

Supplementary Figure 1 | Infinity Flow analysis on thymic stromal cells

(a-c) Infinity Flow analysis was used to impute the expression of surface markers on CD45⁻ cells derived from thymi of (a) 1- (n = 23), (b) 4- (n = 7), and (c) 16-week-old (n = 12) C57BL/6 WT mice, respectively. Hierarchical clustering analysis was performed on (a) 488383, (b) 177484, and (c) 507726 CD45⁻ cells, respectively, and projected in a 2-dimensional space using UMAP (top panels; 7 to 10 clusters were obtained per timepoint). Each colour represents a specific cluster as indicated. Heatmaps (bottom panels) display the expression of the top 7 markers upregulated in each cluster (log fold-change > 0.2). Backbone (BB) markers have a blue font. (d) Violin plots comparing the expression of the indicated markers based on the backbone staining (top panels) and the prediction of Infinity Flow based on exploratory measurements of the same proteins (bottom panels).

Supplementary Figure 2 | Classification of clusters based on UEA1, Ly51, MHCII, and CD80 expression

(a) Infinity Flow analysis was used to impute the expression of surface markers on TEC (CD45 EpCAM1⁺) derived from thymi of (b) 1- (n = 23), (c) 4- (n = 7), and (d) 16-week-old (n = 12) mice. Heatmaps display the expression of the backbone markers used for the LEGENDScreen. (b-d) UMAP graphs (top panels) and violin plots (bottom panels) illustrating the expression of UEA1, Ly51, MHCII, and CD80 on TEC from (a) 1-, (b) 4-, and (c) 16-week-old mice. Colour gradient indicates expression levels in the UMAP graphs and colours in the violin plots represent the different clusters, as defined in Figure 1b.

Supplementary Figure 3 | Characterization of perinatal cTEC

(a) Appearance of a CD73 and Sca1 double positive population within perinatal cTEC was analysed at the indicated timepoints in C57BL/6 WT mice. Shown are representative FACS plots. (b) Abundance of a CD83 and CD40 double positive population (hereafter perinatal cTEC) within cTEC was analysed at the indicated timepoints in C57BL/6 WT mice. Shown are cumulative data depicting the percent of perinatal cTEC within cTEC (E15.5 n = 13, E17.5 n = 7, P0 n = 6, P3 n = 8, W1 n = 4, W2 n = 7, W4 n = 5, W8 n = 5, W16 n = 8, from 2-3 independent experiments per timepoint). Data are presented as mean values $\pm/-$ SEM. Source data are provided as a Source Data file.

Supplementary Figure 4 | Dissecting mTEC¹⁰ heterogeneity

(a) UMAP graph illustrating the similarity score of the mTEC¹⁰ I and II clusters from the 4-week Infinity Flow datasets to each cell of the scRNAseq reference dataset, based on the surface protein expression levels imputed by Infinity Flow.
(b) Shown are representative FACS plots illustrating the gating strategy to identify Sca1⁺CD146⁺ cells within mTEC¹⁰. Data are derived from a 16-week-old C57BL/6 WT mouse.

Supplementary Figure 5 | Pre-mature and post-Aire mTEC compartments

(a) Violin plots illustrating the expression of Sca1, CD63, CD66a, and CD117 on TEC from 1- and 4-week-old mice. Colours represent the different clusters, as defined in Figure 1b. (b) UMAP graph illustrating the similarity score of the mTEC¹⁰ II cluster from the 1- (left panel) and the mTEC¹⁰ IV cluster from the 4-week (right panel) Infinity Flow datasets to each cell of the scRNAseq reference dataset, based on the surface protein expression levels imputed by Infinity Flow. (c) Histgram showing the expression of CD104 in Dclk1 negative and positive tuft-like compared to intertypical mTEC. (d) Histograms illustrating the expression levels of CD66a and CD117 within Dclk1⁻ TEC, Dclk1⁻ tuft-like mTEC and Dclk1⁺ tuft-like mTEC. (e) FACS plots illustrating the percent of Dclk1⁺ TEC (first graph gated on PI⁻CD45⁻EpCAM1⁺ cells) falling within the new tuft-like mTEC gating strategy, as defined in Figure 5d. (f-h) Triplicates of Sca1⁻CD63⁻ CD66a⁺CD117⁺ tuft-like and Sca1⁻CD63⁻CD66a⁻CD117⁻ non-tuft-like mTEC isolated from 6-week-old WT mice were used for bulk RNAseq as described in the methods. In (f) a volcano plot depicts the differentially expressed genes between non-tuft and tuft samples. Differential gene expression analysis was conducted using the two-sided likelihood ratio test in edgeR with Benjamini-Hochberg correction for multiple hypothesis testing. In (g) a heatmap shows the expression levels of the top 20 genes associated with a tuft-like mTEC signature¹ across the samples. In (h) a violin plot depicts the Spearman correlation of the non-tuft gene signature with the previously defined TEC subpopulations from a reference scRNAseq dataset¹. (i) Csnb^{Cre}::Rosa26^{LSL-YFP} mice were analysed for the abundance of YFP⁺ cells within cTEC, mTEC^{hi}, mTEC¹⁰, intertypical TEC and tuft-like mTEC at 4 and 16 weeks after birth. Shown are representative histograms and cumulative data (4 weeks n = 8, 16 weeks n = 6, from two independent experiments per timepoint). Data are presented as mean values +/- SEM. Source data are provided as a Source Data file. (j) C57BL/6 WT mice were analysed for the abundance of Tspan8⁺ cells within cTEC, mTEC^{hi}, mTEC^{lo}, intertypical TEC and tuft-like mTEC. Shown are representative histograms and cumulative data (n = 5, from two independent experiments). Data are presented as mean values +/- SEM. Source data are provided as a Source Data file.

CD45⁻Ter119⁻ thymic stromal cells isolated from 1- and 16-week-old C57BL/6 WT mice were used for scRNAseq in combination with CITEseq as described in the methods. **(a-c)** Hierarchical clustering analysis was performed on 9953 cells either using (a) the gene expression analysis or (b) only considering the detection of ADTs. Results were projected in a 2D space using t-SNE. Each colour represents a specific cluster. In (c) t-SNE distribution of the ADT clustering is

shown using the cluster colouring of the RNA analysis. (d) Cells were annotated based on transcriptional similarity to reference datasets derived from the Immunological Genome Project (ImmGen). Each colour represents a specific subset as defined in the reference dataset. (e) T-SNE plots illustrating the scaled expression of EpCAM1, CD31, and Podoplanin across ADT clusters. (f) Violin plots depicting the abundance of CD80 ADTs across ADT TEC clusters. The box was drawn from the 25th percentile (Q1) to the 75th percentile (Q3) of the ADT abundance in cells from a specific cluster with the horizontal line denoting the median value. The difference Q3-Q1 forms the interquartile range (IQR). Whiskers are drawn up to the largest data point and down to the smallest data point falling within the range 1.5*IQR. All other observed data points outside the boundary of the whiskers are plotted individually as outliers. (g) Bar graphs illustrating the distribution of 1- and 16-week-old derived TEC across ADT (left panel) and RNA (right panel) clusters. Each colour represents a specific cluster. (h,i) T-SNE plots illustrating the scaled expression of the gene expression of (h) perinatal cTEC markers such as *Cd83*, *Cd40*, *Tnfrsf14*, *Foxn1*, *Itga1*, and *Nt5e*, and of (i) tuft-like and intertypical TEC markers such as *Ly6a/Ly6e*, *Cd63*, *Kit*, and *Aire* across ADT clusters.

Supplementary Figure 7 | Gene signature of "mimetic" mTEC subsets

TSNE 2

CD45⁻Ter119⁻ thymic stromal cells isolated from 1- and 16-week-old C57BL/6 WT mice were used for scRNAseq in combination with CITEseq as described in the methods. Shown are t-SNE plots illustrating the scaled expression of the top genes described to identify the corresponding mimetic mTEC subsets².

Supplementary Figure 8 | Gating strategy to identify TEC subpopulations

Shown are representative FACS plots illustrating the new gating strategy to identify TEC subpopulations based on the surface expression profiles obtained from CITEseq. Colours represent different TEC subpopulations and CITEseq clusters as indicated. Data are derived from a 4-week-old C57BL/6 WT mouse and is representative of 3 independent experiments.

Supplementary Figure 9 | Gating strategy to identify DP thymocytes

Shown are representative FACS plots illustrating the gating strategy to identify CD69⁻ DP thymocytes. Data are derived from a 4-week-old C57BL/6 WT mouse.

Supplementary Figure 10 | Application of new TEC markers on FOXN1^{A505/WT} mice **(a,b)** FOXN1^{A505/WT} mice were analysed for the abundance of perinatal cTEC, mature cTEC, intertypical TEC and tuftlike mTEC using the new markers and compared to C57BL/6 WT mice at an age of 4-weeks. Shown are (a) representative FACS plots and (b) cumulative data (WT n = 8 (perinatal cTEC, mature cTEC, intertypicl TEC) or n = 7 (tuft-like mTEC), $\Delta 505$ n = 7, from three independent experiments). Data are presented as mean values +/– SEM. Statistical analysis was done with two-tailed unpaired Student's t-test.

Supplementary Table 1

Exploratory markers	Isotype	Expression in thymic stromal compartment
Blank	Blank	No
AHIgG	AHIgG	No
CD3e	AHIgG	Yes
CD80	AHIgG	Yes
CD154	AHIgG	No
Notch 1	AHIgG	No
CD30	AHIgG	No
CD178	AHIgG	No
CD103	AHIgG	No
Delta-like 4	AHIgG	No
CD195	AHIgG	No
Notch 4	AHIgG	No
CD229 (Ly-9)	AHIgG	No
CD69	AHIgG	No
Notch 3	AHIgG	No
JAML	AHIgG	No
Notch 2	AHIgG	No
CD194	AHIgG	No
CD152	AHIgG	No
CD120a	AHIgG	Yes
CD11c	AHIgG	No
Delta-like 1	AHIgG	No
CD196	AHIgG	No
CD29	AHIgG	Yes
CD55	AHIgG	Ves
Jagged 2	AHIgG	No
CD79b	AHIgG	No
IFN-g R b chain	AHIgG	Ves
CD61	AHIgG	Yes
CD121a	AHIgG	Ves
TCR h chain	AHIgG	Ves
FceRIa	AHIgG	No
CD16.2	AHIgG	No
CD36	AHIgG	Ves
DcTRAIL-R1	AHIgG	Ves
CD84	AHIgG	No
CD48	AHIgG	Ves
CD49b	AHIgG	Ves
CD120b	AHIgG	No
CD183	AHIgG	No
CD262	AHIgG	Ves
HVEM	AHIgG	Ves
TCR Vg1 1 + Vg1 2	AHIgG	No
B7-H4	AHIgG	No
CD339	AHIgG	No
CD49a	AHIgG	Ves
PD-1H	AHIgG	No
CD85k	AHIgG	No
Plevin B2	AHIgG	Ves
CD27	AHIoG	No
DB3	AHIGG	No
TCR g/d	AHIGG	No
mlaG2ak	mlgG2ak	No
CD451	mlgG2ak	No
CD45.2	mIgG2ak	No
NK_1 1	mIgG2ak	No
I v108	mlaG2ak	No
Ly100	mig02ak	110

CD207	mIgG2ak	No
CX3CR1	mIgG2ak	Yes
mIgG1k	mIgG1k	No
CD66a	mIgG1k	Yes
IFNAR-1	mIgG1k	No
Tim-2	mIgG1k	No
CD272	mløGlk	No
CD64	mløGlk	Yes
CD351	mlgGlk	No
LAP	mlgGlk	No
TIGIT	mlgGlk	No
Trem-like 4	mIgG1k	No
CD59a	mIgG1k	Ves
I v49H	mIgG1k	No
CD90.1	mIgG1k	No
mIgG2bk	mIgG1k mIgG2bk	No
CD157	mIgO20k mIgG2bk	Vac
CD150	mIgO20k mIgG2bk	Vac
VCD1	mIgO20k mIgG2bk	No
mIaMk	mIgO20K	No
	mIgNik	Vac
SSEA-1	rlgC1k	I CS
IngOIK La light chain	rlgOlk	No
Ig light chain	rlgG1k	No
Siglet H	rigGIk	NO N.
CD255	rigGIK	NO Var
CD202b	rlgGlk	Yes
GITR Ligand	rlgGlk	No
CD14/	rlgGlk	Yes
CD73	rlgGlk	Yes
CDSI	rlgGlk	Yes
NKG2D	rlgGlk	No
CD96	rlgGlk	No
Integrin b/	rlgGlk	No
CD210	rlgGlk	No
CD83	rlgGlk	Yes
Mac-3	rlgGlk	Yes
CD223	rlgGlk	No
CD134	rlgGlk	No
Blank	Blank	No
CD41	rlgGlk	No
CD268	rlgGlk	No
CD144	rlgGlk	No
CD3/0	rlgGlk	No
CD369 (Dectin-1,CLEC/A)	rlgGlk	No
PIR-A/B	rlgGlk	No
	rlgGlk	No
E-Cadherin	rlgGlk	Yes
CD172a (SIRPa)	rlgGlk	Yes
CD319	rlgGlk	Yes
rlgG2a	rlgG2a	No
MAIR-V	rlgG2a	No
	rlgG2a	Yes
VISTA	rlgG2a	Yes
CD8a	rlgG2a	Yes
CD2/5	rlgG2a	No
CD34	rlgG2a	Yes
Ly-6A/E	rlgG2a	Yes
CD40	rlgG2a	Yes
CD45R/B220	rlgG2a	No
CD197	rIgG2a	No

CD47	rIgG2a	Yes
CD98	rIgG2a	Yes
CD14	rIgG2a	Yes
CD107a (LAMP-1)	rlgG2a	Yes
CD18	rlgG2a	Ves
Ly-6G	rlgG2a	Ves
CD21/35	rlgG2a	No
Mac-2	rlgG2a	No
CD100	rlgO2a	No
CD199	rlgO2a	NO V
Ly-31	rigG2a	
	rigG2a	NO N.
11m-4	rlgG2a	No
	rlgG2a	Yes
H-2	rlgG2a	Yes
CD45RB	rlgG2a	Yes
CD326	rIgG2a	Yes
IgM	rIgG2a	No
CD155	rIgG2a	Yes
CD200R	rIgG2a	No
CD254	rIgG2a	No
IL-21R	rIgG2a	No
CD276	rIgG2a	No
CD9	rIgG2a	Yes
CD105	rIgG2a	Yes
CD366	rIgG2a	No
4-1BB Ligand	rlgG2a	No
CD265	rlgG2a	No
TLR4 (CD284)/MD2 Complex	rlgG2a	Ves
CD19	rlgG2a	No
	rlgG2a	No
CD62I	rlgG2a	No
CD02L CD23	rlgG2a	No
CD25	rlgO2a	No Voc
CD3	rlgO2a	T CS
CD2/3	rig02a	I CS
	rigG2a	
F4/80	rlgG2a	NO N
CD94	rlgG2a	No
CD267	rlgG2a	No
Ly-49A	rlgG2a	No
CD180	rlgG2a	Yes
CD11a	rlgG2a	Yes
LT beta R	rIgG2a	Yes
CD122	rIgG2a	No
CD106	rIgG2a	Yes
CD365	rIgG2a	No
CD115	rIgG2a	No
CD140a	rIgG2a	Yes
PDC-TREM	rIgG2a	No
CD135	rIgG2a	No
CD127	rIgG2a	No
CD140b	rIgG2a	Yes
ESAM	rIgG2a	Yes
CD200	rIgG2a	Yes
CD309	rIgG2a	No
TLT-2	rlgG2a	No
CD253	rloG2a	No
CD335	rlaG2a	No
CD205	rlgG2a	Ves
CD203 Galactin 0	rIgO2a	I US Voc
	ngoza "LeC2	
CD200R3	rlgG2a	NO

MAIR-IV	rIgG2a	No
Ly49D	rIgG2a	No
CD123	rIgG2a	No
CD355	rIgG2a	No
CD169	rIgG2a	No
CD138	rIgG2a	No
CD160	rIgG2a	No
CD39	rIgG2a	Yes
GARP	rIgG2a	No
CD179a	rIgG2a	No
CD371	rIgG2a	No
CD63	rIgG2a	Yes
CD49e	rIgG2a	No
CD193	rlgG2a	No
RhlgG	RbIgG	No
CD300LG	rloG2a	Yes
CD301a	rlgG2a	No
II -33Ra	rloG2a	No
CD304	rloG2a	No
CD6	rlgG2a	No
CD100	rIgG2a	No
CD100	rlgG2a	Vac
CD104	rIgG2a	Vec
MAdCAM 1	rIgO2a	Vos
MEDTV (Mar)	rIgO2a	Tes Var
CD22(rigG2a	
	rigG2a	NO V
	rigG2a	Yes
CD16/32	rlgG2a	Yes
CD150	rlgG2a	Yes
CD25	rlgG2a	Yes
CD38	rlgG2a	Yes
CD133	rlgG2a	Yes
CD301b	rlgG2a	No
CD34	rlgG2a	Yes
rlgG2bk	rlgG2bk	No
CD43	rlgG2bk	Yes
FR4	rlgG2bk	No
CD1d	rIgG2bk	Yes
CD70	rIgG2bk	Yes
CD4	rIgG2bk	Yes
I-A/I-E	rIgG2bk	Yes
CD153	rIgG2bk	No
CD54	rIgG2bk	Yes
33D1	rIgG2bk	No
CD90.2	rIgG2bk	Yes
TER-119	rIgG2bk	No
CD49d	rIgG2bk	Yes
CD24	rIgG2bk	Yes
Ly-6G/Ly-6C	rIgG2bk	Yes
CD86	rIgG2bk	Yes
CD11b	rIgG2bk	Yes
CD45	rIgG2bk	Yes
CD279	rIgG2bk	No
RAE-1g	rIgG2bk	No
CD8b	rIgG2bk	Yes
CD44	rIgG2bk	Yes
CD126	rIgG2bk	No
CD317	rIgG2bk	Yes
CD132	rIgG2bk	Yes
CD3	rIgG2bk	Yes
		•

CD274	rIgG2bk	Yes
CD117	rIgG2bk	Yes
CD93	rIgG2bk	No
CD252	rIgG2bk	No
MD-1	rIgG2bk	No
CD357	rIgG2bk	Yes
CD185	rIgG2bk	No
CD300c/d	rIgG2bk	No
CD186 (CXCR6)	rIgG2bk	No
CD130	rIgG2bk	Yes
CD198	rIgG2bk	No
CD20	rIgG2bk	No
CD124	rIgG2bk	Yes
IL-23R	rIgG2bk	No
CD184	rIgG2bk	Yes
CD2	rIgG2bk	No
rIgG2ck	rIgG2ck	No
Ly-6C	rIgG2ck	Yes
Ly-6D	rIgG2ck	Yes
rIgMk	rIgMk	No
CD49b	rIgMk	Yes
GL7	rIgMk	Yes
SHIgG	SHIgG	No
CD28	SHIgG	No
Podoplanin	SHIgG	Yes
CD137	SHIgG	No
CD278	SHIgG	No
KLRG1	SHIgG	No
Ly-49C/F/I/H	SHIgG	No
CD177	RbIgG	No
F3	RbIgG	Yes
Gp2	rIgG2a	Yes
Tspan8	rIgG2bk	Yes
Foxn1	mIgG2bk	Yes

Supplementary Table 1 | Infinity Flow exploratory markers, the isotype of the corresponding antibodies and the expression status on thymic stromal cells.

Supplementary Table 2

LEGENDScreen protein	Gene
CD3e.XGBoost-bgc	Cd3e
CD80.XGBoost-bgc	Cd80
CD81.XGBoost-bgc	Cd81
CD120a.XGBoost-bgc	Tnfrsf1a
CD29.XGBoost-bgc	ltgb1
CD55.XGBoost-bgc	Cd55
IFN-g R b chain.XGBoost-bgc	lfngr2
CD61.XGBoost-bgc	ltgb3
CD121a.XGBoost-bgc	ll1r1
TCR b chain.XGBoost-bgc	Tcrb
CD36.XGBoost-bgc	Cd36
DcTRAIL-R1.XGBoost-bgc	Tnfrsf23
CD48.XGBoost-bgc	Cd48
CD49b.XGBoost-bgc	ltga2
CD262.XGBoost-bgc	Tnfrsf10b
HVEM.XGBoost-bgc	Tnfrsf14
CD49a.XGBoost-bgc	ltga1
Plexin B2.XGBoost-bgc	Plxnb2
CX3CR1.XGBoost-bgc	Cx3cr1
CD66a.XGBoost-bgc	Ceacam1
CD64.XGBoost-bgc	Fcgr1a
CD59a.XGBoost-bgc	Cd59a
CD157.XGBoost-bgc	Bst1
CD159a.XGBoost-bgc	KIrc1
SSEA-1.XGBoost-bgc	Fut4
CD202b.XGBoost-bgc	Tek
CD147.XGBoost-bgc	Bsg
CD73.XGBoost-bgc	Nt5e
CD51.XGBoost-bgc	ltgav
CD83.XGBoost-bgc	Cd83
Mac-3.XGBoost-bgc	Lgals3
E-Cadherin.XGBoost-bgc	Cdh1
CD172a (SIRPa).XGBoost-bgc	Sirpa
CD319.XGBoost-bgc	Slamf7
CD146.XGBoost-bgc	Mcam
VISTA.XGBoost-bgc	Vsir
CD8a.XGBoost-bgc	Cd8a
CD34.XGBoost-bgc	Cd34
Ly-6A/E.XGBoost-bgc	Ly6a
CD40.XGBoost-bgc	Cd40
CD47.XGBoost-bgc	Cd47
CD98.XGBoost-bgc	Slc3a2
CD14.XGBoost-bgc	Cd14
CD107a (LAMP-1).XGBoost-bgc	Lamp1
CD18.XGBoost-bgc	ltgb2
Ly-6G.XGBoost-bgc	Ly6g
Ly-51.XGBoost-bgc	Enpep
CD71.XGBoost-bgc	Tfrc
H-2.XGBoost-bgc	
CD45RB.XGBoost-bgc	Ptprc
CD326.XGBoost-bgc	Epcam
CD155.XGBoost-bgc	Pvr
CD9.XGBoost-bgc	Cd9
CD105.XGBoost-bgc	Eng

TLR4 (CD284)/MD2 Complex.XGBoost-bgc	Tlr4
CD5.XGBoost-bgc	Cd5
CD273.XGBoost-bgc	Pdcd1lg2
CD31.XGBoost-bgc	Pecam1
CD180.XGBoost-bgc	Cd180
CD11a.XGBoost-bgc	Itgal
LT beta R.XGBoost-bgc	Ltbr
CD106.XGBoost-bgc	Vcam1
CD140a.XGBoost-bgc	Pdgfra
CD140b.XGBoost-bgc	Pdgfrb
ESAM.XGBoost-bgc	Esam
CD200.XGBoost-bgc	Cd200
CD205.XGBoost-bgc	Ly75
Galectin-9.XGBoost-bgc	Lgals9
CD39.XGBoost-bgc	Entpd1
CD63.XGBoost-bgc	Cd63
CD300LG.XGBoost-bgc	Cd300la
CD104.XGBoost-bgc	Itab4
CD182 XGBoost-bgc	(xcr2
MAdCAM-1 XGBoost-bgc	Madcam1
MFRTK (Mer) XGBoost-bgc	Merk
	ly6k
CD16/32 XGBoost-bgc	Ecar3a
CD150 XGBoost-bgc	Slamf1
CD25 VGBoost-bgc	ll2ra
CD28 XGBoost-bgc	Cd28
CD122 VGRoost bgc	Brom1
CD133.ABboost-bgc	Son
CD1d VGBoost bgc	Cd1d
CD10.AGBoost-bgc	Cd10
CD/0.AGBOOSt-bgc	
CDE4 VCBoost bac	Inz-Abi
CD04.X0B00st-bgc	
CD40d XCBaast has	Iny i
CD490.AGB0051-bgc	
Ly-bG/Ly-bC.XGB00SI-DgC	Lyby
CD44b XCBs set bas	
	Itgam
CD45.XGB00st-bgc	
CD8b.XGBoost-bgc	
CD44.XGBoost-bgc	
CD317.XGBoost-bgc	Bst2
CD132.XGBoost-bgc	ll2rg
CD3.XGBoost-bgc	Cd3g
CD2/4.XGBoost-bgc	
CD117.XGBoost-bgc	Kit
CD357.XGBoost-bgc	Infrsf18
CD13U.XGB00st-bgc	llbst
CD124.XGBoost-bgc	ll4ra
CD184.XGBoost-bgc	CXCr4
Ly-6C.XGBoost-bgc	Ly6c1
Ly-6D.XGBoost-bgc	Ly6d
GL7.XGBoost-bgc	Ly77
Podoplanin.XGBoost-bgc	Pdpn
F3.XGBoost-bgc	F3
Gp2.XGBoost-bgc	Gp2

Tspan8.XGBoost-bgc	Tspan8
Foxn1.XGBoost-bgc	Foxn1
Podoplanin	Pdpn
Aire	Aire
UEA1	Fut1
MHCII	H2-Ab1
CD80	Cd80
CD86	Cd86
Sca1	Ly6a
CD40	Cd40
Ly51	Enpep

Supplementary Table 2 | LEGENDScreen antibody epitopes and their corresponding genes used for computational comparisons.

References

- 1. Baran-Gale, J. *et al.* Ageing compromises mouse thymus function and remodels epithelial cell differentiation. *Elife* **9** (2020).
- 2. Michelson, D.A., Hase, K., Kaisho, T., Benoist, C. & Mathis, D. Thymic epithelial cells co-opt lineage-defining transcription factors to eliminate autoreactive T cells. *Cell* **185**, 2542-2558 e2518 (2022).