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Supplementary Note 1: Model dimensionless parameters 

Systems with low μ correspond to relatively viscous matrices, while those with high μ correspond to 

matrices that are relatively fluid. When the scaled cell flux j is small, the pressure due to the growing 

tissue is not large enough to create fingers in the matrix, while when j is large, fingering likely arises as 

cells actively intrude into the matrix. Finally, systems with low values of A correspond to matrices that 

mechanically relax very slowly, while systems with high values of A correspond to matrices that relax 

very quickly.  In our experiments and simulations, the ratio 𝜇 = 𝜇𝑡/𝜇𝑚   ∈[0.001-2], 𝜏𝑎  ∈[7-54]s,  while 

𝜏𝑚  ∈[1-350]s, so that the ratio A=𝜏𝑎/𝜏𝑚 ∈[0.1-100], and finally with spheroid sizes R∼100 μm ,  and 

proliferative tissue timescale  𝜏𝑡  ∼[4-500] s, the ratio 𝑗 = 𝜏g/𝜏𝑡   ∈[0.002-0.25 ]. 
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Supplementary Figure 1. Representative example of flow cytometry experiments. a-e, Representative 

gating strategy for Slug-expressing cells collected from alginate gels. Samples were gated for single (a-b), 

live cells (c) and Slug-expressing cells were identified using a fluorescence minus one (FMO) control (d). 

e-g, spheroids were cultured in elastic or viscoelastic alginate gels for 5 days and collected following gel 

digestion. Expression of EMT regulators was assessed through intracellular flow cytometry. f, 

Representative flow cytometry plots are shown for Slug expression. 
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Supplementary Figure 2. Cancer pathway is upregulated in stiff viscoelastic matrices. Results of the 

regulation of cancer-related pathways after the analysis of the expression levels of 770 genes included in 

the Nanostring PanCancer Progression panel for spheroids in the matrices described. 
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Supplementary Figure 3. Viscoelasticity increases tumor growth in mice. a-b, Quantification of MDA-

MB-231 tumor volume evolution in NOD/SCID mice. MDA-MB-231 cells encapsulated in elastic (a) and 

viscoelastic (b) alginate gels were injected subcutaneously into mouse flanks and tumor growth was 

tracked externally using calipers. Each curve represents an independent tumor/mouse. 
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Supplementary Figure 4. Model predicts cell volume increase and sphericity decrease with stiffness in 

viscoelastic matrices. a-b, Quantification from the simulations of the volume (a) and sphericity (b) of the 

spheroids, respectively, over time for soft, intermediate and stiff elastic and viscoelastic matrices. The 

dimensionless parameter in the model for stiff elastic (𝐴 =
𝜏a

𝜏m
= 0.4, 𝜇 =

𝜇t

𝜇m
= 0.002, 𝑗 =

𝜏g

𝜏t
= 0.05); 

intermediate elastic (𝐴 =
𝜏a

𝜏m
= 0.13, 𝜇 =

𝜇t

𝜇m
= 0.002, 𝑗 =

𝜏g

𝜏t
= 0.05); soft elastic (𝐴 =

𝜏a

𝜏m
= 0.003, 𝜇 =

𝜇t

𝜇m
= 0.002, 𝑗 =

𝜏g

𝜏t
= 0.04); stiff viscoelastic (𝐴 =

𝜏a

𝜏m
= 400, 𝜇 =

𝜇t

𝜇m
= 2, 𝑗 =

𝜏g

𝜏t
= 0.22); intermediate 

viscoelastic (𝐴 =
𝜏a

𝜏m
= 133, 𝜇 =

𝜇t

𝜇m
= 2, 𝑗 =

𝜏g

𝜏t
= 0.16); and soft viscoelastic (𝐴 =

𝜏a

𝜏m
= 3.3, 𝜇 =

𝜇t

𝜇m
=

2, 𝑗 =
𝜏g

𝜏t
= 0.14)  matrices. 
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Supplementary Figure 5. Increasing/Decreasing the viscosity dynamically prevents/facilitates 

morphological instability  a, Showing the change in the substrate to tissue viscosity ratio as a function of 

time, tissue viscosity has been kept fixed; Two cases have been considered, in the first case the matrix is 

changing its viscosity from high (elastic) to low (viscoelastic) and in the second case matrix changing its 

viscosity from low (viscoelastic) to high (elastic)  b, Images of spheroids from the simulation where the 

viscosity of the matrix is changing dynamically over time from elastic to viscoelastic (top row) and from 

viscoelastic to elastic (bottom row) c-d, Simulation prediction of projected area (c) and circularity (d) 

evolution over time of spheroids while the viscosity of the matrix is changing dynamically. The 

corresponding dimensionless parameter in the model for the intermediate stiff matrix in the elastic and 
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viscoelastic limit are (𝐴 =
𝜏a

𝜏m
= 0.017, 𝜇 =

𝜇t

𝜇m
= 0.002, 𝑗 =

𝜏g

𝜏t
= 0.05) and (𝐴 =

𝜏a

𝜏m
= 133, 𝜇 =

𝜇t

𝜇m
=

2, 𝑗 =
𝜏g

𝜏t
= 0.16), respectively.   
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Supplementary Figure 6. Quantification of hydrogel mechanical properties. a, Quantification of the 

storage modulus of alginate hydrogels. n=8,4,5,7,9,5 gels per condition. c, Quantification of the timescale 

at which an initially applied stress is relaxed to half its original value. n=13,14,19,16,16,19 gels per 

condition. Error bars are s.d. 
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Supplementary Figure 7. Quantification of spheroids response to stiffer hydrogels. a, Quantification of 

the storage moduli of alginate hydrogels. n=6,7 gels per condition. Statistical analysis was performed using 

Mann-Whitney U-test. b-c, quantification of spheroids area (b) and circularity (c) in different stiffness 

inelastic and viscoelastic hydrogels. n= 27,30,22,29 spheroids per condition. Statistical analysis was 

performed using Kruskal–Wallis test followed by post hoc Dunn’s test. All data represent mean ± s.d.   
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Supplementary Figure 8. Inhibition of cell motility prevents morphological instability, independent of 

gel stiffness. a, The influence of eliminating cell motility, in gels with varying stiffness, was simulated in 

the model. b, Images of spheroids, from final timepoint of simulation, in increasingly stiff viscoelastic gels 

in control case (upper row) and when cell motility was suppressed (lower row). c-d, Simulation prediction 

of projected area (c) and circularity (d) evolution over time of spheroids in increasingly stiff viscoelastic 

and elastic gels when cell motility was suppressed (lower row). The dimensionless parameter in the model 

for stiff elastic (𝐴 =
𝜏a

𝜏m
= 0.03, 𝜇 =

𝜇t

𝜇m
= 0.002, 𝑗 =

𝜏g

𝜏t
~0); intermediate elastic (𝐴 =

𝜏a

𝜏m
= 0.017, 𝜇 =

𝜇t

𝜇m
= 0.002, 𝑗 =

𝜏g

𝜏t
~0); soft elastic (𝐴 =

𝜏a

𝜏m
= 0.0017, 𝜇 =

𝜇t

𝜇m
= 0.002, 𝑗 =

𝜏g

𝜏t
~0); stiff viscoelastic 

(𝐴 =
𝜏a

𝜏m
= 33.3, 𝜇 =

𝜇t

𝜇m
= 2, 𝑗 =

𝜏g

𝜏t
~0); intermediate viscoelastic (𝐴 =

𝜏a

𝜏m
= 16.7, 𝜇 =

𝜇t

𝜇m
= 2, 𝑗 =

𝜏g

𝜏t
~0); and soft viscoelastic (𝐴 =

𝜏a

𝜏m
= 1.7, 𝜇 =

𝜇t

𝜇m
= 2, 𝑗 =

𝜏g

𝜏t
~0) matrices.  e, Quantification of 

spheroids circularity after 5 days in soft and stiff viscoelastic matrices with Arp2/3 (CK666) and Rac1 

(NSC23766) inhibitors. n=24,21,21,24,25,22,27,21 spheroids per condition. Statistical analysis was 

performed using Kruskal–Wallis test followed by post hoc Dunn’s test. All data represent mean ± s.d.   
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Supplementary Figure 9. Inhibition of cell proliferation prevents morphological instability 

independently of the gel stiffness.  a, the influence of eliminating cell proliferation, in gels of increasing 

stiffness, was simulated in the model. b, Images of spheroids, from final timepoint of simulation, in 

increasingly stiff viscoelastic gels in control case (upper row) and when cell proliferation was inhibited. c-

d, Simulation prediction of projected area (c) and circularity (d) evolution over time of spheroids in 

increasingly stiff elastic and viscoelastic gels when cell proliferation was suppressed. The dimensionless 

parameter in the model for stiff elastic (𝐴 =
𝜏a

𝜏m
= 0.4, 𝜇 =

𝜇t

𝜇m
= 0.002, 𝑗 =

𝜏g

𝜏t
= 0); inter elastic 

(𝐴 =
𝜏a

𝜏m
= 0.13, 𝜇 =

𝜇t

𝜇m
= 0.002, 𝑗 =

𝜏g

𝜏t
= 0) ; soft elastic (𝐴 =

𝜏a

𝜏m
= 0.003, 𝜇 =

𝜇t

𝜇m
= 0.002, 𝑗 =

𝜏g

𝜏t
=

0); stiff viscoelastic (𝐴 =
𝜏a

𝜏m
= 400, 𝜇 =

𝜇t

𝜇m
= 2, 𝑗 =

𝜏g

𝜏t
= 0); inter viscoelastic (𝐴 =

𝜏a

𝜏m
= 133.3, 𝜇 =

𝜇t

𝜇m
= 2, 𝑗 =

𝜏g

𝜏t
= 0); and soft viscoelastic (𝐴 =

𝜏a

𝜏m
= 3.33, 𝜇 =

𝜇t

𝜇m
= 2, 𝑗 =

𝜏g

𝜏t
= 0) matrices. 
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Supplementary Figure 10. a, 3D model for cell flux driven simulations. The texts in light blue/light red 

color boxes describe the matrix/cell property and interactions therein. The yellow boxes represent the 

parameters which we vary to probe the phase space of morphologies. The cells are being injected at the 

center of the tissue to mimic the experiments and hence the proliferation is independent of the stress. 

Now motility is not a function of stiffness and its value has been chosen to be very small. b, 

Quantification from the simulations of the circularity of the spheroids.  

  



 14 

 

 

Supplementary Figure 11. Alginate-matrigel interpenetrating networks are homogeneous without 

micro-scale phase separation. a-b, Representative scanning electron micrographs, of an alginate-matrigel 

matrix for the (a) elastic and the (b) viscoelastic condition. There is no phase separation. n> 30 images per 

condition. c-d, Representative histograms of fluorescent alginate of an (c) elastic and (d) viscoelastic 

interpenetrating matrix. e-f, Representative histograms of laminin staining of an (e) elastic and (f) 

viscoelastic interpenetrating matrix. The presence of alginate and laminin staining in each pixel 

demonstrates that these two networks are interpenetrating at this scale. Scale bar is 10 µm. 
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Supplementary Figure 12. Stresses relax faster in interpenetrating networks polymerized with lower 

molecular weight alginate. a, Half time of alginate-matrigel interpenetrating networks. n=6,14,9,12 gels 

per condition. Data represent mean ± s.d.   
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Supplementary Figure 13. Single cells form organoids in interpenetrating alginate and Matrigel 

networks. a, Single cells were encapsulated in interpenetrating networks. n= 11 images. b-c, 

Quantification of organoids area (c) and circularity (d) after 7 days in elastic and viscoelastic 

interpenetrating networks. b-c, n=40,47 organoids per condition. Statistical analysis was performed using 

two-sided Mann-Whitney U-test.  d, Organoids were passed, broken down to single cells and encapsulated 

in new interpenetrating networks every 7 days. n > 25 images per condition. e, After one month of 

passaging, Paneth cells were visualized by lysozyme staining. n = 6 images. Data represent mean ± s.d. 

Scale bars are 50 µm. 
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Supplementary Figure 14. Organoids grow, develop and pattern similarly in the presence of ouabain. a, 

Quantification of the percentage of cells which form colonies in gels after 7 days with or without ouabain. 

b-d, Representative examples (b) and quantification of organoids area (c) and circularity (d) after 7 days 

with or without ouabain in the culture medium. n=22,17,32,27 b,c / 20,14,24,20  d  organoids per 

condition. Statistical analysis was performed using Kruskal–Wallis test followed by post hoc Dunn’s test.  

e, Representative examples of Lysozyme, Hoechst and phalloidin stainings of organoids with ouabain. 
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Lysozyme (magenta) and Hoechst (cyan) in the left and phalloidin (cyan) in the right. Higher magnification 

images are provided on bottom row. e-f, Quantification of organoids area (e) and circularity (f) after 7 

days with or without forskolin in the culture medium. n=25,28,20,25,23,20 organoids per condition. 

Statistical analysis was performed using Kruskal–Wallis test followed by post hoc Dunn’s test.  All data 

represent mean ± s.d., all scale bars are 100 µm. 
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Supplementary Figure 15. Organoids morphological instability increases with stiffness in alginate-

matrigel interpenetrating networks (IPN). a, Storage moduli of the elastic and viscoelastic alginate-

matrigel IPNs. n=4,5 hydrogels per condition. Statistical analysis was performed using two-sided Mann-

Whitney U-test.  b-c, Quantification of the area (b) and circularity (c) of organoids in different stiffness 

elastic and viscoelastic matrices. b-c, n=24,22,18,12. Statistical analysis was performed using Kruskal–

Wallis test followed by post hoc Dunn’s test.  All data represent mean ± s.d. 
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Supplementary Figure 16. Model Prediction: Organoids grow, break symmetry and form buds in 

viscoelastic matrices.  a, Images of simulated organoids at time (𝑡 = 12𝜏g ) in stiff elastic and viscoelastic 

matrices. b-c, Simulation prediction of projected area (b) and circularity (c) evolution over time of 

organoids for the six matrix conditions. d, Images of simulated organoids at time (𝑡 = 12𝜏g ) with 

increasing stiffness in elastic matrices (top row) versus viscoelastic matrices (bottom row) 

  



 21 

 

Supplementary Figure 17. Influence of YAP nuclear translocation and FAK in organoids development. 

a, Representative examples of phalloidin, Hoechst (left) and YAP (right) stainings of organoids in 

viscoelastic gels. b-c, Quantification of area (b) and circularity (c) in organoids in elastic and viscoelastic 

hydrogels without or with PF573228 (FAK inhibitor). n=25,26,25,21 organoids per condition. Statistical 

analysis was performed using Kruskal–Wallis test followed by post hoc Dunn’s test.  Scale bar is 20 µm. 

All data represent mean ± s.d. 
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Supplementary Figure 18. Arp2/3 and cell proliferation regulate organoid growth and symmetry 

breaking. a-b, Representative examples and quantification of organoids (a) area and (b) circularity after 

7 days in elastic and viscoelastic matrices with Arp2/3 (CK666) inhibitor. n= 23,28,23,23,30,20 organoids 

per condition. c-d, Representative examples and quantification of organoids (c) area and (d) circularity in 

elastic and viscoelastic matrices with thymidine. n=27,26,31,27 organoids per condition. Statistical 

analysis was performed using Kruskal–Wallis test followed by post hoc Dunn’s test.  Scale bars are 100 

µm. All data represent mean ± s.d.   
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Supplementary Figure 19. Inhibition of cell motility prevents morphological instability, independently 

of the matrix viscoelasticity and stiffness.  a, Images of simulated organoids at time (𝑡 = 80𝜏g ) with 

increasing stiffness in elastic matrices (top row) versus viscoelastic matrices (bottom row) b-c, Simulation 

prediction of projected area (b) and circularity (c) evolution over time of organoids for the six matrix 

conditions. 



 24 

 

Supplementary Figure 20. Inhibition of cell proliferation prevents morphological instability 

independently of the matrix viscoelasticity and stiffness.  a, Images of simulated organoids at time 

(𝑡 = 80𝜏g ) with increasing stiffness in elastic matrices (top row) versus viscoelastic matrices (bottom 

row) b-c, Simulation prediction of projected area (b) and circularity (c) evolution over time of organoids 

for the six matrix conditions. 
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Supplementary Figure 21. Differential motility of cells in organoids affects the growth, symmetry 

breaking and budding of organoid. Black Cells have higher motility compare to the rest of the cells in the 

organoid a, Images of simulated organoids at time (𝑡~8𝜏g ) from left to right with increasing motility of 

the black cells in soft viscoelastic matrices b-c, Simulation prediction of projected area (b) and circularity 

(c) evolution over time of organoids with increasing motility of the black cells. 
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Supplementary Figure 22. Location of cell with differential motility is correlated with the location of 

symmetry breaking.   a, Images of simulated organoids at time (𝑡~5𝜏g ) from left to right with increasing 

number of differentiated cells with relatively higher motility (shown in black) in soft viscoelastic matrices. 

b-c, Simulation prediction of projected area (b) and circularity (c) evolution over time of organoids with 

increasing number of differentiated cells with relatively higher motility. 
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Supplementary Figure 23. Differential proliferation of cells in organoids affects the growth, symmetry 

breaking and budding of organoid.  a, Images of simulated organoids at time (𝑡~10𝜏g ) from left to right 

with increasing degree proliferation of differentiated cells (shown in black) in soft viscoelastic matrices b-

c, Simulation prediction of projected area (b) and circularity (c) evolution over time of organoids with 

increasing proliferation of differentiated cells. 

 

 

Supplementary Video S1: Examples of spheroids growth in elastic (left) and viscoelastic (right) matrices. 

Supplementary Video S2: Examples of simulated tissue growth in elastic (left) and viscoelastic (right) 

matrices. 

Supplementary Video S3: Examples of simulated tissue growth when cell motility is inhibited in elastic 

(left) and viscoelastic(right) matrices. 

Supplementary Video S4: Examples of simulated tissue growth when cell proliferation is inhibited in 

elastic (left) and viscoelastic(right) matrices.  

Supplementary Video S5: Examples of simulated tissue growth in elastic (upper row) and viscoelastic 

(lower row) in matrices of increasing stiffness.  

Supplementary Video S6: Examples of simulated tissue growth when cell migration is inhibited in elastic 

(upper row) and viscoelastic (lower row) in matrices of increasing stiffness. 

Supplementary Video S7: Examples of simulated tissue growth when cell proliferation is inhibited in 

elastic (upper row) and viscoelastic (lower row) in matrices of increasing stiffness. 
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Supplementary Video S8: Example of simulated tissue growth when cells are continuously added to the 

tissue in elastic (left) and viscoelastic (right) matrices. 

Supplementary Video S9: Example of simulated tissue growth when the matrix property changes from 

elastic to viscoelastic.  

Supplementary Video S10: Example of simulated tissue growth when the matrix property changes from 

viscoelastic to elastic. 

Supplementary Video S11: Examples of simulated organoid tissue growth in elastic (upper row) and 

viscoelastic (lower row) in matrices of increasing stiffness. 

Supplementary Video S12: Examples of simulated organoid tissue growth in viscoelastic matrices where 

two black cells have higher motility (ℳ) compared to the rest (ℳ0). 

Supplementary Video S13: Examples of simulated organoid tissue growth in viscoelastic matrices where 

an increasing number of cells (black) have 4 times higher motility compared to the rest. 

Supplementary Video S14: Examples of simulated organoid tissue growth in viscoelastic matrices where 

four black cells have an increasing probability (𝒫) to divide compared to the rest (𝒫0 ). 
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Theoretical model 1 

In our experiments, a tissue comprised of motile, proliferating cells is initially encapsulated in a viscoelastic 2 

gel.  Both the passive matrix and active cells are modeled using interacting soft spherical particles of size 3 

a subject to forces with appropriate Langevin dynamics.  Initially, a collection of motile proliferating cells 4 

is surrounded by a passive set of particles representing the extracellular matrix.   Cells  are assumed to be 5 

active with a random movement   analogous to a Brownian particle, but this movement is not related to 6 

temperature of the environment and is instead due to the active nature of the cell1,2. The cells also repel 7 

each other with a short-range force and also repel the matrix to avoid the overlap. The equation of motion 8 

for a cell with coordinate 𝒓𝑖
𝑡 is: 9 

𝜇t 𝒓𝑖
ṫ =  −

𝜕𝑈t

𝜕𝒓𝑖
t +  𝝃𝑖(𝑡) 10 

where 𝜇𝑡 is the tissue viscous friction, 𝑈t is the interaction potential for the cells, and 𝝃(𝑡) is random force 11 

with zero mean and a variance related to its activity, i.e. < 𝜉(𝑡) >= 0; < 𝜉𝑖,𝛼(𝑡)𝜉𝑖,𝛽(𝑡′) > =12 

2 ℳ𝜇t𝛿(𝑡 − 𝑡′)𝛿𝛼𝛽. The viscous friction is a result of the interaction of cells with the extra-cellular matrix 13 

(ECM). Assumed that the inertial effects are negligible and hence considered an overdamped motion. The 14 

interaction potential for the cells, 𝑈𝑡 has two contributions:  15 

𝑈t(𝒙) =
1

2
Σ𝑗Σ𝑖≠𝑗𝑢𝑖𝑗

t +
1

2
Σ𝑘Σ𝑖𝑢𝑖𝑘

tm, 16 

the first one is the interaction between the cells themselves, which we consider having short-range 17 

repulsion to avoid the overlap and mid-range (two cell size) attraction, and no long-range (greater than 18 

two cell size) interaction3 :  19 

𝑢𝑖𝑗
t = {

𝜖 ((
𝑎

𝑟𝑖𝑗
)

2

− 1) ((
𝑟𝑐

𝑟𝑖𝑗
)

2

− 1)

2

   for 𝑟𝑖𝑗 ≤ 𝑟𝑐 

0                                                          for 𝑟𝑖𝑗 > 𝑟𝑐

, 20 



 30 

where 𝑟𝑐 = 2𝑎; the second one we assume that there is repulsive interaction between the cell and 21 

matrix of diameter `𝑎′ to avoid the overlap and that to be harmonic:  22 

𝑢𝑖𝑘
tm = {

𝑘tm (𝑟𝑖𝑘 − 𝑎)2                                 for 𝑟𝑖𝑘 < 𝑎 
0                                                       for 𝑟𝑖𝑘 ≥ 𝑎

, 23 

where 𝑟𝑖𝑗 = |𝒓𝑗
t − 𝒓𝑖

t| is the distance between the cell ‘𝑖’ and ‘𝑗’ and 𝑟𝑖𝑘 = |𝒓𝑘
m − 𝒓𝑖

t| is the distance 24 

between the cell ‘𝑖’ and matrix bead ‘𝑘’. The random force 𝜉𝑖(𝑡) is assumed to be zero-mean and uniformly 25 

distributed so that: 26 

< 𝜉𝑖,𝛼(𝑡) > = 0, 27 

< 𝜉𝑖,𝛼(𝑡)𝜉𝑖,𝛽(𝑡′) > = 2 ℳ𝜇t𝛿(𝑡 − 𝑡′)𝛿𝛼𝛽 , 28 

where is the single cell activity/motility and 𝜉𝑖,𝛼 is the 𝑥 or 𝑦 or 𝑧 component of 𝝃𝑖. By using the result 29 

from statistical physics4, we can relate the microscopic diffusivity of a (Brownian) cell to the activity by the 30 

relation 𝐷 =
ℳ

𝜇t
.  31 

 32 

In the model, the cell division has two constraints, a cell can divide only if it is older than a free growth-33 

rate time scale 𝜏g, and a cell-division will be acceptable only if it is energetically favorable5,6. To decide the 34 

energetically favorable divisions, we are using a Metropolis-Hastings algorithm, a Markov chain Monte 35 

Carlo method7. At each time step we randomly pick a cell and check for the age of the cell, if the cell is 36 

older than 𝜏g, it is allowed to divide, the new cell will take space next to the old cell, with an angle which 37 

is chosen from a uniform random distribution over [0 − 2𝜋]. We calculate the cost of energy Δ𝐸 = 𝐸f −38 

𝐸o to displace the cell and matrix, where 𝐸f/o is the total energy of the cell aggregate and matrix 39 

after/before cell division. Then we accept this cell division with the probability: 40 



 31 

 
𝑃 = {exp (−

Δ𝐸

ℳ
)                                  for Δ𝐸 ≥ 0 

1                                                      for Δ𝐸 < 0

. (1)  

 41 

To model the matrix phase, we assume that the matrix is made of mono-disperse spherical bead of the 42 

same size as the cell ‘𝑎’. These beads are passive in nature and they get displaced as a reaction to tissue 43 

activity and pressure applied by the tissue proliferation. The bead moves under the influence of three 44 

forces: (i) the first arises from the elastic nature of the matrix with elasticity coefficient 𝐺′; the second 45 

arises from the interaction between the beads themselves, similar to what we have for the cell-cell 46 

interaction; and the last arises from the repulsion between the bead and the tissue to avoid the overlap. 47 

The equation of motion for a bead with coordinate 𝒓𝑖
m is: 48 

𝜇m  𝒓𝑖
ṁ   =  −

𝜕𝑈m

𝜕𝒓𝑖
m  49 

where 𝜇𝑚 is the matrix viscous friction, 𝑈𝑚 is the interaction potential for the matrix. Similar to the cell 50 

dynamics, we have assumed that the inertial effects are negligible and hence considered an overdamped 51 

motion. The interaction potential for the matrix 𝑈m has three contributions:  52 

𝑈m(𝒙) =
1

2
Σ𝑖𝑢𝑖

E +
1

2
Σ𝑗Σ𝑖≠𝑗𝑢𝑖𝑗

m +
1

2
Σ𝑘Σ𝑖𝑢𝑖𝑘

tm, 53 

the first term is the elastic interaction for individual beads, we consider that each bead ‘𝑖’ is attached to 54 

its initial position 𝒓𝑖
m−0 and if the bead gets displaced from its initial position to a new position 𝒓𝑖

m, due 55 

to the elastic nature bead tries to go back to its initial position. We assume the interaction to be:  56 

𝑢𝑖
E = 𝐺′(𝒓𝑖

m − 𝒓𝑖
m−0)

2
; 57 

where 𝐺′ is the elasticity coefficient. If the distance of the bead to its attached position |𝒓𝑖
m − 𝒓𝑖

m−0| >58 

0.5𝑎, we assume that the bead breaks away from its attached position and acquires a new attached 59 
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position which is its current position, i.e., 𝒓𝑖
m−0 = 𝒓𝑖

m. The second term is the interaction between the 60 

beads themselves, which we consider having short-range repulsion to avoid the overlap and mid-range 61 

(two bead size) attraction, and no long-range (greater than two bead size) interaction7:  62 

𝑢𝑖𝑗
m = {

𝜖 ((
𝑎

𝑟𝑖𝑗
)

2

− 1) ((
𝑟𝑐

𝑟𝑖𝑗
)

2

− 1)

2

   for 𝑟𝑖𝑗 ≤ 𝑟𝑐 

0                                                          for 𝑟𝑖𝑗 > 𝑟𝑐

; 63 

where 𝑟𝑐 = 2𝑎; the third term is due to the repulsive interaction between the bead and the cell of 64 

diameter `𝑎′ to avoid the overlap and that to be harmonic:  65 

𝑢𝑖𝑘
tm = {

𝑘tm (𝑟𝑖𝑘 − 𝑎)2                                 for 𝑟𝑖𝑘 < 𝑎 
0                                                       for 𝑟𝑖𝑘 ≥ 𝑎

, 66 

where 𝑟𝑖𝑗 = |𝒓𝑗
m − 𝒓𝑖

m| is the distance between the bead ‘𝑖’ and ‘𝑗’ and 𝑟𝑖𝑘 = |𝒓𝑘
t − 𝒓𝑖

m| is the distance 67 

between the cell ‘𝑘’ and matrix bead ‘𝑖’. 68 

Initial Setup 69 

We start with a spherical ball of cells of radius 𝑅0 = 4𝑎, which is made of 79 cells (except mentioned 70 

otherwise) and these cells are uniformly, randomly distributed within the spherical ball.  This spherical 71 

ball of cells is surrounded by a concentric spherical shell of matrix of inner radius 𝑅𝑖𝑛 = 5𝑎 and outer 72 

radius 𝑅𝑜𝑢𝑡 = 12𝑎, which is made of 6330 beads (except mentioned otherwise) and these beads are 73 

tightly packed in an orderly fashion on the surface of a sphere with radius ′𝑘𝑎′(𝑘 ∈ [𝑅𝑖𝑛 − 𝑅𝑜𝑢𝑡]) within 74 

the spherical shell. We keep the tissue viscosity 𝜇t fixed for all the simulations except at the very end. We 75 

vary the matrix viscosity such that the viscosity ration 𝜇 =
𝜇t

𝜇m
= 0.002 and 2 for the viscoelastic and the 76 

elastic case, respectively. To change the stiffness, we vary the matrix elasticity coefficient 𝐺′ =77 

05, 50, & 100 for the soft, intermediate, and stiff case, respectively, varying the matrix relaxation time 78 

𝜏m =
𝜇m

𝐺′
. To accommodate the linear relationship between the stiffness and the random motility of the 79 
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cells, we use a linear relationship between stiffness and motility, and for three different stiffness of the 80 

matrix, we use the cell motility parameter 𝑀 = 0.2, 0.8, & 1.6 for the soft, intermediate, and stiff matrix 81 

case, respectively. For the intermediate viscoelastic matrix, i.e., 𝜇𝑚 = 10, 𝐺′ = 50, and the stiff 82 

viscoelastic case, i.e., 𝜇𝑚 = 10, 𝐺′ = 100, the proliferation is high and long fingers of the tissue exceed 83 

the matrix environment, to prevent this we used a thicker matrix with outer radius of the spherical shell 84 

𝑅𝑜𝑢𝑡 = 14 & 20, respectively. We used 10,240 & 30,710 beads in the matrix for the intermediate and stiff 85 

viscoelastic cases, respectively. For the stiff viscoelastic matrix case the proliferation is significantly high 86 

(Fig. 3c,j) and even with this thick matrix of size 𝑅𝑜𝑢𝑡 = 20, with 30,710 beads, we could capture the 87 

correct physics only up to time  ∼ 180 𝜏𝑔, and the simulations after this time show that the fingers of 88 

tissues started to outgrow the matrix size. We did more than one simulation for all the six matrix cases 89 

mentioned above, i.e., soft elastic & viscoelastic; intermediate elastic & viscoelastic; stiff elastic & 90 

viscoelastic; and they show statistically similar behavior. 91 

For the case where we inhibit the cell motility, we use a very small motility parameter 𝑀 = 0.01, for all 92 

the six conditions. For the case, where we inhibit the cell proliferation, we have used a slightly higher 93 

number of cells, i.e., 113, to start with a densely packed the spherical ball of the cells, as the number of 94 

cells will not increase with time. We performed two sets of simulation with the six conditions of matrix, 95 

for the cases where motility has been inhibited and where proliferation has been inhibited. 96 

 97 

Simulations for phase diagram 98 

To explore the regimes of morphological stability, in terms of the three dimensionless parameters, we 99 

change the tissue viscosity ratio 𝜇 =
𝜇𝑡

𝜇𝑚
 from 0.001 − 2. For each case of tissue viscosity ratio 𝜇, we 100 

consider three cases of stiffness, i.e., 𝐺′ = 5, 50, & 100, and perform the simulations. Since, the cell 101 



 34 

proliferation is an indirect function matrix rheology, the scaled cell flux 𝑗 =
𝜏𝑔

𝜏𝑡
 is an emergent parameter, 102 

recalling 𝜏𝑡 is the time it takes to add one cell to the tissue. We observe both in experiments and 103 

simulations that as we decrease the matrix viscosity 𝜇𝑚 and increase the matrix stiffness 𝐺′, cell 104 

proliferation increases and hence cell flux j increases. In our experiments the highest cell proliferation 105 

occurs in the Stiff Viscoelastic matrix and using linear regression we estimate that the tissue doubles in 106 

size in 20.5hr.  This corresponds to value of 𝜏𝑡~37𝑠  in the stiff viscoelastic matrices; in contrast, 𝜏𝑡~330s 107 

in stiff elastic matrices due to its much slower tissue growth.  These are in the same order of magnitude 108 

of the relaxation times of the matrices. The resulting cell flux, when the initial spheroid is composed of 109 

2000 cells, is 𝑗 = 0.027. For the stiff elastic case, 𝑗 = 0.0030.  110 

To generate the phase-diagram we developed a custom Matlab software and used support vector 111 

machines (SVM) classifier for binary classification. For the cases where motility is small, thence the 112 

proliferation is small, i.e., 𝑗~0, the growth of the spheroidal tissue for all the conditions were stable. We 113 

have plotted the corresponding two-dimensional phase-diagram (Extended Data Fig.8b) and the 114 

background looks completely blue, an indicator that the tissue growth for the scaled cell flux 𝑗~0 is always 115 

stable. The data from actual simulations were represented as blue dots. For moderate values of scaled 116 

cell flux 𝑗~𝑂(1), we have plotted a three-dimensional phase diagram (Fig 5, Extended Data Fig.8a). We 117 

observe that as the scaled proliferation increases the region of stability starts to shrink in 𝜇 − 𝐴 plane and 118 

eventually the whole phase space becomes unstable. 119 

Controlled cell flux driven simulations 120 

For the controlled cell flux driven tissue growth, we relax the stress dependent cell proliferation condition. 121 

With this relaxed constraint, we add one cell (mass) after time 𝜏𝑡 at the center of the tissue to mimic the 122 

experiments, where the cell flux injection is controlled, and new cells (mass) are being added at the center 123 

of the tissue. By controlling 𝜏𝑡 we can control the cell flux injection rate, which gives us a precise control 124 
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over scaled cell flux 𝑗. This was not the case for stress dependent cell proliferation simulations. We vary 125 

the proliferation time scale 𝜏𝑡 ∈ [0.1 − 1]  to control the scaled cell flux j.  126 

Using the data from our simulations we have generated a two-dimensional Phase-diagram (Extended Data 127 

Fig.8c) for the controlled flux driven case. We have fixed the scaled cell flux 𝑗 = 10, and varied the viscosity 128 

ratio 𝜇 ∈ [0.1 − 10] for the three values of elasticity 𝐺′ = 0 (to mimic the viscous Saffman-Taylor 129 

instability8 ),  0.1 (softer than the control soft matrix case) , and 5 (soft matrix). The phase-diagram 130 

(Extended Data Fig.8c) shows an opposite trend where the region close to origin (elastic matrices, 131 

Extended Data Fig. 7d,e) becomes unstable and the region away from origin (viscoelastic matrices, 132 

Extended Data Fig. 7d,e) becomes stable. The data from actual simulations were represented as blue dots 133 

for spheroidal growth of the tissue and red dots for the branched growth of the tissue. 134 

Simulations with dynamic change in viscosity of the matrix  135 

To see the effects of dynamic change in the viscosity of the matrix on the tissue growth, we considered 136 

two cases: (i) At the start of the simulation, matrix is elastic (𝐴 =
𝜏a

𝜏m
= 0.017, 𝜇 =

𝜇t

𝜇m
= 0.002, 𝑗 =

𝜏g

𝜏t
=137 

0.05) in nature and after a certain time (15 𝜏g) matrix smoothly changes its viscous property and becomes 138 

viscoelastic (𝐴 =
𝜏a

𝜏m
= 133, 𝜇 =

𝜇t

𝜇m
= 2, 𝑗 =

𝜏g

𝜏t
= 0.16) in nature (ii) At the start of the simulation, the 139 

matrix is viscoelastic (𝐴 =
𝜏a

𝜏m
= 133, 𝜇 =

𝜇t

𝜇m
= 2, 𝑗 =

𝜏g

𝜏t
= 0.16) in nature and after certain time (15 𝜏g) 140 

matrix smoothly changes its viscous property and becomes elastic (𝐴 =
𝜏a

𝜏m
= 0.017, 𝜇 =

𝜇t

𝜇m
= 0.002, 𝑗 =141 

𝜏g

𝜏t
= 0.05) (Supplementary Fig 5 a). In both the cases matrix maintains it stiffness (𝐺′) and it changes only 142 

its viscosity 𝜇𝑚 to control the viscoelasticity of the matrix. The property of the tissue is same for both of 143 

these cases. In Supplementary Fig. 5 b, we show the images of the evolution of the tissue for case (i) (top 144 

row) and case (ii) (bottom row). For case (i) we see that as soon as we start to reduce the viscosity, there 145 

is rapid growth of spheroidal tissue, the spheroid starts to break the symmetry and eventually budding 146 
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starts. The same can be confirmed from the Supplementary Fig. 5 c-d, where we have quantified the area 147 

and circularity of the cross-section of the tissue. There is sudden increase in the area and reduction in the 148 

circularity as we change the property of the matrix from elastic to viscoelastic. For case (ii) we see that 149 

initially, the growth of the spheroidal tissue is rapid, there are initial signs of budding, but as we increase 150 

the viscosity of the matrix, there is arrest of growth and there is no new bud formation. We further 151 

quantified it by looking at the area and circularity of the cross-section of the spheroidal tissue. As soon as 152 

the viscosity of the matrix increases there is arrest in the growth of the cross-sectional area of the tissue 153 

and rapid decrease in the circularity stops, reverses the trend with slow increase in the overall circularity 154 

value with time. These results indicate that by dynamically changing the property of the ECM (decreasing 155 

the viscosity of the matrix) around the tissue we can go from morphologically stable to morphologically 156 

unstable tissue growth (case i) and similarly by increasing the viscosity of the ECM we can control the 157 

morphologically unstable tissue growth (case ii). 158 

Simulations of the Organoids 159 

In our experiments, an organoid comprised of motile, proliferating epithelial cells is initially encapsulated 160 

in a viscoelastic gel. The model for spheroidal tissue growth is modified to simulate the organoid by 161 

changing the cell-cell interaction. We perform the simulations for a two-dimensional organoid model. In 162 

the model, the organoid cells are arranged as a chain of cells to mimic the cross-section of an organoid. 163 

These cells are always linked to their neighbors through a spring (to avoid stretching and compression) 164 

and try to maintain an angle of 𝜋 between two neighboring connections (to avoid bending). In a relaxed 165 

state, this interaction puts the cells of the organoid on the circumference of a perfect circle. The inter-166 

cellular interaction for the organoid will have two contributions, one from the stretching/compression 167 

and the other from the bending. The interaction potential for a cell will be given by 168 

𝑢𝑖
t =

1

2
𝑘𝑠[(𝒓𝑖 − 𝒓𝑖−1 − 𝑎)2 + (𝒓𝑖 − 𝒓𝑖−1 − 𝑎)2] +

1

2
𝑘𝑏(𝒏−1̂ − 𝒏1̂)2, 169 
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Where 𝑘𝑠 is spring coefficient and 𝑘𝑏 is bending coefficient,  𝒏−1̂ and 𝒏1̂ are the unit vector in the direction 170 

(𝒓𝑖 − 𝒓𝑖−1) and (𝒓𝑖 − 𝒓𝑖+1), respectively.  ′𝑖 − 1′ and ′𝑖 + 1′ are the left and right neighbors of the cell ′𝑖′, 171 

respectively. There is periodicity for the chain of cells, which means for cell number 𝑖 = 1, the 𝑖 − 1 = 𝑁, 172 

and for cell number 𝑖 = 1, the 𝑖 + 1 = 1. 𝑁 is total number of cells in the organoid at a given instant.  173 

The total interaction potential 𝑈𝑡 for the system of cells will have two contributions similar to spheroidal 174 

model:  175 

𝑈t(𝒙) =
1

2
Σ𝑖𝑢𝑖

t +
1

2
Σ𝑘Σ𝑖𝑢𝑖𝑘

tm, 176 

Where 𝑢𝑖
𝑡 is the contribution from the cell-cell interaction which we have defined in the previous 177 

paragraph and 𝑢𝑖𝑘
𝑡𝑚  is the contribution from the tissue-matrix interaction, which we are keeping same as 178 

spheroidal-tissue model. The interaction potential for the matrix is same as the spheroidal-tissue model. 179 

The dynamics of the position of the cell and the bead of the matrix is same as the spheroidal-tissue model. 180 

In the organoid model, the cell division has the same criterion as in the spheroidal tissue model. If a new 181 

cell-division happens it takes a position between two cells with a probability which is local stress 182 

dependent.  183 

Initial Setup for the Organoids 184 

All the simulations for the organoid start with 𝑁 = 26 cells, which are placed at the circumference of 185 

circle of radius 4𝑎. This circle of cells is surrounded by a concentric annulus of matrix of inner radius 𝑅𝑖𝑛 =186 

5𝑎 and outer radius 𝑅𝑜𝑢𝑡 = 14𝑎, which is made of 655 beads (except mentioned otherwise) and these 187 

beads are tightly packed in an orderly fashion on the periphery of a circle with radius ′𝑘𝑎′(𝑘 ∈ [𝑅𝑖𝑛 −188 

𝑅𝑜𝑢𝑡]) within the annulus. We terminate the simulation once the organoid touches the outer radius of 189 

the matrix. 190 
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We have considered six matrix cases to see the effect of stiffness and the viscosity on the organoidal 191 

growth. We have considered the viscosity ratios 
𝜇𝑡

𝜇𝑚
= 0.002 and 

𝜇𝑡

𝜇𝑚
= 2, same as spheroidal model, and 192 

call them as elastic and viscoelastic matrix, respectively. For each case of viscosity ratio 𝜇, we consider 193 

three cases of stiffness, i.e., 𝐺′ = 5, 50, & 100, call them soft, intermediate and stiff respectively, and 194 

perform the simulations. 195 

In Supplementary Fig 16 a, we show the images of organoids for stiff elastic (top) and stiff viscoelastic case 196 

(bottom) at time 𝑡 = 12𝜏g. Supplementary Fig 16 b-c, show that for viscoelastic cases the organoids grow 197 

rapidly and break their circular symmetry and become morphologically unstable, whereas for elastic case 198 

the organoid growth remains stable and circularly symmetric. Supplementary Fig 16 d, show the images 199 

of organoids for elastic (top row) and viscoelastic case (bottom row) with increasing stiffness (left to right) 200 

at time 𝑡 = 12𝜏g. With increasing stiffness, the symmetry breaking is more prominent for viscoelastic 201 

case, whereas the effect of stiffness is milder for elastic case. The finding that the organoids are 202 

morphologically stable in elastic matrices and morphologically unstable in the viscoelastic matrices and 203 

with stiffness their growth increases, and circularity decreases is in good agreement with the experiments 204 

and similar to what we have found in our spheroidal tissue simulations.  205 

In Supplementary Fig. 19, we have reduced the motility of the organoid cells (ℳ~0) and we find that 206 

independent of viscosity and stiffness the growth of the organoid is stalled (Supplementary Fig. 19b) and 207 

organoid maintains a circularly symmetrical morphology (Supplementary Fig. 19c).  208 

In Supplementary Fig. 20, we have reduced the proliferative capacity to zero the organoid cells (𝑗~0) and 209 

we find that independent of viscosity and stiffness the growth of the organoid is stalled (Supplementary 210 

Fig. 20b) and organoid maintains a circularly symmetrical morphology (Supplementary Data Fig. 20c). 211 

 212 
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Organoids with multiple cell types 213 

 214 

To test whether the change in cell type within the organoid can be correlated with location of the 215 

symmetry breaking, we considered two simple cases where we placed cells at given locations in the 216 

organoid (i) with relatively higher motility compare to the rest of the cells of organoid (ii) with relatively 217 

higher proliferation rate compare to the rest of the cells of organoid.  For all these tests, we considered 218 

the evolution of organoid in the soft-viscoelastic matrix.  219 

Case i: Cells with High Motility 220 

We first investigated the effect of intensity of relative motility (
ℳ

ℳ0
) and then for a fixed relative motility 221 

the effect of number of high motile cells 𝑁mot on the growth of the organoid.  222 

We replaced two of the normal cells in the organoid with highly motile cells. We increased the degree of 223 

motility systematically, e.g., motility ratio  
ℳ

ℳ0
= 2,3,4 & 5, and looked at the growth of organoid. We find 224 

that the addition of highly motile cells enhances the morphological disorder (Supplementary Fig. 21). In 225 

the Supplementary Fig. 21a, we show the images of the organoid at time 𝑡 = 8𝜏g with the increasing 226 

degree of motility ratio 
ℳ

ℳ0
. For 

ℳ

ℳ0
= 2, the location of the morphological instabilities are not correlated 227 

with the position of the cells with high motility but for the case 
ℳ

ℳ0
= 3,4, & 5, the location of the 228 

morphological instability is directly correlated with the position of the high motility cells (black color cells 229 

in Supplementary Fig 21a). In Supplementary Fig 21b-c, we have reported the area and circularity of the 230 

organoid with increasing degree of motility, we find that growth of organoid is same for 
ℳ

ℳ0
= 3,4, & 5 231 

(Supplementary Fig 21b) but the circularity decreases (morphological instability increases) with increasing 232 

degree of motility (Supplementary Fig 21c). This implies that replacing a few regular organoid cells with 233 
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highly motile cells will not affect the growth (the smaller motility of the rest of the cells will dominate the 234 

growth) but it will definitely affect the morphological instability of the organoid.  235 

To ensure that the location of the cells with high motility is directly correlated with the location of the 236 

morphological instabilities, we increase the number of cells with high motility. We kept the motility ratio 237 

fixed to 
ℳ

ℳ0
= 4, and systematically increased the number of cells with high motility 𝑁mot = 2,3, & 4. In 238 

Supplementary Fig 22 a, we show that the location of morphological instabilities are directly correlated 239 

with the highly motile cells (black color cells). In Supplementary Fig 22 b-c, we report the area and 240 

circularity of the organoid with increasing number of high motile cells 𝑁mot, we see that there is an 241 

increase in growth and decrease in the circularity of the organoid with increasing 𝑁mot.  242 

Case ii: Cells with High Proliferation 243 

To study the effect of the cells with relative high proliferation on the growth of the organoid, we replaced 244 

four of the normal cells in the organoid with cells of high proliferation. To control the proliferation in the 245 

model, we add an additional control on the probability with which we accept the cell division for Δ𝐸 > 0 246 

is exp (−
𝒫0

𝒫

8𝛥𝐸

ℳ
), for regular cell 𝒫 = 𝒫0, which brings back the regular probability for the regular cells of 247 

the organoid to accept the cell division. Since, the growth of organoid is morphologically unstable in soft 248 

viscoelastic matrix (Supplementary Fig 16), so we have increased the energy cost for the cell division by a 249 

factor 8, i.e., 8Δ𝐸 to reduce the proliferation of all the cells of the organoid in general, this gives us a 250 

morphologically stable organoid when all cells are of same kind (
𝒫

𝒫0
= 1). We are systematically increasing 251 

the degree of proliferation, i.e., 
𝒫

𝒫0
= 1, 5, 10, 20 & 100. In Supplementary Fig 23 a, we show the images 252 

of the organoid at time 𝑡~10𝜏g, for 
𝒫

𝒫0
= 1 & 5; the growth of the organoid is morphologically stable; only 253 

when the degree of proliferation crosses a certain value, e.g., (
𝒫

𝒫0 
= 10,20 &100), the organoid becomes 254 

morphologically unstable. We observe that when the organoids become morphologically unstable the 255 
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location of the instabilities are directly correlated with the position of the cells with high proliferation (the 256 

two images in the right of Supplementary Fig 23 a). In Supplementary Fig 23 b-c, we reported the area 257 

and circularity of the organoid for the cells with high proliferation. The growth increases and circularity 258 

decreases (morphological instability increases) with the increase in the degree of proliferation of the cells 259 

with high proliferation. 260 

Simulation Methods  261 

We developed an inhouse Fortran-90 code to model the growth of spheroids in a viscoelastic matrix. The 262 

simulations were performed using the Euler-Maruyama method with a Langevin term and integrating in 263 

time. We use reduced, dimensionless unit, all lengths in terms of typical cell size ‘𝑎’, 𝑟∗ = 𝑟/𝑎; and all the 264 

time in terms of cell proliferation time 𝜏𝑔; 𝑡∗ = 𝑡/𝜏𝑔. We use Mersenne Twister algorithm, a 265 

pseudorandom number generator, to generate the random numbers. 266 

Quantification of tissue shape properties of simulations 267 

A custom MATLAB software was developed to measure, during the simulations, the tissue shape 268 

properties. Briefly, as the simulations are performed assuming that cells are discrete points, we first 269 

spherically dilate each point to generate a continuous volume. Then, once we have the connected mesh, 270 

the volume and sphericity are quantified. The area and circularity were quantified from the middle plane 271 

of the spheroid.  272 

 273 

Supplementary Table 1.  Alginate hydrogel composition. 274 

Alginate Molecular weight (kDa) Stiffness (Pa) Alginate (%) Calcium sulphate (mM) 

138 390 2 16.8 

138 1855 2 28.8 
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138 4959 2 57.6 

38 409 2 33.6 

38 1618 2 52.8 

38 5095 2 96 

 275 

Supplementary Table 2.  Table for dimensionless quantities in the simulation.  276 

Parameter Simulations Experiments 

Cell Size (a) 10−5m ~10−5m 

Motility Speed (vmig =
𝐷

𝑎
)  1 × 10−9 − 1 × 10−6 m/s ~5 × 10−8m/s 

Activity Time Scale (𝜏a =
𝑀

𝜖
𝜏g) 7-54 s ~2-40s9-11  

Viscoelastic Time Scale (𝜏m =
𝐺′

𝜇m
) 0.5-1000 s 30-350 s 

Viscosity Ratio (𝜇 =
𝜇t

𝜇m
) 0.001-2 0.00019-0.066 

Scaled Activity (𝐴 =  
𝜏a

𝜏m
) 0.1-100 0.028-40 

Scaled Cell Flux (𝑗 =
𝜏g

𝜏t
) 0.002-10 ~0.003-166 

 277 

Supplementary Table 3.  Alginate-matrigel interpenetrating networks composition. 278 

Alginate Molecular weight (kDa) Stiffness (Pa) Alginate (%) Matrigel (mg/ml) Calcium sulfate (mM) 

138 473 1 5 26.4 

138 1489 1 5 48 

38 452 1 5 48 

38 1422 1 5 96 

 279 
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