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Supplementary Note 1 Norms and scaling for the nonlinear
differential equation governing mean-
field evolution

We have the differential equation

i
∂Cocc (t)

∂t
= F (t)Cocc (t) (1)

where

Fµν(t) = hµν +
N∑
λσ

(
(µν|λσ)− (µσ|λν)

2

)
Pσλ(t) (2)

with P(t) = Cocc(t)Cocc(t)
†. If F were independent of Cocc, then it would imply that taking

the nth derivative gives

(i)n
∂nCocc (t)

∂tn
= FnCocc (t) . (3)

That means the norm of the nth derivative would scale as ‖F‖n (with Cocc normalized).

Then higher-order methods will typically have an error that scales as the norm of the higher-

order derivatives. For example, if one were to use a Taylor series up to order k to approximate

a time step, then the error for a time step of length δt would scale as

1

(k + 1)!
‖F‖k+1δtk+1. (4)

This means that if the size of the time step is taken as proportional to 1/‖F‖, then the error

may be made exponentially small in k. As a result, the total number of time steps used scales

as O(‖F‖t). Similar considerations hold for other higher-order methods for integration. The

dependence of the complexity on ‖F‖ can also be expected from principles of scaling, where

if F is divided by ‖F‖ but t is also multiplied by ‖F‖, then the same differential equation is

obtained.

In our case where F is dependent on Cocc, the situation is more complicated. This is because

taking higher-order derivatives of Cocc yields more terms due to the derivatives of Cocc in F. To
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describe this, let us write, omitting hµν for simplicity,

Fµν(t) = VµνσλCσaC
∗
λa, (5)

with Cσa the matrix entries of Cocc. We are taking a convention that Greek indices are over

all orbitals, English letters are over electrons, and repeated indices are summed over. Then we

would give the derivative as

i
∂Cµb
∂t

= VµνσλCσaC
∗
λaCνb. (6)

We can define an η-norm of the discretized potential operator V as

‖V‖η = max
x,y,z

Vµνσλxµy
∗
νzσλ, (7)

with ‖x‖ = ‖y‖ = ‖z‖ = 1 (i.e., spectral norms are normalized), and z of rank η. To bound

this norm, we can consider the first term for Vµνσλ, which is

(µν|λσ) =

∫
dr1 dr2

φ∗µ (r1)φν (r1)φ
∗
λ (r2)φσ (r2)

|r1 − r2|
. (8)

The multiplication by xµ and sum over µ corresponds to a transformation of φµ to a new orbital,

and similarly, the sum over ν transforms φν to another new orbital. Since z is of rank η, the sum

over λ and σ corresponds to transforming the orbital basis for both φλ and φσ, and summing

over η of these basis states.

That is, we can write

η∑
a=1

∫
dr1 dr2

φ∗ (r1)χ (r1)ψ
∗
a (r2) θa (r2)

|r1 − r2|
, (9)

for some transformed orbitals φ, χ, ψa, θa. We can then use the fact that |φ∗χ| ≤ |φ|2 + |χ|2,

and similarly for ψa and θa to upper bound this expression by

4

η∑
a=1

∫
dr1 dr2

|φ (r1) |2|ψa (r2) |2

|r1 − r2|
, (10)
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for some choice of φ and ψa. This integral can be maximized when the ψa are orbitals that are

clustered as close as possible to φ. With neighboring grid points separated by δ, the smallest

average separation can be is O(η1/3δ). Then the factor of 1/|r1 − r2| in the integrals will give

O(1/[η1/3δ]). Multiplying the sum by η gives O(η2/3/δ).

The second term for Vµνσλ is (µσ|λν). This is similar to (µν|λσ), but with ν and σ swapped.

Then the transformation of orbitals gives
η∑
a=1

∫
dr1 dr2

φ∗ (r1)χa (r1)ψ
∗
a (r2) θ (r2)

|r1 − r2|
, (11)

for some choice of φ, χa, ψa, θ. The same argument holds, where the sum is maximized with

orbitals over a region of volume ηδ3 so there are contributions from all η terms in the sum, but

1/|r1 − r2| averages to give O(1/[η1/3δ]). This gives the same scaling for the second term for

Vµνσλ, and so

‖V‖η = O(η2/3/δ). (12)

What this means is that, whenever we have a contraction of the σ, λ indices in Vµνσλ with a

normalized matrix of rank η, the remaining matrix has norm O(η2/3/δ). That immediately

implies that ‖F‖ has this norm. Then applying F to the normalized matrix Cocc gives an upper

bound on the first derivative O(η2/3/δ). A similar formal analysis can be found in [1].

Taking the second derivative then yields an expression with 3 terms, where each has V appear-

ing twice and Cocc appearing five times. In particular,

−∂
2Cµb
∂t2

= Vµνσλ[(VσεζηCζcC
∗
ηc)CεaC

∗
λa]Cνb

+ Vµνσλ[Cσa(VλεζηC
∗
ζcCηc)C

∗
εa]Cνb

+ (VµνσλCσaC
∗
λa)(VνεζηCζcC

∗
ηc)Cεb (13)

Only the third line has a simple interpretation as F squared times Cocc (indicated by the brack-

ets).

5



The first line has V contracted with Cocc using ζ, η, so the expression in round brackets is a

matrix with normO(η2/3/δ). Then in matrix terms, it is multiplied by CεaC∗λa (summed over a),

which is a matrix of norm 1 and rank η. As a result, the expression in square brackets is of norm

O(η2/3/δ) and rank η. We can then see that the first V is contracted over σ, λ with a matrix of

rank η and normO(η2/3/δ). That implies that the norm of the resulting matrix is upper bounded

by the square of O(η2/3/δ). That is then multiplied by Cνb which is of norm 1, resulting

in the overall norm of this line being upper bounded by the square of O(η2/3/δ). Similar

considerations hold for the second line, so we can upper bound the entire second derivative by

an order scaling that is the square of that for ‖F‖.

In this, the general principle is that wherever we have something of the form CσaC
∗
λa, it is a

matrix of norm 1 and rank η, and taking the derivative of it yields something that is still of rank

η, but with a norm upper bounded by O(η2/3/δ). Because we have bounded the norm when

contracting V with a general matrix of rank η, that yields a factor of O(η2/3/δ) on whatever

result we had for the lower-order derivative. The other scenario is where we take the derivative

of Cνb, which is effectively like multiplying it by F which increases the norm (but not the rank).

This reasoning holds in general whenever we take the derivative of an expression for the deriva-

tive of some order to give the derivative of higher order. The norm is multiplied by O(η2/3/δ)

for each of the terms. The number of terms will increase exponentially with the order. The

third derivative has 3 × 5 terms, where each of the three original terms yields five due to the

derivatives of Cocc at each location. Then the fourth-order derivative has 3 × 5 × 7 terms and

so on. In describing the scaling we can ignore this exponential number of terms, and give the

upper bound on the nth order derivative as O(η2/3/δ) to the power of n. This implies that the

appropriate scaling of the time should again be T = ‖F‖t.

Finally we bound the norm of ‖h‖. When using a plane wave basis, hµν will be non-zero only
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when µ = ν with entries scaling asO(1/δ2) due to the∇2 in the expression for hµν . That gives

the scaling of the spectral norm for this component, which would be unchanged under a unitary

transformation, such as the Fourier transform which maps plane waves to an approximately

local basis.

For the dependence of hµν on V (r), the potential will come from nuclei, and for charge-neutral

systems the total nuclear charge will be the same as the number of electrons. If the nuclear

charge were entirely at one location and we have a charge-neutral system, then the largest

contribution to hµν would be for an approximately local basis, where the contribution would

scale as η/δ, with the factor of η from the nuclear charge and 1/δ from the inverse distance.

In most cases that we would be interested in, there would be a more even distribution of nuclear

charges through the volume. In that case, if the volume scales as η, there would be an average

distance O(η1/3). That would result in a contribution to hµν of O(η2/3). An orbital localized

near one nucleus would give a contribution of O(1/δ) just from that nucleus, which may be

larger than O(η2/3) if N > η3 but may be ignored in comparison to 1/δ2.

As a result of these considerations, we can give the upper bound on F in the case without V (r)

as

‖F‖ = O
(
η2/3

δ
+

1

δ2

)
. (14)

In the case with nuclei we obtain the same result, provided the nuclear charges are not clustered

any closer than the grid spacing. Here δ = O((η/N)1/3) is the minimum grid spacing. This

scaling for δ comes from taking the computational cell volume proportional to η (a reasonable

assumption for both condensed-phase and molecular systems). Thus, the scaling becomes

‖F‖ = O
(
N1/3η1/3 +

N2/3

η2/3

)
. (15)

In this case we can see that the first term is dominant unless N > η3.
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Supplementary Note 2 Proving sublinear gate complexity in
basis size for Trotter based methods

Here we derive the complexity for quantum simulation of the electronic structure problem given

in Eq. (12). We consider the simulation of the electronic structure problem defined on a spatial

grid in first quantization. Note that the problem of sampling from the output of the quantum

dynamics after some time will be specified completely by the following inputs: (1) the loca-

tions R` and charges ζ` of the L nuclei, (2) the duration of time-evolution t, (3) the number of

electrons η, (4) the number of basis functions N , (5) the target precision to within which one

realizes the correct unitary ε and (6) the initial state. The Hamiltonian whose simulation we

target can be expressed as

H = T + U + V +
L∑

`6=κ=1

ζ`ζκ
2 ‖R` −Rκ‖

(16)

T ≈
η∑
i=1

QFTj

(∑
p∈G

‖kp‖2

2
|p〉〈p|j

)
QFT†j (17)

U = −
η∑
j=1

L∑
`=1

∑
p∈G

ζ`
‖R` − rp‖

|p〉〈p|j (18)

V =

η∑
j 6=k=1

∑
p,q∈G

1

2 ‖rp − rq‖
|p〉〈p|j |q〉〈q|k (19)

where QFTj is the usual quantum Fourier transform applied to register j. We emphasize that T

is only approximately given by the expression involving the QFT. This relation is exact in the

continuum limit where N → ∞. For finite-sized grids N , it cannot be the case that the QFT

completely diagonalizes the momentum operator. Instead, writing T this way represents some-

thing similar to the approximations made by so-called “discrete value representation” methods.

Using the QFT means that the evolution can be broken into a product of the evolution under T

and the one under U + V .

In the above expression, ` and κ index nuclear degrees of freedom and we have the following
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definition of grid points and their frequencies in the dual space defined by the QFT:

rp =
pΩ1/3

N1/3
kp =

2πp

Ω1/3
p ∈ G G =

[
−N

1/3 − 1

2
,
N1/3 − 1

2

]3
⊂ Z3 ,

(20)

where Ω is the volume of the simulation cell and N is the number of grid points in the cell.

Although it is defined here in more precise terms, this is essentially the same representation

used in the first work on quantum simulating chemistry in first quantization, by Kassal et al. [2],

well over a decade ago. The Trotter errors associated with this grid representation were also

investigated numerically recently by Chan et al. [3].

We consider simulation performed using high-order product formulas with a split-operator Trot-

ter step. What we mean by the latter is that we will alternate evolution under T (using the QFT)

and evolution under U + V . In fact, the implementation of each Trotter step that we will pur-

sue is essentially identical to the Trotter steps proposed by Kassal et al. [2]. The Trotter step

requires Õ(η2) gates, with the complexity being dominated by computing the O(η2) different

interactions in the two-electron term. We remark that some of the constant factors associated

with this computation were worked out over a decade ago by Jones et al. [4]. Recently, Low

et al. [1] have shown that the number of Trotter steps required in second quantization using

arbitrarily high order formulas can be as low as(
N1/3η1/3 +

N2/3

η2/3

)
t1+o(1)N o(1)

εo(1)
. (21)

We note that, curiously, this also closely matches our bound for the norm of the Fock operator

(see Eq. (15)) proved in Supplementary Note 1. The first term in brackets similarly corresponds

to a contribution to the potential from electrons grouped as closely as possible in real space, but

the reason why this quantity is relevant is very different between the two calculations.

The results for the Trotter error in second quantization also hold for first quantization. As

a general principle, we can consider the effect of
∑

j |p〉 〈q|j on a computational basis state
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consisting of an anti-symmetric combination of lists of electron positions. This removes an

electron from orbital q and places it in p. This is performed for every part of the anti-symmetric

state, preserving its sign. However, for the starting anti-symmetric state the sign is based on

whether the permutation is even or odd (as compared to ascending order). If moving an electron

from q to p passes over an odd number of electrons, then the parity of each permutation flips.

That means that there is an overall sign flip in the basis state.

Similarly, if we consider the action of a†paq on a state a†q1 · · · a
†
qη |0〉, then the aq can be anti-

commuted to the right to give several sign flips corresponding to the number of a†qj operators

that are anti-commuted through. This corresponds to the number of occupied orbitals before q.

Then aqa†q gives the identity. Next, anti-commute a†p to the appropriate location in the list of

operators. The sign that is obtained corresponds to the number of a†qj operators that are anti-

commuted through, which is the number of electrons before p. There is an overall sign flip if

there is an odd number of electrons between p and q.

This can then be extended to products such as∑
j

|p〉 〈q|j
∑
k

|r〉 〈s|k . (22)

The first sum corresponds to a†paq in second quantization, and the second sum corresponds to

a†ras. This means that we have the equivalence∑
pqrs

Vpqrs
∑
j

|p〉 〈q|j
∑
k

|r〉 〈s|k ≡
∑
pqrs

Vpqrsa
†
paqa

†
ras. (23)

The action on an anti-symmetric computational basis state in first quantization has exactly the

same effects as that on the corresponding second-quantization state with η electrons. Moreover,

the action of the operators always preserves the electron number in second quantization, so there

is a corresponding state in first quantization. Similarly, because we are using anti-symmetric

states in first quantization, it is impossible to obtain a state with multiple electrons on the same
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orbital. That is because two registers with the same orbital number will give cancellation of

terms.

As a result all operators and states in second-quantization map directly to first quantization,

preserving the norms, and in particular the error bounds derived in second-quantization hold

for first quantization. Therefore, multiplying the number of steps in Eq. (21) by the Õ(η2)

gate complexity required of the first-quantized Trotter step from [2] gives the following gate

complexity for the product formula based time evolution in first quantization:

(
N1/3η7/3 +N2/3η4/3

) t1+o(1)N o(1)

εo(1)
. (24)

This is the complexity given in Eq. (12).

Supplementary Note 3 Constant factors for time-evolution in
the interaction-picture plane-wave al-
gorithm

Here we analyze the constant factors in the scaling of the interaction picture based plane wave

algorithm from Babbush at al. [5] which was analyzed in detail for use in phase estimation by Su

et al. [6]. As explained on page 30 of [6], the number of steps to give total time T using the time

evolution approach is λBT/ ln 2, but with a factor of 3 overhead for amplitude amplification.

Using the qubitization approach the number of steps is eλBT . That means simulating the time

evolution gives an overhead of 3/(e ln 2) ≈ 1.59 over the qubitization. Then in Eq. (154) of

[6], the total time of evolution is approximately π/(2εpha) to give precision εpha of the phase

estimation. There is moreover a (small) term O((λU + λV )2∆E2) in the expression for the

number of steps N in [6] that originates from the nonlinearity of the sine function in phase

estimation, which is not used here.

As a result, the complexity given in Theorem 5 of [6] can be modified to be appropriate for time
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evolution simply by replacing the formula for the number of steps in Eq. (174) of [6] with

N =
3T (λ1U + λ1V /(1− 1/η))

Peq ln 2
+O(1) . (25)

Here we have replaced π/(2εpha) with T , replaced e with e/ ln 2, and removed O((λU +

λV )2∆E2). Note that in this expression

λU =
η
∑

` ζ`
πΩ1/3

λν , (26)

λV =
η(η − 1)

2πΩ1/3
λν , (27)

λν =
∑
ν∈G0

1

‖ν‖2
≤ 4πN1/3, (28)

λ1U ≈ λU , λ1V ≈ λV , and Peq is close to 1. This expression together with an appropriate choice

of constant factor in Ω ∝ η gives the constant factor for the number of steps to use for time

evolution. It needs to be multiplied by a further complicated expression in Theorem 5 of [6] for

the gate complexity of a single step to provide the full constant factor for the gate complexity

in Eq. (13).

Supplementary Note 4 Smoothing the Coulomb operator ex-
ponentially suppresses quantum scal-
ing in basis size

Here we discuss the fact that if one is willing to introduce a slight systematic bias into the

Coulomb operator, it is possible to further improve the speedup in N of the quantum algorithm.

The N1/3 dependence enters into the cost from the 1-norm of the two-body Coulomb operator,

which scales as λ = O(η2Vmax) where Vmax is the maximum value of the electron-electron

interaction for a single pair of electrons.

For typical plane wave or grid discretizations we have that Vmax = O(N1/3/Ω1/3) where Ω is

the size of the computational cell (for the purpose of the analysis in this paper we assume that
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Ω = O(η), since that is explicitly the case in condensed phase simulations). But we could also

take steps to smooth out the cusp in the Coulomb operator and thus, lower the energy scale of

Vmax. For example, this could be accomplished by taking Vmax to be a constant and modifying

the real-space form of the two-body Coulomb operator as

1

|r1 − r2|
→ 1

|r1 − r2|+ Vmax

. (29)

Such a strategy has been explored in the context of first-quantized quantum algorithms in real

space in papers by Kivlichan et al. [7] and Childs et al. [8].

In principle, one could choose Vmax = O(logN) and this would lead to the quantum algorithm

scaling exponentially better than classical algorithms in N . This would also slightly reduce the

cost of classical mean-field algorithms from scaling as N4/3 to scaling as N . Of course, using

such a drastic cutoff will introduce a significant bias into the overall dynamics. In order to avoid

this, papers such as [9, 10] have sought to develop Richardson extrapolation type schemes where

simulations are run with a series of smoothing or cutoff parameters in order to extrapolate the

value of the observable with zero cutoff. However, questions remain about the convergence of

such procedures and it seems likely to re-introduce some polynomial dependence on N in order

to reach convergence with the continuum limit.

Nevertheless, the context of this paper is that one might be interested in getting a speedup over

low accuracy classical algorithms. In that spirit, one could probably make the case that if merely

trying to improve in speed over mean-field algorithms, the error introduced in imposing a cutoff

in the Coulomb operator might be less significant than the error due to making the mean-field

approximation. Thus, this is perhaps a valid approach when competing with such classical

methods, and thus might provide an exponential speedup.

13



Supplementary Note 5 Gate complexity and speedup in var-
ious regimes

Another way to express the results of Table 1 is as a formula for the leading order scaling

if assume that N = Θ(ηα). Then, for the classical algorithm we have that the leading gate

complexity of the best approach is

(
ηβt
)(Nt

ε

)o(1)
where N = Θ (ηα) and β =

{
4α+7

3
α ≤ 3

5α+4
3

α ≥ 3
. (30)

By contrast, for the quantum algorithm we have that the leading order gate complexity of the

best approach is

(
ηβt
)(Nt

ε

)o(1)
where N = Θ (ηα) and β =


4α+1

3
α ≤ 2

α+7
3

2 ≤ α ≤ 3
2α+4

3
3 ≤ α ≤ 4

α+8
3

α ≥ 4

. (31)

For both classical and quantum expressions, these complexities are sometimes loose by sub-

polynomial factors. Finally, we compare the speedup that exact quantum algorithms offer over

classical mean-field algorithms. We report this as

exponent of η scaling of classical complexity
exponent of η scaling of quantum complexity

=


(4α + 7) / (4α + 1) α ≤ 2

(4α + 7) / (α + 7) 2 ≤ α ≤ 3

(5α + 4) / (2α + 4) 3 ≤ α ≤ 4

(5α + 4) / (α + 8) α ≥ 4,

(32)

if N = Θ (ηα) . We plot numerical values of this speedup in the main text in Figure 1.

Finally, we discuss the hope that Trotter based first-quantized algorithms might be sped up by

a factor of Õ(η) by developing more efficient Trotter steps. The bottleneck for Trotter steps

is the computation of the Coulomb operator since the simulation of the kinetic operator scales

as Õ(η). Thus, it seems promising that fast-multipole [13] Barnes-Hut [14], or particle-mesh

Ewald [15] type algorithms for computing the Coulomb potential require Õ(η) operations in the
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Õ
(N
η
)

N
4
/
3
η
7
/
3
t(
N
t/
ε)
o
(1
)

cl
as

si
ca

l
ze

ro
te

m
p

m
ea

n-
fie

ld
w

ith
oc

c-
R

I-
K

/A
C

E
[1

1,
12

]
N
≥

Θ
(η

3
)

Õ
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classical random access memory (RAM) model. By contrast, the standard way of computing

the Coulomb potential (involving summing up all
(
η
2

)
pairs of electrons) scales as Õ(η2). Thus,

if one can figure out how to extend these better scaling methods to first quantization with Õ(η)

operations in the reversible circuit model (the cost model of relevance for this subroutine if

executed on a quantum computer), the quantum algorithm would scale as

(
N1/3η4/3t+N2/3η1/3t

)(Nt
ε

)o(1)
. (33)

We note that it is straightforward to adapt these algorithms to second quantization with Õ(N)

gate complexity [1, 16]. However, translating such algorithms to first quantization with Õ(N)

gate complexity in the quantum circuit model is highly non-trivial. This is due to nuances

of how adaptive tree-like data structures are constructed and used in these algorithms, and it is

why the work of [8] decided to invoke the impractical assumption of QRAM in order to leverage

the fast multipole algorithms. Note further that some of these algorithms such as the original

fast multipole [13] and particle-mesh Ewald [15] make further assumptions on the state. In

particular, if space is partitioned intoO(η) boxes, then these methods require that no more than

k electrons are present in any box, in any configuration on which the wavefunction has support.

Since electrons tend to repel one another this is often a good assumption at low energies, but

it is not true for general states. It seems possible to implement a first-quantized algorithm with

Õ(η k) space complexity and Õ(η poly(k)) gate complexity by keeping k electron registers

for each of these O(η) boxes of space. But there also exist versions of these algorithms, e.g.

described in [17], which use RAM and an adaptive tree structure to give Õ(η) complexity

without any assumptions on the state. Such approaches appear quite challenging to port to the

quantum circuit model with the same complexity. However, if possible, the first-quantized fast

multipole-based Trotter would scale better than all other known approaches as long as N < η7.

When N > η7, the first-quantized interaction picture algorithm has better scaling.
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Supplementary Note 6 Efficient reduced density matrix esti-
mation using classical shadows in first
quantization

6.1 Problem statement

We consider a system of η identical fermions occupying N � η orbitals. In first-quantization,

we represent the state of such a system as a wavefunction on η registers of n = dlog(N)e qubits.

We demand that this wavefunction is antisymmetric under the exchange of any two registers in

order for it to represent a valid physical state.

Most physically interesting observables of such a system are captured by the few-body marginals,

the reduced density matrices. In this section, we concern ourselves with efficiently estimating

elements of the k-body reduced density matrix (k-RDM) of the first-quantized state |ψ〉 defined

on η identical fermion particles,

kDj1,...,jk
i1,...,ik

=
η!

(η − k)!
tr

[
|ψ〉〈ψ|

k∏
`=1

|i`〉〈j`|`

]
, (34)

where |i〉〈j|` indicates the tensor product of |i〉〈j| on the `th register with the identity on the

other η− 1 registers. We can write an equivalent definition (equivalent due to the antisymmetry

of the wavefunction),

kDj1,...,jk
i1,...,ik

=
∑
x∈Sηk

tr

[
|ψ〉〈ψ|

k∏
`=1

|i`〉〈j`|x`

]
, (35)

where Sηk is the set composed of all possible sequences of length k generating by drawing

without replacement from [η] := {1, . . . , η}.

Our goal is to use measurements of the state |ψ〉 to obtain a classical description of the state

with enough information to approximate all N2k elements of the k-RDM. We would like all of

these estimates to accurate up to some additive error ε with probability at least 1 − δ. Ideally,
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our protocol will be efficient not only in terms of the number of measurements, but also in terms

of the (gate) complexity of implementing each measurement and the classical complexity of the

required post-processing.

We will accomplish our goal by applying the classical shadows formalism of Ref. [18]. We

propose and analyze a protocol that requires at most

m = 64e3 log (N/δ) k (2k + 2e)k ηkε−2 (36)

measurements to estimate the k-RDM. Performing these measurements requires acting on each

of the particle registers with a randomly sampled Clifford circuit and performing a measurement

in the computational basis. These circuits can be implemented usingO(ηn2) one- and two-qubit

Clifford gates on a linearly connected array of qubits in depth O(n). Each element of the k-

RDM requires performing a number of classical operations that scales as

m′ = O
((
n4 + log (1/δ)

)
η2k2kε−2

)
. (37)

Since the introduction of classical shadows in Ref. [18], several works have developed classi-

cal shadow protocols for estimating the expectation values of fermionic observables in second

quantization [19, 20, 21, 22]. In particular, Ref. [22] recently proposed a technique that, like

our approach, requires a number of samples that scales polylogarithmically in N to estimate all

N2k elements of the fermionic k-RDM. Ref. [22]’s approach and ours both make use of random

unitaries drawn from efficiently simulable families of quantum circuits (fermionic Gaussian

unitaries and Clifford unitaries respectively). A key difference between their work and ours is

that our Clifford unitaries act on n ∼ log(N) qubits, whereas the fermionic Gaussian unitaries

of Ref. [22] act on N qubits. Thus, the approach of Ref. [22] does not seem like it would be

feasible for the first-quantized representations that we focus on simulating in this work, since

that would likely necessitate using millions of logical qubits.
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Partly because of this difference, the measurement strategy we develop in this work has three

key advantages over a translation of Ref. [22]’s techniques to the first-quantized setting. First of

all, Ref. [22] requires the implementation of single particle basis changes that are specified by

Haar random n × n unitaries. Performing these operations in first quantization would require

a number of operations that scales exponentially with n (naively, O(N2η) arbitrary rotations),

whereas we can implement our random unitaries using only O(n2η) Clifford gates. Secondly,

and relatedly, the classical postprocessing required to estimate an element of the k-RDM using

Ref. [22]’s shadow protocol scales exponentially with n, whereas ours scales polynomially.

Thirdly, (and perhaps least significantly) we note that we are able to guarantee that the error

on all estimated observables is less than ε with high probability. The bounds of Ref. [22] only

promise that the average error across all elements of the k-RDM is bounded.

6.2 The measurement protocol

The classical shadows formalism of Huang et al. works by choosing an ensemble of random

unitaries U on n qubits and defining a measurement channel that acts on a density matrix σ

such that

M(σ) := EU∼U
∑

b∈{0,1}n
U † |b〉〈b|U 〈b|UσU †|b〉 . (38)

For specific choices of U , the channelM is analytically invertible. Operationally, we obtain the

classical shadow of σ by repeatedly sampling a unitary U from U , applying the sampled U to a

copy of σ, and measuring in the computational basis (obtaining the bitstring b). If we collect m

such samples, then we call the (potentially unphysical) state

σ̂ :=
1

m

m∑
i=1

M−1
(
U †i |bi〉〈bi|Ui

)
(39)

a classical shadow of σ. For an arbitrary observable O, we can define an estimator ô of the

quantity tr [Oρ] using the classical shadow of ρ,

ô := tr [Oρ̂] . (40)
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In expectation, we have that

〈σ̂〉 = EU∼U
∑

b∈{0,1}n
M−1 (U † |b〉〈b|U) 〈b|UσU †|b〉 =M−1 (M (σ)) = σ. (41)

When we take U to be the uniform distribution over the Clifford group on n qubits, the classical

shadows measurement channel and its inverse have particularly simple forms [18],1

M(A) =
1

2n + 1
A+

tr [A]

2n + 1
I, (42)

M−1(A) = (2n + 1)A− tr [A] I. (43)

Here, and throughout our analysis of the measurement protocol, we use the symbol I to denote

the identity operator on a Hilbert space whose dimension is appropriate for the context.

In this work, we propose and analyze the impact of using an ensemble U that consists of a tensor

product of η copies of the uniform distribution over n qubit Clifford circuits,

U =

η⊗
j=1

Cl(2n). (44)

That is to say, we perform our measurements by independently sampling η n-qubit Clifford

unitaries, applying one to each particle register, and measuring in the computational basis. We

can consider the action of the corresponding classical shadow measurement channel and its

inverse on an operator X1 ⊗ · · · ⊗ Xη that factorizes across the η registers. The channel is

defined on the whole Hilbert space by linear extension. For the classical shadow measurement

channel, we have

M(X1 ⊗ · · · ⊗Xη) =

η⊗
j=1

EUj∼Cl(2n)

∑
bj∈{0,1}n

U †j |bj〉〈bj|Uj 〈bj|UjXjU
†
j |bj〉

 (45)

=

η⊗
j=1

(
Xj + tr [Xj] I

2n + 1

)
. (46)

1Actually, a substantial constant factor savings in the number of gates can be obtained by using the canonical
form of Ref. [23] and simply dropping the permutation at the end of the circuit. See, e.g., Ref. [24].
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The inverse, similarly, is given by

M−1(X1 ⊗ · · · ⊗Xη) =

η⊗
j=1

((2n + 1)Xj − tr [Xj] I) . (47)

Due to the antisymmetry of the wavefunction, we have the freedom to choose between a number

of different observables when estimating the elements of the k-RDM. Consider an arbitrary

operator O, and the operator POP †, where P is an operator that permutes the particle registers.

The expectation values of O and POP † with respect to a first-quantized wavefunction are the

same (to see this, observe that any sign picked up by acting P † on the ket is cancelled out by

a corresponding sign obtained from acting P on the bra). We can use this degree of freedom

to minimize the variance of our measurement protocol. Using the observable from Eq. (34) to

construct a classical shadow estimator of a k-RDM element would lead to an unnecessarily large

variance, essentially because the observable doesn’t take advantage of all of the information

present in the state. In contrast, Eq. (35) defines the k-RDM element in terms of a sum over

many different permutations of the registers. We conjecture that a measurement protocol based

on the observable in Eq. (35) would perform well, but the analysis could be tedious due to the

many different cases that would arise.

Rather than using the observables implied by either Eq. (34) or Eq. (35) in our classical shadow

measurement procedure, we instead choose to estimate the k-RDM elements using an observ-

able that involves a sum over a simpler set of permutations. Essentially, we break the η registers

up into k groups of size η/k and measure the k-RDM element using registers from each group.

For ease of notation, let us assume that η is divisible by k.2 Formally, we can define a set of

sequences

Rk = {1, . . . , η/k} × {η/k + 1, . . . , 2η/k} × · · · × {(k − 1) η/k + 1, . . . , η} . (48)

2In the event that η is not exactly divisible by k, one could modify the protocol to either use groups of slightly
different sizes or to only perform the measurements using η′ = kbη/kc registers.
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Due to the antisymmetry of the wavefunction, we have that

kDj1,...,jk
i1,...,ik

=
kk (η!)

ηk (η − k)!

∑
x∈Rk

tr

[
|ψ〉〈ψ|

k∏
`=1

|i`〉〈j`|x`

]
. (49)

We define an estimator d̂ for the k-RDM element kDj1,...,jk
i1,...,ik

using the classical shadow ρ̂ of |ψ〉,

d̂ =
kk (η!)

ηk (η − k)!

∑
x∈Rk

tr

[
ρ̂

k∏
`=1

|i`〉〈j`|x`

]
. (50)

In Supplementary Note 6.4, we prove that the single-shot variance of this estimator is bounded

by

Var(d̂) ≤ e3ηk (2k + 2e)k . (51)

In order to guarantee that our estimates are close to the true value of the k-RDM elements

with high probability, we need to proceed along the same lines as Ref. [18] and construct a

median-of-means estimator to obtain the desired rigorous guarantees [25]. To be precise, using

Proposition 12 from Ref. [25], we can consider an estimator that divides the m total classical

shadow samples into K groups of size b, and takes the median of the sample mean obtained by

averaging the estimates within each group. The probability that this median of means estimator

has an error larger than 2

√
Var(d̂)/b is at most e−K/8. To bound the error in our estimate by ε

with a success probability of at least 1− δ, this implies that we need

b = 4 Var(d̂)/ε2, (52)

K = 8 log (1/δ) . (53)

The overall number of measurements claimed in Eq. (36) follows directly from applying a union

bound over the failure probabilities for estimating all N2k k-RDM elements.

The measurement protocol can be summarized as follows. We take a classical shadow of |ψ〉

with the U defined in Eq. (44) using a number of samples m chosen according to Eq. (36). For
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each sample, we evaluate the expectation values of the (η/k)k different terms in the sum over

Rk (see Eq. (50)) using generalizations of Gottesman-Knill theorem that account for the phase

of the quantities involved [26, 27, 28]. Breaking the samples into K groups of size b, averaging

within the groups, and then taking the median of these means then yields the final estimate. The

classical post-processing costs quoted in Eq. (37) come from counting the number of n-qubit

sized Clifford circuits that need to be simulated classically to carry out this procedure.

6.3 Notation and preliminaries

Before we proceed to bound the variance of the estimator d̂ for an arbitrary k-RDM element, it

is helpful to recall a few useful expressions and prove some identities that we will use later.

We will make use of a formula for the two-fold twirl over the Clifford group and partial trace

obtained from Ref. [18],

EU∼Cl(2n)U
† |x〉〈x|U 〈x|UAU †|x〉 =

A+ tr(A)I
2n(2n + 1)

. (54)

For the three-fold twirl and partial trace, we find it convenient to use the identity

EU∼Cl(2n)U
† |x〉〈x|U 〈x|UBU †|x〉 〈x|UCU †|x〉 =

1

2n (2n + 1) (2n + 2)
(I (tr [BC] + tr [B] tr [C]) +B tr [C] + C tr [B] +BC + CB) . (55)

This equation is different from the corresponding one considered in previous work (Eq. (S36)

of Ref. [18]), in that it allows for B and C to have non-zero trace. It can be obtained directly

from the analysis of Ref. [29].3

Another small departure we make from some prior work is that we directly consider the variance

of estimators for the expectation values of non-Hermitian observables. For a classical shadow ρ̂

of a state ρ and an estimator ô = tr [ρ̂O] of the expectation value of a (not necessarily Hermitian)

3Note that while the proof of Lemma 7 in Ref. [29] is technically for Hermitian matrices, the same proof holds
exactly in the non-Hermitian case.

23



operator O, we have

Var(ô) = tr

[
ρ
∑
b

EU∼UU † |b〉〈b|U 〈b|UM−1(O)U †|b〉 〈b|UM−1(O†)U †|b〉

]
− |tr [Oρ]|2

(56)

≤ tr

[
ρ
∑
b

EU∼UU † |b〉〈b|U 〈b|UM−1(O)U †|b〉 〈b|UM−1(O†)U †|b〉

]
. (57)

This expression can be arrived at from the definition of the variance of a complex-valued random

variable applied to the classical shadow formalism. We refer the reader to Ref. [20] for a

thorough discussion.

In the course of calculating the variance for the higher-order RDMs, we will find that we re-

peatedly need to simplify certain expressions. Before describing those expressions and showing

how they may be simplified, let us define some notation used for convenience throughout the

rest of our analysis:

Px = |x〉〈x| , (58)

Pxy = |x〉〈y| , (59)

EU = EU∼Cl(2n), (60)∑
b

=
∑

b∈{0,1}n
. (61)

One class of expressions that we will need to simplify are of the form

A = EU
∑
b

U †PbU 〈b|UM−1(Pij)U
†|b〉 . (62)

We can use Eq. (43) and Eq. (54) to simplify Eq. (62),

A = EU
∑
b

U †PbU 〈b|UM−1(Pij)U
†|b〉 (63)

= EU
∑
b

U †PbU 〈b|U ((2n + 1)Pij − δi,jI)U †|b〉 (64)

= Pij. (65)
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Another kind of expression that we will need to simplify is of the form

A = EU
∑
b

U †PbU 〈b|UM−1(Pij)U
†|b〉 〈b|UM−1(Pkl)U

†|b〉 . (66)

Let us consider the first case, and simplify A as defined below,

A = EU
∑
b

U †PbU 〈b|UM−1(Pi)U
†|b〉 〈b|UM−1(Pi)U

†|b〉 . (67)

We have

M−1 (Pi) = (2n + 1)Pi − I (68)

by an application of Eq. (43). Now we can apply Eq. (55) with B = C = (2n + 1)Pi − I.

Let us simplify the pieces of Eq. (55) separately before combining them. We have

BC = CB = ((2n + 1)Pi − I)2 (69)

= (2n + 1) (2n − 1)Pi + I, (70)

tr [BC] = tr [CB] = 2n(2n + 1)− 1, (71)

tr [B] = tr [C] = 1. (72)

As a result,

I (tr [BC] + tr [B] tr [C]) +B tr [C] + C tr [B] +BC + CB (73)

= 2n (2n + 1) I + 2 (2n + 1)Pi − 2I + 2 (2n + 1) (2n − 1)Pi + 2I (74)

= 2n (2n + 1) (I + 2Pi) . (75)

Putting everything together, we have

A = EU
∑
b

U †PbU 〈b|UM−1(Pi)U
†|b〉 〈b|UM−1(Pi)U

†|b〉 (76)

=
2n

2n + 2
(I + 2Pi) . (77)
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Now we consider simplifying the expression

A = EU
∑
b

U †PbU 〈b|UM−1(Pij)U
†|b〉 〈b|UM−1(Pji)U

†|b〉 . (78)

In this case, we can again use Eq. (55) with

B =M−1(Pij) = (2n + 1)Pij, (79)

C =M−1(Pji) = (2n + 1)Pji. (80)

Working out some of the pieces, we have

BC = (2n + 1)2 Pi, (81)

CB = (2n + 1)2 Pj, (82)

tr [BC] = (2n + 1)2 , (83)

tr [B] = tr [C] = 0. (84)

Therefore,

I (tr [BC] + tr [B] tr [C]) +B tr [C] + C tr [B] +BC + CB (85)

= (2n + 1)2 (I + Pi + Pj) . (86)

Finally, we have

A = EU
∑
b

U †PbU 〈b|UM−1(Pij)U
†|b〉 〈b|UM−1(Pji)U

†|b〉 (87)

=
2n + 1

2n + 2
(I + Pi + Pj) . (88)
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6.4 Variance of the k-RDM with a restricted sum

Now we are ready to turn to the task of bounding the variance d̂ as defined in Eq. (50). For now,

we neglect the coefficient in order to simplify the presentation. Let

O =
∑
x∈Rk

Ox, (89)

Ox =
k∏
`=1

|i`〉〈j`|x` . (90)

The variance of the classical shadow estimator ô of 〈O〉 is bounded by

Var(ô) ≤
∑
x∈Rk

∑
y∈Rk

tr [|ψ〉〈ψ|Axy] , (91)

Axy =
∑
b

EU∼UU † |b〉〈b|U 〈b|UM−1(Ox)U †|b〉 〈b|UM−1(O†y)U †|b〉 . (92)

Because the inverse channel, the random unitaries, and the Ox all factorize across the registers,

we can rewrite Axy as a tensor product,

Axy =

η⊗
z=1

Azxy, (93)

where Azxy takes one of three forms depending on whether neither, one of, or both of Ox and

Oy act non-trivially on the zth register. If z /∈ x and z /∈ y, then

Azxy = I. (94)

If exactly one of z ∈ x or z ∈ y is true, then we can use Eq. (65) to simplify our expression

for Azxy. The cases are symmetric between z ∈ x and z ∈ y, so we can treat only the first case

without loss of generality. Let ` denote the index of z in x (i.e., x` = z). We have

Azxy =
∑
b

EU∼UU † |b〉〈b|U 〈b|UM−1(|i`〉〈j`|)U †|b〉 (95)

= |i`〉〈j`|z . (96)
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If z ∈ y we instead have Azxy = |j`〉〈i`|z.

The third case we must consider is where z ∈ x and z ∈ y. Let ` denote the index of z in x and

y (they must be the same because of the way we construct x and y). In this case,

Azxy =
∑
b

EU∼UU † |b〉〈b|U 〈b|UM−1(|i`〉〈j`|)U †|b〉U 〈b|UM−1(|j`〉〈i`|)U †|b〉 . (97)

If i` = j` we can simplify this expression using Eq. (77), otherwise we can use Eq. (88). The

combination of these two formulas lets us write

Azxy =
∑
b

EU∼UU † |b〉〈b|U 〈b|UM−1(|i`〉〈j`|)U †|b〉U 〈b|UM−1(|j`〉〈i`|)U †|b〉 (98)

=
2n + 1− δi`,j`

2n + 2
(I + |i`〉〈i`|+ |j`〉〈j`|) . (99)

Now we will use the antisymmetry of |ψ〉 to bound the quantity |tr [|ψ〉〈ψ|Axy]|. Let

a = |x ∩ y|, b = 2k − 2a. (100)

The operator Axy acts non-trivially on a + b registers. On a registers, it acts with an operator

of the form given in Eq. (99). On the other b registers, it acts as |c〉〈d| for some c, d (that can

vary per register). Due to the antisymmetry of |ψ〉, we can freely permute the registers without

affecting the expectation value.

We can therefore rewrite the expectation value of interest as

|tr [|ψ〉〈ψ|Axy]| =

∣∣∣∣∣ 〈ψ|
(

a⊗
`=1

2n + 1− δc`,d`
2n + 2

(I + |c`〉〈c`|+ |d`〉〈d`|)
a+b⊗
`=a+1

|c`〉〈d`|
η⊗

`=a+b+1

I

)
|ψ〉

∣∣∣∣∣
(101)

≤

∣∣∣∣∣ 〈ψ|
(

a⊗
`=1

(I + |c`〉〈c`|+ |d`〉〈d`|)
a+b⊗
`=a+1

|c`〉〈d`|
η⊗

`=a+b+1

I

)
|ψ〉

∣∣∣∣∣ . (102)
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6.4.1 Removing the off-diagonal terms

We can simplify the bound in Eq. (102) by replacing the off-diagonal matrix elements with

projectors. To do so, we will need the following lemma.

Lemma 1. Let |ψ〉 be an arbitrary normalized pure quantum state on n qubits. Let O be an ar-

bitrary positive semidefinite operator on a qubits, and let |α〉 and |β〉 be arbitrary orthonormal

quantum states on n− a qubits. Then,

| 〈ψ|(O ⊗ |α〉〈β|)|ψ〉| ≤ | 〈ψ|(O ⊗ |φ〉〈φ|)|ψ〉| (103)

for |φ〉 = |α〉 or |φ〉 = |β〉.

Proof. To begin the proof, expand |ψ〉 as

|ψ〉 =
∑
ij

cij |i〉 |j〉 , (104)

where the states {|i〉} form an eigenbasis for O and the states {|j〉} are an orthonormal basis

such that |α〉 , |β〉 ∈ {|j〉}. Then

| 〈ψ|(O ⊗ |α〉〈β|)|ψ〉| =

∣∣∣∣∣∑
i

c∗iαciβOii

∣∣∣∣∣ (105)

=
∑
i

k∗iαkiβ, (106)

where Oii denotes the eigenvalue of O corresponding to the eigenvector |i〉 and kij is defined

implicitly as kij = cij
√
Oii. We can consider the quantity in Eq. (106) as the inner product of

two vectors ~kα and ~kβ . The Cauchy-Schwarz inequality tells us that∣∣∣∣∣∑
i

k∗iαkiβ

∣∣∣∣∣ ≤
√√√√(∑

i

k∗iαkiα

)(∑
i

k∗iβkiβ

)
. (107)

29



We can choose γ ∈ {α, β} such that∣∣∣∣∣∑
i

k∗iγkiγ

∣∣∣∣∣ ≥
∣∣∣∣∣∑

i

k∗iαkiα

∣∣∣∣∣ and∣∣∣∣∣∑
i

k∗iγkiγ

∣∣∣∣∣ ≥
∣∣∣∣∣∑

i

k∗iβkiβ

∣∣∣∣∣ . (108)

Therefore, we have that

| 〈ψ|(O ⊗ |α〉〈β|)|ψ〉| ≤

∣∣∣∣∣∑
i

k∗iγkiγ

∣∣∣∣∣ (109)

=

∣∣∣∣∣∑
i

c∗iγciγOii

∣∣∣∣∣ (110)

= 〈ψ|(O ⊗ |γ〉〈γ|)|ψ〉 (111)

for either |γ〉 = |α〉 or |γ〉 = |β〉We can remove the absolute value bars in the final line because

O ⊗ |γ〉〈γ| is a positive semidefinite operator.

Now we can return to our bound from Eq. (102),

|tr [|ψ〉〈ψ|Axy]| ≤

∣∣∣∣∣ 〈ψ|
(

a⊗
`=1

(I + |c`〉〈c`|+ |d`〉〈d`|)
a+b⊗
`=a+1

|c`〉〈d`|
η⊗

`=a+b+1

I

)
|ψ〉

∣∣∣∣∣ . (112)

By rearranging the registers, we can apply Lemma 1. Taking |α〉 to be
⊗a+b

`=a+1 |c`〉 and 〈β| to

be
⊗a+b

`=a+1 〈d`|, we can show that either

|tr [|ψ〉〈ψ|Axy]| ≤ 〈ψ|

(
a⊗
`=1

(I + |c`〉〈c`|+ |d`〉〈d`|)
a+b⊗
`=a+1

|c`〉〈c`|
η⊗

`=a+b+1

I

)
|ψ〉 (113)

holds, or an equivalent expression with |d`〉〈d`| instead of |c`〉〈c`| in the second set of registers.

Both cases are identical, so we will proceed using the label g` for whichever choice is valid in

each register.

We can also simplify the expression in the first registers. We claim that, for each register,

we can replace the term |c`〉〈c`| + |d`〉〈d`| with either 2 |c`〉〈c`| or 2 |d`〉〈d`| without making
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the expectation value any smaller. This can be seen by proceeding register by register, using

the linearity of the expectation value. Here again, the choice of c` or d` in each register is

immaterial, so we use the label g` to denote whichever one is appropriate for each register.

Making this simplification, we have that

|tr [|ψ〉〈ψ|Axy]| ≤ 〈ψ|

(
a⊗
`=1

(I + 2 |g`〉〈g`|)
a+b⊗
`=a+1

|g`〉〈g`|
η⊗

`=a+b+1

I

)
|ψ〉 . (114)

6.4.2 Taking advantage of antisymmetry

Now we will take advantage of the antisymmetry of |ψ〉 to bound the expectation values in

Eq. (114). It is helpful to rewrite the expression in the first set of registers in a different form:
a⊗
`=1

(I + 2 |g`〉〈g`|) =
a∑

w=0

2w
∑

S⊆[a]:|S|=w

a⊗
`=1

W S
` , (115)

where W S
` = |g`〉〈g`| if ` ∈ S and W` = I otherwise. This then leads us to the bound

|tr [|ψ〉〈ψ|Axy]| ≤
a∑

w=0

2w
∑

S⊆[a]:|S|=w

〈ψ|

(
a⊗
`=1

W S
`

a+b⊗
`=a+1

|g`〉〈g`|
η⊗

`=a+b+1

I

)
|ψ〉 . (116)

Now that we have obtained this bound, we will proceed to use the antisymmetry of |ψ〉 to show

that

〈ψ|

(
a⊗
`=1

W S
` ,

a+b⊗
`=a+1

|g`〉〈g`|
η⊗

`=a+b+1

I

)
|ψ〉 ≤ 1

P (η, |S|+ b)
=

(η − |S| − b)!
η!

. (117)

To do so, let us prove the following lemma,

Lemma 2. Let |ψ〉 be a normalized pure state on η registers of n qubits each. Furthermore, let

S |ψ〉 = − |ψ〉 for any operator S that swaps the states of two of the registers. Let {Pi}i∈[k] be

a set of projectors onto orthonormal n qubit states. Then

0 ≤ 〈ψ|

(
k⊗
i=1

Pi

η⊗
i=k+1

I

)
|ψ〉 ≤ 1

P (η, k)
=

(η − k)!

η!
, (118)

where P (η, k) denotes the number of ways to choose a sequence of k items from a set of size η.
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Proof. Let Sk denote the set of all sequences obtained by choosing k items from the set [η]. Note

that two sequences with the same elements in different orders are treated as distinct elements

of Sk. For a sequence s ∈ Sk we define the operator As as the operator that acts on register

si with the projector Pi for all i ∈ [k] and acts on the other η − k registers with the identity

operation. Note that all of the operators As are defined using the same set of k projectors acting

on (potentially) different registers.

We will prove the claim by showing that

∑
s∈Sk

〈ψ|As|ψ〉 ≤ 1. (119)

Clearly the operators {As}s∈Sk are all projectors onto different subspaces. In general, these

projectors are not orthogonal (under the Hilbert-Schmidt inner product). Equivalently, we could

say that the +1 eigenspaces of these operators are not orthogonal in general.

However, we can show that |ψ〉 has no support on states that are in the +1 eigenspace of more

than one of these projectors. Consider Ax and Ay for x 6= y. There must be some register ` on

which they act differently. If Ax and Ay both act on register ` with distinct projectors Pi and Pj

then AxAy = 0 and their eigenspaces have no overlap, so we are done. Assume that only one

of Ax and Ay acts on register `. Without loss of generality we consider the case where Ax acts

on register ` with the projector Pi. Then, by definition, Ay acts on a different register `′ with

Pi (since Ay acts with exactly the same projectors as Ax, just on a potentially different set of

registers). Due to the antisymmetry of |ψ〉, we therefore have 〈ψ|AxAy|ψ〉 = 0.

Therefore, we can assert that ∑
s∈Sk

〈ψ|As|ψ〉 ≤ 1. (120)

This could be seen in more detail by expanding |ψ〉 in the basis that diagonalizes all of the {As}

and applying the fact that if Ax |φ〉 = 1 then Ay |φ〉 = 0 for all x 6= y. The antisymmetry of |ψ〉

32



also implies that 〈ψ|Ax|ψ〉 = 〈ψ|Ay|ψ〉 for all x, y. Therefore, we have that

|Sk| 〈ψ|As|ψ〉 ≤ 1 (121)

for any As. The {As} are all positive semidefinite, so we can bound the expectation value of

the particular one from Eq. (118) below by zero and divide by |Sk| = P (η, k) to yield

0 ≤ 〈ψ|

(
k⊗
i=1

Pi

η⊗
i=k+1

I

)
|ψ〉 ≤ 1

P (η, k)
=

(η − k)!

η!
, (122)

completing the proof.

Eq. (117) follows directly from this lemma and the fact that we can freely permute the observ-

ables between registers without changing the expectation value. Now we can return to Eq. (116)

and apply Eq. (117) to show that

|tr [|ψ〉〈ψ|Axy]| ≤
a∑

w=0

2w
∑

S⊆[a]:|S|=w

〈ψ|

(
a⊗
`=1

W S
`

a+b⊗
`=a+1

|g`〉〈g`|
η⊗

`=a+b+1

I

)
|ψ〉 (123)

≤
a∑

w=0

2w
∑

S⊆[a]:|S|=w

(η − w − b)!
η!

(124)

=
a∑

w=0

2w
∑

S⊆[a]:|S|=w

(η − w)!

η!

(η − w − b)!
(η − w)!

(125)

≤
a∑

w=0

2w
∑

S⊆[a]:|S|=w

(η − w)!

η!

(η − a− b)!
(η − a)!

, (126)
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with the last inequality following from the fact that η − a ≤ η − w. Then we have that

|tr [|ψ〉〈ψ|Axy]| ≤
a∑

w=0

2w
∑

S⊆[a]:|S|=w

(η − w)!

η!

(η − a− b)!
(η − a)!

, (127)

=
(η − a− b)!

(η − a)!

a∑
w=0

2w
∑

S⊆[a]:|S|=w

(η − w)!

η!
(128)

=
(η − a− b)!

(η − a)!

a∑
w=0

2w
(
a

w

)
(η − w)!

η!
(129)

≤ (η − a− b)!
(η − a)!

a∑
w=0

2w
(
a

w

)
(a− w)!

a!
(130)

=
(η − a− b)!

(η − a)!

a∑
w=0

2w

w!
(131)

≤ (η − a− b)!
(η − a)!

∞∑
w=0

2w

w!
(132)

=
(η − a− b)!

(η − a)!
e2, (133)

where the last step is obtained by the application of a well-known formula for the infinite sum

of the sequence in Eq. (132).

6.4.3 Putting the pieces together

Having shown that

|tr [|ψ〉〈ψ|Axy]| ≤ e2 (η − a− b)!
(η − a)!

, (134)

we are ready to return to the bound in Eq. (91), which we recall below:

Var(ô) ≤
∑
x∈Rk

∑
y∈Rk

tr [|ψ〉〈ψ|Axy] . (135)

We then have that

Var(ô) ≤
∑
x∈Rk

∑
y∈Rk

|tr [|ψ〉〈ψ|Axy]| (136)

≤
∑
x∈Rk

∑
y∈Rk

e2 (η − a− b)!
(η − a)!

. (137)
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Recall that we defined a and b in Eq. (100) in the following way,

a = |x ∩ y|, b = 2k − 2a. (138)

Recall also the definition of the set of sequences Rk from Eq. (48),

Rk = {1, . . . , η/k} × {η/k + 1, . . . , 2η/k} × · · · × {(k − 1) η/k + 1, . . . , η} . (139)

Colloquially, a sequence in Rk indexes a set of k registers, one from the first group of η/k, one

from the second group of η/k, and so on.

Let us consider a fixed sequence x ∈ Rk and determine how many sequences y ∈ Rk exist

for a specific value of a. For a fixed value of a, x and y share a elements. By construction,

there are
(
k
a

)
different choices for these a elements (because there are k groups and x and y can

either match or fail to match in each group). In each of the k − a groups of registers where x

and y don’t match, there are exactly η/k − 1 ways to choose the corresponding element of y.

Therefore, for a given a and x, we have that

|{y ∈ Rk : |x ∩ y| = a}| =
(
k

a

)
(η/k − 1)k−a . (140)

The only way that a particular x or y enters into Eq. (137) is through a and b, so we can use

this fact to take the sums over x and y, yielding

Var(ô) ≤
∑
x∈Rk

∑
y∈Rk

e2 (η − a− b)!
(η − a)!

(141)

≤ e2
∑
x∈Rk

k∑
a=0

(
k

a

)
(η/k − 1)k−a

(η − 2k + a)!

(η − a)!
(142)

≤ e2 (η/k)k
k∑
a=0

(
k

a

)
(η/k − 1)k−a

(η − 2k + a)!

(η − a)!
, (143)

under the assumption that η > 2k so that we don’t have to restrict the sum over a.
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Simplifying the inequality further, we find that

Var(ô) ≤ e2 (η/k)k (η/k − 1)k
k∑
a=0

(
k

a

)
(η/k − 1)−a

(η − 2k + a)!

(η − a)!
(144)

≤ e2 (η/k)k (η/k − 1)k
k∑
a=0

(
k

a

)
(η/k − 1)−a

(η − 2k + a)!

(η − k)!
. (145)

Now we employ the upper and lower bounds from Stirling’s formula (that hold for any integer

n > 0),
√

2πn
(n
e

)n
< n! < e

√
2πn

(n
e

)n
. (146)

We can use these bounds to simplify the ratio of factorials in Eq. (145),

(η − 2k + a)!

(η − k)!
≤ e
√

2π (η − 2k + a)

(
η − 2k + a

e

)η−2k+a
1

(η − k)!
(147)

≤ e
√

2π (η − k)

(
η − k
e

)η−2k+a
1

(η − k)!
(148)

≤ e

(
η − k
e

)η−2k+a(
e

η − k

)η−k
(149)

= e

(
e

η − k

)k−a
. (150)

Using the assumption that η > 2k we can proceed further, yielding

(η − 2k + a)!

(η − k)!
≤ e

(
e

η − k

)k−a
(151)

≤ e

(
2e

η

)k−a
(152)

= e

(
2e

η

)k (
2e

η

)−a
, (153)

where we have used the fact that η > 2k implies that η − k > η/2.

36



We can use Eq. (153) to further simplify Eq. (145), finding that,

Var(ô) ≤ e2 (η/k)k (η/k − 1)k
k∑
a=0

(
k

a

)
(η/k − 1)−a

(η − 2k + a)!

(η − k)!
(154)

≤ e3 (η/k)k (η/k − 1)k
k∑
a=0

(
k

a

)
(η/k − 1)−a

(
2e

η

)k (
2e

η

)−a
(155)

≤ e3
(
η2/k2

)k k∑
a=0

(
k

a

)( η
2k

)−a(2e

η

)k (
2e

η

)−a
(156)

= e3
(

2eη

k2

)k k∑
a=0

(
k

a

)( e
k

)−a
. (157)

Note that we again used the fact that η > 2k implies that η − k > η/2 to simplify the part of

the bound involving (η/k − 1). Applying the binomial theorem to the sum yields the bound

Var(ô) ≤ e3
(

2eη

k2

)k
e−k (k + e)k (158)

= e3
(

2η (k + e)

k2

)k
. (159)

Recall that we defined the estimator ô by neglecting the coefficient kk(η!)
ηk(η−k)! in Eq. (49)’s ex-

pression for the k-RDM element kDj1,...,jk
i1,...,ik

. If we let d̂ be the estimator for this k-RDM element

with the coefficient included, we have that

Var(d̂) =

(
kk (η!)

ηk (η − k)!

)2

Var(ô). (160)

Therefore, we can bound the desired variance by

Var(d̂) ≤
(

kk (η!)

ηk (η − k)!

)2

e3
(

2η (k + e)

k2

)k
. (161)

Simplifying this expression, we obtain

Var(d̂) ≤
(

kk (η!)

ηk (η − k)!

)2

e3
(

2η (k + e)

k2

)k
(162)

= e3
(

(η!)

(η − k)!

)2(
2 (k + e)

η

)k
(163)

≤ e3ηk (2k + 2e)k , (164)
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which is the bound advertised in Eq. (51).

Supplementary Note 7 More efficient Slater determinant state
preparation in first quantization

The general principle is to prepare the state in second quantization, then convert it to first quan-

tization. To avoid needing to store all N qubits for the second-quantized state as it is produced,

we convert its qubits to the first-quantized representation.

To explain this, we will first explain how a state in the second-quantized representation can be

converted to the first-quantized representation. A computational basis state in second quanti-

zation consists of a string of N bits with η ones and N − η zeros. The procedure is to run

through these qubits in sequence and store the locations in η registers of size dlogNe. Let us

call the qubit number we consider from the second-quantized representation q and also record

the number of electrons (ones) found so far as ξ. The value of ξ will be stored in an ancilla

register of size nη = dlog(η + 1)e.

We initialize all η registers for the first-quantized representation and the ξ register as zero. Then,

for q = 1 to N we perform the following.

1. Add the value in qubit q to the ξ register, with Toffoli cost nη − 1. If the qubit is in the

state |1〉 then ξ is incremented.

2. Now use qubit q to control unary iteration [30] on the register ξ, which has cost η − 1.

3. Use this unary iteration to write the value q into register ξ using CNOTs. Because q is

iterated classically, only CNOTs are needed, with no further Toffolis beyond that needed

for the unary iteration. Because the unary iteration is controlled by qubit q, in the case

where qubit q is in state |0〉, the unary iteration does not proceed and the value of q is not

written out.
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4. Now perform unary iteration on ξ again that is not controlled; the cost is η − 2.

5. We use the unary iteration on ξ to check if the value in register number ξ is q; if it is

then we perform a NOT on qubit q. This multiply-controlled Toffoli is controlled by

dlogNe + 1 qubits (including the qubit from the unary iteration), so it has a cost of

dlogNe. But, this is done for each of the η registers, for a total cost ηdlogNe.

The last operation ensures that qubit q is set to |0〉. +That is because, if it is initially |0〉, then

value q is not written in register ξ, and the value is not flipped. If it is initially |1〉, then q is

written in register ξ, and the multiply-controlled Toffoli flips this qubit to |0〉.

So far this procedure gives an ordered list of the electron positions, but we need an antisym-

metrized state. To obtain that, we apply the procedure in [31] to antisymmetrize with cost

O(η log η logN). The total Toffoli cost is

N (2η + nη − 3 + ηdlogNe) +O(η log η logN). (165)

The dominant cost here is ηN logN from erasing the qubits in the second-quantized represen-

tation, with the factor of logN coming from the need to check all qubits of each register to

check if it is q. However, recall that in unary iteration it is possible to check if a register is equal

to a consecutive sequence of values without this logarithmic overhead, and we are considering

consecutive values of q.

To eliminate that overhead, we, therefore, consider simultaneous unary iteration on all of the η

registers. That is, for each register for the first-quantized representation, we also store the qubits

needed for unary iteration, as well as a control register to ensure we do not iterate on registers

that do not have value written into them yet. The control qubits will correspond to the value of

ξ in unary. Our modified procedure is as follows (with the iteration of q from 1 to N ).

1. Perform a single step of unary iteration on all η registers with cost η Toffolis.
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2. Add the value in qubit q to the ξ register, with Toffoli cost nη − 1.

3. Use qubit q to control unary iteration on the register ξ, which has cost η − 1.

4. Use this unary iteration to write the value q into register ξ, as well as the dlogNe ancilla

qubits for the unary iteration and the control qubit. Again this is performed with CNOTs.

5. Convert the control qubits to one-hot unary using a sequence of CNOTs.

6. For each of the η registers, use the control qubit and the unary iteration output to control

a NOT on qubit q. This has a cost of a single Toffoli for each register, for a toal of η.

7. Convert the control qubits to from one-hot unary with CNOTs.

As a result, we have eliminated the logN factor and also eliminated the cost of η − 2 for the

unary iteration on ξ (because the control qubits are a unary representation of ξ). One might

ask if the binary representation of ξ is still needed; however, it would be more costly to add

increment ξ in unary (about η cost instead of log η). The total Toffoli cost of this procedure is

now

N (3η + nη − 2) +O(η log η logN), (166)

where the order term is the cost for antisymmetrizing. Note that this reduces the Toffoli cost,

but there is still a Clifford cost of Nη logN from the CNOTs to place the value of q in the

first-quantized registers.

Now to efficiently prepare the Slater determinant, we can perform the sequence of Givens rota-

tions on the qubits for the second-quantized representation. The Givens rotations are performed

in a sequence where Givens rotations are performed in a layer on qubits 1 to η + 1, then on

qubits 2 to η+ 2, then 3 to η+ 3, and so on. One can find the details of the Givens rotations that

must be applied in [32]. Generally, layer q of Givens rotations is performed on qubits q to η+q.

After the first layer there are only η + 1 qubits being used, and the first qubit is not accessed
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again in the preparation. Therefore we can convert this qubit to the first-quantized represen-

tation and erase it. Then there are only η qubits actively being used in the second-quantized

representation, and the next layer will be performed on qubits 2 to η + 2, bringing on one more

qubit.

In this way, each time we perform a layer of Givens rotations to prepare the state, we can convert

one qubit to the first-quantized representation, and only η + 1 qubits of the second-quantized

representation need be used at once, which is trivial compared to the number of qubits used for

the first-quantized representation.
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