant correlation values.  
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