
nature methods

https://doi.org/10.1038/s41592-023-01903-1Article

Multiplex-GAM: genome-wide identification 
of chromatin contacts yields insights 
overlooked by Hi-C

In the format provided by the 
authors and unedited

https://doi.org/10.1038/s41592-023-01903-1


 

Legends for Supplementary Tables 2-10 
 
Supplementary Table 2 Summary of GAM samples 

Supplementary Table 3 Parameter estimates obtained through SLICE modelling 

Supplementary Table 4 List of pairwise SLICE FDR contacts 

Supplementary Table 5 Summary of published feature sets 

Supplementary Table 6 Feature sets used in Random Forest analysis 

Supplementary Table 7 Summary of specific contacts obtained using 5% and 10% 
most differential contacts 

Supplementary Table 8 Feature pair enrichments found in the 5% contact sets 

Supplementary Table 9 Feature pair enrichments found in the 10% contact sets 

Supplementary Table 10 Slices intersecting nuclei 

 
  



 

Supplementary Table 1 

 Bulk Hi-C Single-cell Hi-C GAM 

Input cells Typically >100,000 cells Typically 500-1000 cells Typically 500-1000 cells 

Measurement of 
complex, multi-

partner 
interactions 

Underestimates pairwise 
interactions for complex loci (due 
to ligation) 

Underestimates pairwise 
interactions for complex 
loci (due to ligation) 

No ligation required, therefore 
accurately measures 
interactions of complex loci 

Preparation of 
cells 

Requires tissue dissociation and 
purification of target cell type, 
which can alter cell physiology 
(van den Brink et al., 2017), 
compromise cell identification 
(Millard et al., 2021) and cause 
differential loss of cell types 
(Denisenko et al., 2020; 
especially in diseased tissue, 
Korin et al., 2021) 

Requires tissue 
dissociation and 
purification of target cell 
type 

Tissue is dissected intact and 
fixed without cell dissociation 
Target cells directly extracted 
by laser microdissection 
(Winick-Ng et al., 2021)30 
 

Tissue 
geography 

Does not preserve locations of 
targeted cells within tissue 

Does not preserve 
locations of targeted cells 
within tissue 

Recording location of cells 
within tissue is possible 

Radial 
positioning 

Does not measure radial 
positioning 

Radial position can be 
extracted by 3D 
modelling 

Measures radial positions 
(Beagrie et al., 2017)3 

Measurement of 
distances 

Accurately captures average 
distances between loci (Fiorillo et 
al., 2021)9 

Individual cells poorly 
capture distances 
between loci (Fiorillo et 
al., 2021)9 

Accurately captures average 
distances between loci with 
better signal-to-noise ratio than 
Hi-C at distances >1Mb 
(Fiorillo et al., 2021)9 

Fixation 
protocol 

Mild or no fixation with risk of 
chromatin collapse 

Mild fixation with risk of 
chromatin collapse 

Strong fixation: preservation of 
nuclear ultrastructure validated 
by Electron Microscopy 
(Guillot et al., 2004)20 

Additional references: 

Denisenko, E., Guo, B.B., Jones, M. et al. Systematic assessment of tissue dissociation and storage biases in single-
cell and single-nucleus RNA-seq workflows. Genome Biol 21, 130 (2020). https://doi.org/10.1186/s13059-020-02048-
6 
Korin, B., Chung, J.J., Avraham, S., Shaw, A.S. Preparation of single-cell suspensions of mouse glomeruli for high-
throughput analysis. Nat Protoc. 16, 4068-4083 (2021). https://doi.org/10.1038/s41596-021-00578-2 
Millard, S.M., Heng, O., Opperman, K.S. et al. Fragmentation of tissue-resident macrophages during isolation 
confounds analysis of single-cell preparations from mouse hematopoietic tissues. Cell Reports 37, 110058 (2021). 
https://doi.org/10.1016/j.celrep.2021.110058 
van den Brink, S., Sage, F., Vértesy, Á. et al. Single-cell sequencing reveals dissociation-induced gene expression in 
tissue subpopulations. Nat Methods 14, 935–936 (2017). https://doi.org/10.1038/nmeth.4437 

  



 

Supplementary Notes 
  
In this Supplementary Note, we will discuss the mathematical implementation of the SLICE 
(StatisticaL Inference of Co-sEgregation) model and its new features. SLICE allows the 
quantification of the interaction frequencies between specific DNA loci from GAM (Genome 
Architecture Mapping) raw data, by correcting for both technical (e.g., detection efficiency) 
and biological (e.g., genomic distance) factors (Beagrie et al., 2017). 
In Section 1, we briefly summarize the general mathematical framework of SLICE. Section 2 
is devoted to the extensions of the original SLICE implementation (Beagrie et al., 2017) to 
model nuclear shape (Section 2.1), cellular ploidy (Section 2.2) and the multiplex-GAM 
experimental setup (Section 2.3). Finally, we describe how SLICE can be employed to 
optimize GAM experimental protocols (Section 3) and to combine different GAM datasets 
(Section 4).  
 

1. SLICE model  
A GAM experiment consists of the collection of many nuclear cryosections (nuclear profiles 
or NPs) in random orientations from a population of nuclei, with one NP being isolated from 
each nucleus. The DNA content of each NP is then sequenced to provide information about 
presence/absence of any DNA locus. SLICE is a statistical model that, starting from raw GAM 
data, estimates the interaction probability between two or more chromatin loci.  
In the following, we briefly introduce the SLICE model focusing first on the case of pairwise 
(Section 1.1) and threewise (Section 1.2) interactions. For additional details, we refer the 
reader to Beagrie et al., 2017. 
 
1.1 Pairwise interactions 
In the SLICE model, we assume that a pair of loci, A and B, can be in two different states: in 
an interacting state, when the two loci are spatially close even if genomically distant, or in a 
non-interacting state, when they are separated from each other with a physical nuclear distance 
that is dependent on their genomic separation. These states occur with probabilities Pi and (1-
Pi) respectively. In addition, we define state-specific probabilities for the loci A and B to be 
segregated in a randomly selected slice (Suppl. Notes Figure SN1) as follows: 

- v1 and v0 are the probabilities to find/not find a single locus in the slice; 
- u2, u1, u0 are the probabilities to find 2, 1 or 0 loci in a pair of non-interacting loci; 
- t2, t1, t0 are the probabilities to find 2, 1 or 0 loci in a pair of interacting loci. 

The following normalization relationships are satisfied: 
- u2 + 2u1 + u0 = 1 
- t2 + 2t1 + t0 = 1 
- v1 + v0 = 1 

These probabilities depend on the geometric properties of the system. For instance, in the case 
of spherical nuclei, the probabilities v0 and v1 can be analytically calculated and depend on the 
ratio between the slice thickness and the nuclear radius (Beagrie et al., 2017). Analogously, the 



 

probabilities for pairs of loci (i.e. t0, t1, t2 and u0, u1, u2) depend also on the average physical 
distance between the loci in the interacting and non-interacting states, and can be estimated 
numerically (e.g., via Monte Carlo simulations) or from GAM data (Beagrie et al., 2017). 

However, for loci at large genomic distances (≳50Mb) and small physical distances dI when 

interacting (dI ≲ h), the following approximations can be used (see Beagrie et al., 2017): 
 

𝑢𝑣
ଶ, 𝑢ଵ𝑣ଵ𝑣, 𝑢ଶ𝑣ଵ

ଶ 
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From these probabilities, SLICE can predict the outcome of a GAM experiment as a function 
of the interaction probability Pi of a pair of loci. For example, if only one nuclear profile is 
added per tube, the fraction of tubes that include neither A nor B loci in a diploid nucleus is:  
 

M0 =N0,0= [Pi t0 + (1-Pi)u0]2 
 
where N0,0 is the fraction of slices with neither A nor B loci.  
Similarly, we can calculate the fraction of tubes including two (M2) or one (M1) loci (Beagrie 
et al., 2017). Conversely, Pi can then be estimated by comparing the predictions of M2, M1, M0 

with the experimental values measured by GAM (Beagrie et al., 2017). 
 



 

 
 
Figure SN1: SLICE model parameters. 

a) Schematic picture of a DNA locus in the cell nucleus with a given resolution br. Each 

locus is represented by a sphere with a radius 𝑟ೝ
, that depends on the considered 

resolution br. The probabilities to find or not a locus in a population nuclear profiles, 
with slice thickness h, are v1 and v0 respectively. 

b) The probability to find a pair of loci in a population of nuclear profiles depends on 
whether they are in a not-interacting (ui, top) or interacting (ti, bottom) state.  

c) Probability τi of finding 3, 2, 1 or 0 loci of a triplet in a interacting state. 
 
 
1.2 Threewise (triplet) interactions 
SLICE can exploit the co-segregation information from GAM to estimate the frequency of 
multivalent interactions between DNA loci. For example, the interaction probability of triplets 
of loci, Pi3, can be estimated following an approach similar to the pair-wise calculation. Briefly, 
SLICE can estimate how often any combination of the loci in the triplet are co-segregated in 
the same nuclear slice in the case when the three loci are interacting or not interacting.   
As an example, we consider the case where all the three loci A, B and C are interacting and 
define τi the probability that i (i = 0, 1, 2, 3) loci of the triplet are co-segregated in the same 



 

nuclear profile. Again, these probabilities can be numerically estimated. However, if the 

physical distances of the loci interacting in the triplet is ≲h, h being the slice thickness, the 
probabilities τi  are well approximated by:  

 
τ0 ~ v0,  τ1 ~ τ2 ~ 0, τ3 ~ v1 

 
where v1 and v0 have been previously defined. 
Analogously, SLICE can calculate the probabilities corresponding to the cases where only two 
loci of the triplet are interacting or the three loci are not interacting (Beagrie et al, 2017).  These 
quantities can be used to derive the equations for the fraction of nuclear profiles Ni,j,k (with i, j, 
k = 0, 1) containing any combination of the loci. Hence, the fraction of tubes containing any 
number of loci, which are the quantities measured by GAM and can be fitted to determine the 
triplet interaction probability (Beagrie et al., 2017). 
In those calculations, additional complexities can be taken into account, such as the detection 
efficiency of loci in a tube or the effects of genomic resolution (as discussed in Beagrie et al, 
2017). 
 

2. SLICE model extensions  
In its previous implementation, SLICE considered diploid cells with nuclei approximated as 
spheres (Beagrie et al., 2017). Here, we show how the model can be generalized to include 
different nuclear shapes (Section 2.1) and ploidies (Section 2.2). Finally, in Section 2.3 we 
extend SLICE to model the new multiplex-GAM protocol, which reduces hands-on time and 
costs. 
 
2.1 Modelling the nuclear shape 
SLICE can model an arbitrary nuclear shape by extending the computation of the probabilities 
vi, ui and ti defined above. In general, these can be numerically estimated (e.g., via Monte Carlo 
methods). For the sake of simplicity, we consider ellipsoids, which are good approximations 
of nuclear shapes for a number of cell types (Supplementary Tables 3) and can be treated 
analytically. 
Below, we calculate the analytical expression of v1 in ellipsoidal nuclei, which allows the 

estimation of the probabilities ui and ti for pairs of loci at large genomic distances (≳50Mb) 

and small physical distances dI when interacting (dI ≲ h; see above); for all other cases, 
numerical simulations or GAM data can be used, as described in (Beagrie et al, 2017). The 
results can be easily generalized to take into account different experimental detection 
efficiencies or resolutions (Beagrie et al., 2017). 
 
2.1.1Segregation probability v1 for ellipsoidal nuclei 
We consider a cell nucleus with an ellipsoidal shape and semi-axes a, b, c. Without loss of 
generality, any ellipsoid can be described by the canonical implicit equation: 
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where x1, x2 and x3 are the 3D coordinates.   
In a coordinate system defined by the following anisotropic scaling transformation: 
  

   (x1, x2, x3) → ቀ x'1=
x1
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, x'2=

x2

b
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x3

c
ቁ  (Eq. 2) 

 
the ellipsoid is transformed into a sphere with unit radius. Hence, in this new coordinate system 
(indicated by apex symbols) we can use the equations for v1 and v0 written in the spherical case 
(see Beagrie et al., 2017), with a slice thickness h’ defined by:  
 

     h' = 
h

ඥ(asincos)2 + (bsinsin)2 + (ccos)2
   (Eq. 3) 

 

where θ and ϕ are respectively the azimuthal and polar angle identified by the direction 𝑛 of 
the slice plane (Suppl. Notes Figure SN2a). The average segregation probability for a single 
locus, v1’, can be obtained by integrating over all possible slice orientations and positions, as 
follows: 
 

    v1' = 
∫ dΩ

 
S ∫  dz' v1'(z',̂)

1
-h'(, )/2
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   (Eq. 4) 

 

where ∫ dΩ
 

S
  = ∫ dθ

2

0
∫ d sin

0
  is the integral over the solid angle, v1'(z,n̂) is the segregation 

probability of a single locus in a slice of a sphere with orientation n̂ and distance from the 

equatorial plane equal to 𝑧. Since the transformation (Eq. 2) is linear, the associated Jacobian 
determinant is constant. Therefore the volumes ratios are invariant, and then v1’ is equal to v1.  
As an example, in Suppl. Notes Figure SN2b we show the value of v1 computed by numerical 
integration of equation (Eq. 4) for different values of semi-axis lengths (a, b, c), as a function 
of the slice thickness h. The values computed from Eq. 4 match those obtained by Monte Carlo 
simulations (marked by circles).  
Given the above equation for v1, we can estimate the probabilities ui and ti and the fraction of 
tubes with 2, 1 or 0 loci (M2, M1, M0) in the case of an ellipsoidal nucleus, with the calculations 
mentioned in Section 1 and explained in detail in Beagrie et al., 2017.  



 

 
Figure SN2: SLICE generalization to ellipsoidal nuclei. 

a) Schematic picture showing the linear transformation of coordinates, from (x1, x2, x3) to 
(x1’, x2’, x3’), for mapping a generic ellipsoid with semi-axis length (a, b, c) to spherical 
case, with unitary radius (R=1).    

b) Average probability v1 that a locus is found in a nuclear profile from a population of 
ellipsoidal nuclei, as a function of the slice thickness h and for different lengths of semi-
axes. Here, we show the spherical case (a = b = c = 4.5μm) and the cases where we 
increase/decrease the semi-axis length by about 10%. As expected, we find that v1 
decreases (increases) if we consider a smaller (bigger) nuclear volume. The SLICE 
prediction (solid lines) matches with independent Monte Carlo simulations (circles).  



 

c) Co-segregation frequency M2 as a function of the nucleus flattening parameter, for 
different values of interaction probability Pi. Unlike Extended Data Fig. 3d, here we 
considered variations in semi-axis lengths leading to changes of the ellipsoid volume 
V. We fixed slice thickness h=220 nm, br=30 kb and detection efficiency ε=1 and we 
considered two loci on different chromosomes, and therefore randomly distributed 
within the nucleus. 

d) Comparison of SLICE results on multiplex-GAM data at 40 kb resolution, in spherical 
(R=4.5 μm) and ellipsoidal approximation, where we increased the length of one semi-

axis of about 10% (a = b = 4.5, c = 5.0 μm; flattening≃0.1). (Left) Scatterplot of 
interaction frequencies Pi for chromosome 1 in spherical and ellipsoidal approximation. 
(Right) Distribution of differences in Pi values genome-wide between spherical and 
elliptical case. For sake of simplicity we only show differences between non-zero Pi 
values in both cases. 

 
 
2.1.2Finite genomic resolution of loci  
In Eq.4, we assumed that the genomic region we want to detect is a dimensionless point. 
However, to take into account for the finite size of a locus at a given genomic resolution, we 

can represent a DNA locus including 𝑏bases as a sphere with a finite radius 𝑟ೝ  (Suppl. Notes 

Figure SN1a). It can be shown that, if 𝑟ೝ
 << a, b, c (i.e., the semi-axes of the ellipsoidal 

nucleus), the previous equations still hold if h is replaced by an effective slice thickness heff = 

h + 2𝑟ೝ
 (Beagrie et al., 2017). An estimation of 𝑟ೝ

 can be obtained under the assumption that 

the genetic material is uniformly distributed within the cell nucleus, which leads to: 
 

     𝑟ೝ
= ቀ

ೝ


 abcቁ

1/3

    (Eq. 5) 

 
where L is the total length of the genome (Beagrie et al., 2017). 
 
2.1.3Effects of nuclear shapes  
In this section, we use the equations for ellipsoidal nuclei to investigate how the nuclear shape 
can affect the co-segregation frequency M2, i.e. the expected fraction of tubes containing both  
loci of a pair (Section 1). Moreover, we test how robust are the SLICE calculations obtained 
in mES cells to changes of the nuclear shapes. 
While the above equations hold true for an arbitrary ellipsoid, here, for the sake of simplicity, 
we focus on spheroids, i.e., ellipsoids with two equal semi-axes (a = b) (Extended Data 
Fig. 3a). In this way. we can parametrize the nuclear shape by using the flattening, defined as 
1 - c/a. By varying the length of the c-axis, we can consider two possible cases: the a and b 
semi-axes are kept constant, leading therefore to a variation of the total volume, or, 
alternatively, the volume is kept constant, and the two semi-axes a and b change accordingly. 
For both cases. we derived the co-segregation frequency of pairs of loci (M2) as a function of 
the flattening parameter (shown in Extended Data Fig. 3b and Suppl. Notes Figure SN2c 



 

respectively). In general, we found that M2 changes non-trivially with flattening and exhibits a 
different behaviour with respect to volume variation, proving that not only the nucleus shape, 
but also its size affects the co-segregation frequency. 
Next, we quantified how robust are our SLICE results obtained under the assumption of 
perfectly spherical nucleus. To this aim, we compared the results obtained on combined 
Multiplex-GAM data at 40 kb resolution in spherical approximation against the results obtained 

by introducing a small flattening (a = b = R = 4.5 μm, c = 5 μm,  flattening ≈ 0.1). In both cases, 

SLICE finds very similar results (Suppl. Notes Figure SN2d). In particular, this change in the 
shape leads to a slight shift of interaction probability Pi, as quantified by Pearson correlation 
coefficients (values above the 99%) and overlaps of contacts (about 98% for all the 
chromosomes). Additionally, the estimated detection efficiencies ε are very similar (88% 
ellipsoidal case against 86% in spherical case).   
 
2.2Modelling cellular ploidy and detection efficiency  
To extend SLICE to cells with any chromosome copy number (ploidy), we generalized the 
equations for the Ni,j, i.e., the expected fraction of nuclear profiles including i copies of locus 
A and j copies of locus B (see above) in a population of N cells. In the following, for the sake 
of simplicity, we focus on the cases of haploid, diploid and triploid cells, but SLICE equations 
can be easily generalized to arbitrary ploidies. 
For diploid cells, where i and j assume values between 0 and 2, Ni,j can be written in mean field 

approximation as a function of c0  = Pi⋅t0+(1-Pi)⋅u0  and v0 , i.e., the probabilities that a pair of 
loci or a single locus are not contained in a nuclear profile, respectively (Beagrie et al., 2017). 
More specifically, the Ni,j are polynomial functions of  v0 and c0 with a degree equal to the 
ploidy of the cells.  
For example, in haploid cells the expressions for Ni,j are linear combinations of v0 and c0: 
 
    N0,0 = c0 

N1,0 = N0,1 = (v0 - c0)    (Eq. 6) 
N1,1 = (1 - 2v0 + c0) 

 
On the other hand, for triploid cells the Ni,j are third degree polynomial functions in v0 and c0. 
For instance, N1,1, i.e., the fraction of nuclear profiles including one locus A and one locus B in 
a triploid cell is:  
 

N1,1 = 3 (1 - 2v0 + c0) c0
2 + 6 (v0-c0)2c0 (Eq. 7) 

  
SLICE can also model experimental limitations by introducing a detection efficiency ε defined 
as the probability that a given locus present in a slice is detected. The expected fraction of 
nuclear profiles with an ε < 1, Ni,j 

ε, is a linear combination of the Ni,j values corresponding to 
ε = 1 (Beagrie et al., 2017). As an example, equation Eq. 7 including a detection efficiency ε, 
becomes: 
 



 

N1,1
ε = ε2 [N1,1 +(1- ε) 2N2,1 +(1- ε)2 (2N3,1 + N2,2) +(1- ε)3 2N3,2 +(1- ε)4 2N3,3] 

 
2.3 SLICE for multiplex-GAM datasets 
In this section, we show how SLICE can be generalized for multiplex-GAM. In this new GAM 
protocol, multiple nuclear profiles are collected into a single sequencing tube. This leads to a 
significant reduction in reagent costs and labor time and a greater sensitivity (as we show in 
Section 3).  
For any pair of loci, the previous equations for the single slices Ni,j still hold true in multiplex-
GAM, while the equations for the expected number of tubes with 0, 1 and 2 loci (M0, M1 and 
M2) need to be modified to account for the number of nuclear profiles XNP in each tube. By 
indicating with n the ploidy, we have: 
 

M0 = (N0,0)XNP 

M1 = 2 [(∑ 𝑁,

ୀ )XNP - (N0,0)XNP]   (Eq. 8) 

M2 = 1 – M1 - M0 
  
Similar equations can be written for an arbitrary number of loci. For instance, in the case of 
triplets (A, B and C loci), we can first estimate the expected fraction of nuclear profiles, Ni,j,k 

with a number i, j, k of loci A, B, C. From these, by analogous calculations, we can derive the 
expected fraction of tubes with 0,1,2 or 3 loci of the triplet (M0, M1, M2 and M3, respectively), 
in the general case of a number XNP of nuclear profiles per each sequencing tube: 
 

M0 = (N0,0,0)XNP 

M1 = [(∑ Ni,0,0
n
i =0 )XNP + (∑ N0,j,0

n
j =0 )XNP +(∑ N0,0,k

n
k =0 )XNP - 3(N0,0,0)XNP]   

M2 = [(∑ N,j,0
n
i, j =0 )XNP +(∑ N,0,k

n
i, k =0 )XNP +(∑ N,j,k

n
j,k=0 )XNP -  

 (Eq. 9) 

- 2((∑ N,0,0
n
i =0 )XNP+∑ N,j,0

n
j =0 )XNP+∑ N,0,k

n
k =0 )XNP) + 3N0,0,0XNP]

  
 M3 = 1 – M2 – M1 - M0. 
 
 

3. Using SLICE to optimize GAM experimental design 
In this Section, we show how GAM sensitivity can be estimated by SLICE and how this can 
be used to optimize the GAM experimental parameters (e.g., the number of tubes to sequence, 
the slice thickness and the number of nuclear profiles per tube, etc.) for a given organism and 
cell type. 
 
3.1GAM sensitivity  
GAM sensitivity in the analysis of pairwise interactions can be defined as the probability to 
reject the null hypothesis H0 that a pair of loci is non-interacting (Pi=0), when the alternative 
hypothesis H1 is true, i.e. when the pair is interacting with a probability Pi>0.  



 

As discussed in Beagrie et al., 2017, the interaction probability Pi can be estimated from GAM 
data by fitting the value of the co-segregation probability, i.e., M2/(M1 + M2), which, for loci at 
a given genomic distance, increases with increasing Pi. Beyond the expected value of the co-
segregation ratio, its full probability distribution can be also estimated from SLICE (Suppl. 
Notes Figure SN3a).  
By using the co-segregation ratio to estimate Pi, the GAM sensitivity Pr will depend on how 
distinct the probability distributions of the co-segregation ratio are for Pi = 0 and Pi > 0. 
Specifically, for any given combination of experimental parameters and interaction probability 
Pi, we can define Pr as the probability to obtain a co-segregation ratio M2/(M2+M1) greater 
than the 95th percentile of the distribution of co-segregation ratio at Pi = 0 (Beagrie et al., 2017,  
Suppl. Notes Figure SN3a). 
Analogously, it is also possible to define GAM sensitivity to detect triplet interactions. Here, 
the co-segregation ratio is defined as M3/(M1 + M2 + M3). Then, the sensitivity Pr is the 
probability to reject the null hypothesis H0 = {Pi3 = 0} against the alternative hypothesis H1 = 
{Pi3 ≠ 0}. In this case, Pr depends also on the pairwise interaction frequencies and we consider 
below two limit cases (Beagrie et al., 2017): 
 
Case I:  The three loci are able to interact only in a triplet (i.e., the pairwise interaction    

frequencies are all zero). In this scenario, the number of “false positives” (i.e., 
slices with all three loci present in a non-interacting state) is minimized. 

Case II: Two of the loci making up the triplet are always engaged in a pairwise 
interaction (i.e., pairwise probability of interaction Pi = 1), and the third locus 
can bind to the pair and form a triplet. In this case, the number of “false 
positives” is maximum, as it is relatively easy to capture in a single slice all 
three loci while they do not form a triplet (it is as easy as capturing a pair of 
non-interacting loci). 

 
As the Case I and Case II give, respectively, an overestimation and an underestimation of GAM 
sensitivity Pr, we expect that the true sensitivity falls between the values calculated in these 
two cases (Beagrie et al., 2017). 
 
3.1Minimum number of tubes m* 
GAM sensitivity Pr depends on several technical (e.g., detection efficiency, number of nuclear 
profiles per tube XNP.) and biological (e.g., genomic distance, strength of interaction) factors.  
Importantly, Pr increases upon increase of sequenced tubes m (Suppl. Notes Figure SN3b). 
To provide a useful guide to the experimentalist who wishes to use GAM, we calculate the 
minimum number of tubes m* required to reach a sensitivity greater or equal than 90% under 
different combinations of GAM parameters. The optimal choice of parameters minimizes the 
value of m*. 
Following this approach, we estimated m* as a function of the number of nuclear profiles XNP 

per tube and found that for currently used GAM parameters, XNP >1 (multiplex-GAM) typically 
gives higher sensitivity (Extended Data Fig. 3c,e,f; Suppl. Notes Figure SN3c-d). Moreover, 



 

our results provide a guide to choose XNP based on the values of the other parameters (eg, slice 
thickness) and the genomic distances (Figure 1f,h).  

 
Figure SN3: Determining minimum number of tubes m*. 

a) The GAM sensitivity Pr (area under the red curve) is defined as the probability to reject 
the null hypothesis H0 = {Pi = 0}, and is computed as the probability of obtaining a co-
segregation ratio M2/(M1+M2) greater than the 95% percentile of co-segregation ratio 
distribution at Pi = 0. The distributions, shown here as example,  are computed by 
setting XNP = 3, genomic distance equal to 1Mb and detection efficiency ε=1. 

b) By studying the sensitivity Pr as a function of number of tubes, we can estimate the 
minimum number of tubes m* that is necessary to detect a given pairwise interaction 
with a sensitivity greater or equal than a threshold (represented by a dashed line), that 
we fixed equal to 90% for our analyses. Here, we plot, as an example, the trend of Pr 
as a function of number of tubes, by setting XNP =3, genomic distance equal to 1Mb and 
detection efficiency ε=1. 

c) Optimal number of nuclear profiles per tube XNP and the corresponding m* for different 
values of the slice thickness h. Similarly to Extended Data Fig. 3e, we considered pairs 
of loci that are at a genomic distance of 10Mb and interaction probability Pi equal to 
30%, but we set the experimental detection efficiency ε=83% as estimated from the 
original mESC GAM dataset (408x1NP at 30 kb resolution; Beagrie et al., 2017). The 
optimal value for XNP is consistent with the case ε=1.  



 

d) m* as a function of the resolution for different values of the number of nuclear profiles 
XNP. Here, the detection efficiency ε is equal to 1, the interaction probability Pi = 30%, 
and we considered pairs at large genomic distance (≥50Mb). 

 
For triplet interactions, a good estimation of m* is the average of the previously described Case 
I and Case II, (Section 3.1, Suppl. Notes Figure SN4a). As example, the heatmap in Suppl. 
Notes Figure SN4b shows m* as a function of the triplet interaction probability Pi3 and the 
number of nuclear profiles XNP, for loci at 1Mb genomic distance. In this case, we find that 
when a small number of NPs are added per tube (i.e. 1 < XNP < 10), few tubes are sufficient to 
detect frequent triplet interactions (i.e. m* is minimized).  
 

 
 
Figure SN4: Analysis of triplets. 

a) m* as a function of detection efficiency ε, where we fixed genomic distance equal to 
1Mb and interaction probability Pi = 50%. Here, we show the two limit cases, which 
give an overestimation and an underestimation of the sensitivity, respectively. The 
vertical dashed line marks the value of detection efficiency ε estimated from a previous 
GAM dataset (408x1NP) at 30 kb resolution, while the horizontal line marks the 
estimated number of tubes m*. 

b) Heatmap showing m* as a function of the triplet interaction probability Pi3 and the 
number of nuclear profiles XNP. We considered a detection efficiency ε equal to 1 and 
triplets at genomic distance of 1Mb. Note that the value of m* plotted is the average of 
the m* values obtained in Case 1 and Case 2. The dashed grey line indicates the trend 
of the minimum m*. 

 
 
 
 



 

4. Analysis of Multiplex-GAM datasets 
In Section 2.3, we showed how SLICE model can be extended to handle Multiplex-GAM 
datasets, in which multiple nuclear profiles are collected in each sequencing tube (XNP >1). In 
this section, we test SLICE predictions on these new datasets and show that Multiplex-GAM 
reach a higher sensitivity. Next, we show that SLICE equations can handle combined GAM 
datasets with different nuclear profile per tube XNP.  
 
4.1SLICE predictions on multiplex GAM datasets (XNP>1) 
In Section 2.3, we showed how SLICE can be extended to consider datasets with XNP >1. 
Through this improvement, we can estimate not only the minimal number of tubes m* to 
achieve a given statistical power to reliably detect an interaction, but also the corresponding 
optimal value for XNP, which represents an important parameter for the new Multiplex-GAM 
protocol (Section 3). Interestingly, for a constant number of tubes m, we find that GAM is more 
sensitive when multiple nuclear profiles NPs are in each tube (i.e. XNP>1).  
To quantitatively corroborate this prediction, we applied SLICE to two experimental datasets 
characterized by a different value of XNP: the new Multiplex-GAM dataset, with m=249 tubes 
and XNP =3 nuclear profiles per tube (briefly indicated by 249x3NP), and the 249x1NP dataset, 
that we generated in-silico by randomly sampling a subset m=249 tubes from published data 
with XNP =1 (408x1NP; Beagrie et al., 2017) (Suppl. Notes Figure SN5b). First, we compute 
the GAM sensitivity to detect pairwise interactions as a function of their genomic distances for 
both datasets (Section 3.1). As expected, we find a higher sensitivity for the 249x3NP dataset 
(blue bars) compared to the 249x1NP dataset (red bars), in the considered genomic distances 
(Suppl. Notes Figure SN5a). Here, we considered a detection efficiency ε equal to 1 and 
interaction probability equal to Pi=30%, but these results are robust to change of these 
parameters. Next, we run SLICE on both datasets and estimated the prominently interacting 
pairs, i.e. interactions with frequencies Pi greater than expected value Pi at a chosen threshold 
(P ≤ 0.05, see Beagrie et al., 2017). By comparing the number of prominent pairwise 
interactions as a function of their genomic distance, we find that, as expected, more prominent 
interactions are detected in the 249x3NP dataset for all genomic distances (Suppl. Notes 
Figure SN5c), in agreement with the prediction.  



 

 
 
Figure SN5. Sensitivity of multiplex-GAM.  

a) GAM sensitivity calculated by SLICE for two datasets with the same number of tubes 
(249) but different number of nuclear profiles per tube (XNP = 1 and XNP = 3, red and 
blue bars respectively), for some genomic distances. The sensitivity is predicted to be 
higher at all genomic distances for XNP = 3. Here we fixed a detection efficiency equal 
to 1 and an interaction frequency Pi = 30%, but the results are robust to changes of 
these parameters.  

b) We compared two GAM datasets with 249 tubes from mES cells: one generated with 
XNP=3 (249x3NP) and another randomly sub-sampled from previously published data 
(Beagrie et al., 2017) with XNP=1 (249x1NP).  

c) The number of prominent interactions found by SLICE is plotted as a function of the 
genomic distance for the 249x3NP (blue line) and the 249x1NP GAM data (red line). 
As predicted by SLICE, in the 249x3NP dataset a larger number of interactions are 
systematically identified. 

 
4.2SLICE predictions from combined datasets with variable XNP 
We next generalized SLICE to GAM datasets including tubes with a different number of 
nuclear profiles. To this aim, we used a mean-field approximation, consisting of introducing a 
number of nuclear profiles per tube (indicated by XMF), that is the average of different number 
of nuclear profiles XNP, weighted with corresponding number of tubes. 



 

As a test, we applied SLICE to the GAM-1250 dataset in which  the 481x1NP and the 249x3NP 
datasets are combined (also indicated by 481x1NP + 249x3NP). In this case, the estimated 
value of XMF is: 
 

XMF = 
ସ଼ଵ௫ଵାଶସଽ௫

ସ଼ଵାଶସଽ
 ≈ 1.68 

 
We run SLICE at 40 kb resolution and compared our results against the published GAM mESC-
400 results at the same resolution. As expected, the detection efficiency ε estimated from the 
combined data (~86%) is comparable with the 408x1NP dataset at the same resolution (~93%) 
(Beagrie et al., 2017). Next, we compared the average probability u0, estimated from the 
experimental datasets, as a function of genomic distance (Suppl. Notes Figure SN6a). This is 
an important quantity for numerically estimating interaction frequencies Pi and for assessing 
SLICE predictions (Section 1-2 and (Beagrie et al., 2017)). We find that the trend of u0 is very 
similar in both datasets and for all chromosomes, with Pearson correlation coefficients always 
around 98%.  
Then, we looked at the distribution of differences of Pi values (Suppl. Notes Figure SN6b), 
in which, for sake of simplicity, we only show differences between values that are different 
from zero in both datasets. The mean value of the distribution is around zero and only low 
numerical differences can be found (max ~20%), proving that the two datasets have a similar 
distribution of Pi’s values.  Moreover, we compared the most prominent interactions inferred 
from both datasets (Section 3.1, (Beagrie et al., 2017)). Specifically, for each chromosome we 
evaluated their overlap fraction (Suppl. Notes Figure SN6c) and computed the Pearson 
correlation coefficient between their common elements (Suppl. Notes Figure SN6d). Here, to 
take into account the effect of sparse matrices, we considered an element in common if the 
same element or at least one of its first neighbors was present.  
 



 

 
 
Figure SN6: SLICE results on Multiplex-GAM datasets. 

a) The probability u0 of not finding neither of two loci in a not interacting state, is an 
important fitting parameter for SLICE (Beagrie et al., 2017). Here, we compare the 
estimated trend of u0 as a function of their genomic distance from previous 408x1NP 
and new combined dataset (481x1NP+249x3NP) for chromosome 1. The high 
Spearman correlation coefficient between the two trends (about 0.97), shows that the 
datasets provide very similar results. 

b) Distribution of differences of Pi values inferred at 40 kb resolution from 408x1NP and 
combined 481x1NP+249x3NP data genome-wide. For sake of simplicity, here we show 
differences between Pi values that are different from zero in both datasets. 

c) Overlap of most prominent contacts between 408x1NP and combined 
481x1NP+249x3NP datasets, at 40 kb resolution. The overlap is around 40% between 
prominent Pi’s in the two cases. 

d) Pearson correlation coefficients between the prominent Pi matrices computed on 
408x1NP and 481x1NP+249x3NP datasets. Here, we correlated only most prominent 
contacts that are present in both datasets. 
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