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Background

X-vectors
X-vectors are speaker embeddings that are extracted using a feed-forward deep neural network (DNN) trained to classify
the N speakers in the training data1, 2. We provide a brief description of the x-vector system which is detailed in Snyder et
al1. The feed-forward DNN consists of layers that operate on speech frames, a statistics pooling layer that aggregates over
the frame-level representations, additional layers that operate at the segment-level, and finally a softmax output layer. The
non-linearities in this network are rectified linear units (ReLUs). The first 5 layers of the DNN work at the frame level, with a
time-delay architecture3. Suppose t is the current time step. The input layer splices together frames at {t −2, t −1, t, t +1,
t +2}. The second and third layers splice together the output of the previous layer at times {t −2, t, t +2} and {t −3, t, t +3},
respectively. The next two layers, i.e., fourth and fifth layers, also operate at the frame-level, but without any added temporal
context. In total, the frame level portion of the network (first 5 layers) has a temporal context of t −8 to t +8 frames. Layers
vary in size, from 512 to 1536, depending on the splicing context used. The statistics pooling layer receives the output of
the final frame-level layer as input, aggregates over the input segment, and computes its mean and standard deviation. These
segment-level statistics are concatenated together and passed through two additional hidden layers with dimension 512 and
300 (either of these two layers may be used to compute embeddings), respectively, and finally the softmax output layer. The
network is trained to classify the speakers in the training set using a negative log-likelihood loss function.

ECAPA-TDNN x-vectors
The ECAPA-TDNN4 is an improved version of the x-vector model explained above, which achieved SOTA performance for the
tasks of speaker verification and speaker diarization5. ECAPA-TDNN introduced several enhancements to the initial x-vector
model to extract more robust speaker embeddings. Channel-dependent and context-dependent attention mechanisms are used
for the pooling layer which allows the network to give higher weightage to more informative frames in the input. To increase
the temporal context of the frame layers in the original x-vector system, 1-dimensional Squeeze Excitation6 blocks are used to
re-scale the channels of the intermediate frame-level feature maps to insert global context information in the locally operating
convolutional blocks. 1-dimensional Res2-blocks are integrated to improve the performance while simultaneously reducing the
total parameter count by using grouped convolutions in a hierarchical way. Further, Multi-layer Feature Aggregation7 is used to
merge the complementary information before the statistics pooling by concatenating the final frame-level feature map with
intermediate feature maps of preceding layers. The ECAPA-TDNN network is trained for the task of classifying speakers in the
train set by optimizing the additive angular margin (AAM) softmax objective function8. In AAM-softmax objective function,
the cosine distance between the speaker embeddings is optimized.

Generalized end-to-end d-vectors
To obtain d-vector-based speaker embeddings from speech, we follow the generalized end-to-end (GE2E) speaker verification
approach proposed in Wan et al9. We provide below a brief review of the GE2E approach below.

GE2E training is based on processing a large number of utterances at once, in the form of a batch that contains N speakers,
and M utterances from each speaker. Each feature vector sequence x ji (1 ≤ j ≤ N and 1 ≤ i ≤ M) represents the feature
sequence (frame-level features) extracted from the ith utterance of jth speaker. These frame-level features extracted from each
utterance x ji were fed into a deep LSTM network with 3 LSTM layers (with 256 units each) followed by a linear layer (with
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256 units). The linear layer performs an affine transformation on the last frame response of the LSTM layers. The output of the
linear layer of the network is denoted as f (x ji;θ) where θ represents parameters of the entire neural network. The embedding
vector (also known as d-vector) is defined as the L2 normalization of the final layer output:

e ji =
f (x ji,θ)

∥ f (x ji,θ)∥
,

where e ji represents the embedding vector obtained for the ith utterance of jth speaker. For each speaker in the batch is
computed where the centroid c j (which represents the voice print) of the jth speaker is obtained by computing the mean of all
the embedding vectors [e j1,e j2, · · ·e jM] corresponding to jth speaker. Then a similarity matrix S is computed for each batch,
with N ×M rows and N columns. An element S ji,k in the similarity matrix is defined as the scaled cosine similarity between
each embeddings vector e ji and all the centroids ck (1 ≤ j,k ≤ N and 1 ≤ i ≤ M):

S ji,k = w · cos(e ji,ck)+b,

where w and b are learnable parameters. The model was trained using softmax on S ji,k, which outputs 1 if j = k, otherwise
outputs 0. The softmax loss on embeddings vector e ji can be defined as:

L(e ji) = S ji, j − log
N

∑
k=1

exp(S ji,k).

This loss function enables the network to learn parameters such that embeddings vectors corresponding to jth speaker are pulled
close to the centroid c j and at the same time pushed away from other centroids corresponding to other speakers.

We used the pre-trained models for extracting speaker embeddings (x-vector, ECAPA-TDNN x-vectors and d-vectors) at
segment-level for each of the DAIC-WOZ and FORBOW datasets. Each segment is represented using a speaker embedding of
dimension 512, 256, and 192 for x-vector, ECAPA-TDNN x-vector and d-vector, respectively. Finally, we use these speaker
embeddings separately to train and test the LSTM and CNN based models for depression detection i.e., LSTM and CNN models
were trained separately on x-vector, ECAPA-TDNN x-vector and d-vector speaker embeddings.

Additional Results
Depression detection using speaker embeddings: Supplementary Table S1 shows the depression assessment results obtained
using different speaker embeddings i.e., x-vector, ECAPA-TDNN x-vectors and d-vector speaker embeddings. It can be
observed from Supplementary Table S1 that all the three types of speaker embeddings achieve SOTA performance on depression
assessment, with ECAPA-TDNN x-vectors and d-vectors achieving better performance than x-vectors.

Supplementary Table S2 shows the depression assessment results obtained by combining speaker embeddings (x-vector,
ECAPA-TDNN x-vectors and d-vector) with acoustic features (COVAREP and OpenSMILE). It can be observed that the
depression assessment performance improved when the speaker embeddings were combined with the acoustic features. Best
performance was achieved when ECAPA-TDNN x-vectors are combined with OpenSMILE features.

Speaker Embeddings
x-vector ECAPA-TDNN d-vector

Model Context F1(D) F1(H) BAc. RMS F1(D) F1(H) BAc. RMS F1(D) F1(H) BAc. RMS

D
A

IC

DNN 1 0.29 0.71 0.51 7.30 0.31 0.75 0.54 7.18 0.32 0.74 0.53 7.09
MK-CNN 20 0.38 0.75 0.57 6.46 0.43 0.78 0.61 6.35 0.42 0.77 0.60 6.32
LSTM 20 0.40 0.76 0.58 6.42 0.46 0.79 0.62 6.31 0.44 0.78 0.61 6.24

V
M

DNN 1 0.28 0.71 0.51 7.14 0.31 0.73 0.52 7.07 0.28 0.74 0.52 7.13
MK-CNN 16 0.29 0.76 0.53 6.73 0.32 0.80 0.56 6.64 0.31 0.79 0.55 6.55
LSTM 16 0.31 0.77 0.54 6.71 0.34 0.81 0.58 6.62 0.34 0.79 0.57 6.57

Supplementary Table S1. Performance values in terms of F1, balanced accuracy (BAc.), and RMSE (RMS) when different
speaker embeddings are used

Depression detection using demographic information: In order to understand the significance of the demographic variables
such as biological sex and age in detecting depression, we trained different machine learning models (decision trees, support
vector machines (SVM) and deep neural networks (DNNs)) for the task of depression detection using: (1) only biological
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D
A

IC
-W

O
Z

COVAREP (x-vector, COV) (ECAPA, COV) (d-vector, COV)
F1(D) F1(H) BAc. F1(D) F1(H) BAc. F1(D) F1(H) BAc. F1(D) F1(H) BAc.

DNN 0.31 0.64 0.48 CEd 0.31 0.72 0.52 0.32 0.75 0.54 0.32 0.74 0.53
MK-CNN 0.35 0.70 0.52 CEc 0.40 0.75 0.57 0.45 0.79 0.61 0.43 0.78 0.60
LSTM 0.32 0.70 0.51 CEl 0.40 0.77 0.59 0.47 0.80 0.63 0.46 0.78 0.62

OpenSMILE (x-vector, OS) (ECAPA, OS) (d-vector, OS)
F1(D) F1(H) BAc. F1(D) F1(H) BAc. F1(D) F1(H) BAc. F1(D) F1(H) BAc.

DNN 0.31 0.70 0.51 CEd 0.32 0.74 0.53 0.41 0.76 0.58 0.34 0.76 0.55
MK-CNN 0.37 0.74 0.55 CEc 0.41 0.77 0.59 0.49 0.81 0.65 0.49 0.80 0.64
LSTM 0.39 0.73 0.56 CEl 0.49 0.80 0.64 0.50 0.83 0.66 0.50 0.83 0.66

Vo
ca

lM
in

d

COVAREP (x-vector, COV) (ECAPA, COV) (d-vector, COV)
F1(D) F1(H) BAc. F1(D) F1(H) BAc. F1(D) F1(H) BAc. F1(D) F1(H) BAc.

DNN 0.29 0.67 0.48 CEd 0.33 0.72 0.53 0.33 0.74 0.54 0.30 0.75 0.52
MK-CNN 0.30 0.68 0.49 CEc 0.33 0.77 0.51 0.34 0.80 0.57 0.34 0.79 0.56
LSTM 0.32 0.67 0.50 CEl 0.33 0.78 0.55 0.37 0.81 0.60 0.35 0.80 0.57

OpenSMILE (x-vector, OS) (ECAPA, OS) (d-vector, OS)
F1(D) F1(H) BAc. F1(D) F1(H) BAc. F1(D) F1(H) BAc. F1(D) F1(H) BAc.

DNN 0.24 0.72 0.48 CEd 0.34 0.74 0.54 0.36 0.77 0.56 0.35 0.77 0.56
MK-CNN 0.32 0.74 0.53 CEc 0.36 0.80 0.58 0.41 0.81 0.61 0.39 0.82 0.60
LSTM 0.34 0.75 0.54 CEl 0.38 0.82 0.60 0.43 0.84 0.64 0.42 0.83 0.62

Supplementary Table S2. Depression detection performance when speaker embeddings (x-vector, ECAPA-TDNN x-vector
and d-vector) are combined with COVAREP (COV) and OpenSMILE (OS) features. ECAPA refers to ECAPA-TDNN x-vector.
CEd , CEc and CEl refer to CEd with DNN, MK-CNN and LSTM blocks, respectively. BAc. refers to Balanced accuracy

sex; (2) only age; and (3) both biological sex and age as inputs. Supplementary Table S3 shows the performance of different
models trained using demographic variables for the task of depression detection. When only biological sex or only age was
used to train the models, the models were biased towards the majority class i.e., the models were always predicting the output
as healthy (and never as depressed) irrespective of the input value (Sensitivity = 0.0 and specificity = 1.0). This shows that
just the gender or age might not provide sufficient information to detect depression. When both gender and age were used
to train the models, models were still not able to perform depression detection nearly as well as in the case of using speaker
embeddings (ECAPA-TDNN x-vectors) for depression detection. This indicates that speaker embeddings are capturing more
information more than just the biological sex and age. This may also be the reason for the improved emotion classification
performance using x-vector speaker embeddings10.

Input feature Model F1(D) F1(H) BAc. Sen. Spe. RMSE

Biological sex
Decision Tree 0.0 0.86 0.50 0.0 1.0 8.92
SVM 0.0 0.86 0.50 0.0 1.0 8.87
DNN 0.0 0.86 0.50 0.0 1.0 8.83

Age
Decision Tree 0.0 0.86 0.50 0.0 1.0 8.89
SVM 0.0 0.86 0.50 0.0 1.0 8.85
DNN 0.0 0.86 0.50 0.0 1.0 8.84

Biological sex + Age
Decision Tree 0.16 0.65 0.41 0.23 0.57 8.35
SVM 0.12 0.64 0.37 0.22 0.56 8.47
DNN 0.11 0.61 0.35 0.14 0.54 8.53

ECAPA-TDNN X-vector
DNN 0.31 0.73 0.52 0.32 0.75 7.07
MK-CNN 0.32 0.80 0.56 0.32 0.81 6.64
LSTM 0.34 0.81 0.58 0.36 0.80 6.62

Supplementary Table S3. Depression detection performance on Vocal Mind dataset when demographic variables biological
sex and age were used to train machine learning models – decision trees, support vector machines (SVM) and DNNs. BAc.,
Sen., Spe. refer to balanced accuracy, sensitivity and specificity, respectively

To understand if there are any significant differences in age between the depressed and non-depressed classes, we compared
the ages of depressed participants with that of healthy participants using Kruskall-Wallis h test. A p-value of 0.41 was obtained
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showing that there are no significant differences in age between the depressed and healthy participants. This explains the
low-performance of the machine learning models trained using age as input.

Model Gender IR F1(H) F1(D) BAc.
LSTM Female ≈2:1 0.78 0.50 0.64
LSTM Male ≈3:1 0.79 0.43 0.61

(a) Gender-based depression detection on DAIC-WOZ dataset

Model Gender IR F1(H) F1(D) BAc.
LSTM Female ≈3:1 0.79 0.47 0.63
LSTM Male ≈7:1 0.78 0.25 0.52
LSTM Female ≈7:1 0.77 0.23 0.51(Under-sampled)

(b) Gender-based depression detection on Vocal Mind dataset

Supplementary Table S4. Gender-based depression detection performance using LSTM models with ECAPA-TDNN
x-vectors as input. Female, Male refers to the model trained and tested using female and male subsets, respectively. Female
(Under-sampled) is obtained by under-sampling the female subset to match the distribution of the male subset of the Vocal
Mind dataset. Imbalanced ratio (IR) refers to the ratio of non-depressed to depressed samples. BAc. refers to balanced accuracy

Gender-specific depression detection: Previous works have pointed out that the non-uniform distribution of gender-based
samples in terms of depressed and healthy participants, in the DAIC-WOZ dataset, led to overestimated performance of the
machine leaning models11. This is because of the models simply learning the gender-specific information from the voice. In
order to analyze contribution of the gender-agnostic information contained in speaker embeddings for depression detection, we
performed gender-specific depression detection as done in previous works12, 13.

H D[ ]
H 27 6
D 8 6

(a) ECAPA

H D[ ]
H 28 5
D 7 7

(b) ECAPA + OpenSMILE

H D[ ]
H 33 0
D 14 0

(c) No information system

H D[ ]
H 66 15
D 14 8

(d) ECAPA

H D[ ]
H 68 13
D 12 10

(e) ECAPA + OpenSMILE

H D[ ]
H 81 0
D 22 0

(f) No information system

Supplementary Table S5. Confusion matrices obtained using (a–c) DAIC-WOZ dataset and (d–f) Vocal Mind dataset on one
of the 5-folds. (a) using only ECAPA-TDNN features for depression detection, (b) combining ECAPA-TDNN with
OpenSMILE features for depression detection and (c) no information system where the system predicts the person to be healthy
(majority class) irrespective of the input, (d) using only ECAPA-TDNN features for depression detection, (e) combining
ECAPA-TDNN with OpenSMILE features for depression detection and (f) no information system where the system predicts
the person to be healthy (majority class) irrespective of the input. H and D refer to ground truth healthy and depressed samples,
respectively. H and D refer to the predicted healthy and depressed samples, respectively

In these experiments, we divide the entire dataset into two gender-based subsets – one set with only female speakers and the
other set with only male speakers. We then performed 5-fold cross validation on each subset separately. Supplementary Table
S4 provides the gender-specific performance of the LSTM model with ECAPA-TDNN speaker embeddings as input.

For the DAIC-WOZ dataset (see Supplementary Table S4 (a)), both Female and Male models have similar performance
with the Female model performing slightly better than the Male model. This shows that depression detection using speaker
embeddings was not simply relying on gender-based information. The difference in performance between the two models may
be due to the difference in imbalance ratio of non-depressed to depressed samples in each gender: for females, the imbalance
ratio of non-depressed to depressed is 59 : 31 ≈ 2:1 whereas for males the imbalance ratio of non-depressed to depressed is
95 : 34 ≈ 3:1.

For the Vocal Mind dataset (see Supplementary Table S4 (b)), there is a large difference between the performance of the
Female and the Male models, with the Female model performing better than the Male model. This might be accounted for
by the large difference in the imbalance ratio between female participants (294:95 ≈ 3:1) and male participants (109:16 ≈
7:1). In order to understand the effect of imbalance ratio on gender-based model performance, we under-sampled the female
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samples to match that of the male i.e., randomly selected 125 female samples (109 non-depressed and 16 depressed). We then
performed 5-fold cross validation on this under sampled set (Female (Under-sampled)). It can be observed that the performance
of the model on the Female (under-sampled) is similar to the performance of the Male model. This shows the effect of class
imbalance on the model performance.

Supplementary Table S5 shows the confusion matrices obtained using (a–c) DAIC-WOZ dataset and (d–f) Vocal Mind
dataset. It can be observed that for both datasets, models trained by combining ECAPA-TDNN with OpenSMILE features
better identify people with depression compared to the models trained using only ECAPA-TDNN features. Further, the no
information system predicts every person to be healthy (majority class) irrespective of the input i.e., it is unable to detect people
with depression.

Temporal Context in Depression Detection Supplementary Figure S1 shows the depression detection performance on the
DAIC-WOZ (DAIC) and Vocal Mind (VM) datasets by considering different temporal contexts. We use two different input
configurations: the first configuration uses only speaker embeddings, while the second configuration uses a combination of
speaker embeddings and OpenSMILE (Spk-Emb, OS) features. Our temporal contexts range from 20 seconds (4 contiguous
sub-segments) to 80 or 100 seconds (16 or 20 contiguous sub-segments). As we increase the context, the depression detection
performance improves until saturation. For instance, Supplementary Figure S1 shows that for the CEl model trained using
combined speaker embeddings and OpenSMILE on the Vocal Mind dataset (i.e., VM: Spk-Emb, OS), as we increase the
temporal context up to 16 segments, the performance of the CEl model improves to an accuracy of 0.76 – indicating that the
temporal relationship embodied across the segments of a speech recording provide essential cues for depression detection.

(a) Context plot for d-vector (b) Context plot for ECAPA-TDNN x-vector

Supplementary Figure S1. Performance (Accuracy) of the LSTM (Spk-Emb) and CEl (Spk-Emb, OS) for depression
detection when the length of the context is varied from 4 up to the entire length of the shortest example in the test set, i.e. 16
and 20 respectively. VM refers to the Vocal Mind dataset

Related Work
Acoustic Representations for Depression Analysis: Several modalities such as text, speech, electronic health records,
and wearable and mobile sensors were used for depression classification and severity estimation14–17. Speech is one such
modality which attained a lot of research attention in recent times18–20. Depression is shown to degrade cognitive planning
and psycho-motor functioning, thus affecting the human speech production mechanism19. These affects manifest as variations
in the speech voice quality21 and several features have been proposed to capture these variations in speech for depression
analysis. Spectral features such as formants and mel-frequency cepstral coefficients (MFCCs), prosodic features such as
F0, jitter, shimmer and glottal features were initially used for depression detection22–24. Spectral, prosodic and other voice
quality related features extracted using OpenSMILE25 and COVAREP26 toolkits were also used for depression analysis27, 28.
Further, features developed based on speech articulation such as vocal tract coordination features were analyzed for depression
detection21, 29, 30. Recently, sentiment and emotion embeddings, representing non-verbal characteristics of speech, were used
for depression severity estimation31. To the best of our knowledge, no other studies that we know of have explored the use
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of speaker-specific information for depression detection. In this work, we consider using speaker embeddings for depression
analysis.

Speaker Embeddings: Speaker embeddings refer to a low-dimensional representation of the speaker-specific characteristics
that exist in the speech signal2, 32 and can be designed to be relatively independent of what the speaker is saying. Speaker
representations were initially based on i-vectors, with a probabilistic linear discriminant analysis (PLDA) back-end33. Recently,
two distinct end-to-end deep neural network based approaches were used for speaker verification, and both approaches obtained
(comparable) SOTA performance2, 9. In Snyder et al., speaker embeddings, also referred to as x-vectors, were extracted from a
time-delay deep neural network (TDNN) trained for the task of speaker verification2. In contrast, speaker embeddings, also
referred to as d-vectors, were extracted from an end-to-end LSTM network trained for speaker verification9. Subsequent
improvements to the TDNN architecture of x-vectors have further improved the performance of speaker verification4, 34. In
Emphasized Channel Attention, Propagation and Aggregation TDNN (ECAPA-TDNN4), the TDNN architecture was enhanced
for the task of speaker classification by introducing improvements related to channel attention, propagation and aggregation. In
this work, we analyze three different variants of speaker embeddings i.e., x-vectors2, d-vectors9 and ECAPA-TDNN x-vectors4.

Deep learning for depression diagnosis: Recently, the application of deep learning techniques have significantly boosted
the performance of depression detection using speech28, 29, 35–37. Initially deep neural networks (DNNs) with fully-connected
layers were trained for depression detection35. Later, convolutional neural networks (CNNs) and recurrent neural networks
with long short-term memory (LSTM) units were shown to achieve better performance on depression detection28, 37. Recently,
CNN-LSTM and dilated CNNs were used for depression detection from speech to achieve SOTA performance29, 36. In this
work, we use speaker embeddings to train multi-kernel CNNs38, and LSTM models for depression analysis.

Temporal Context in Depression Detection: A few studies have analyzed the significance of the total duration of the
audio recording on the depression detection performance39–41. These works have shown that longer the duration, better the
performance. In Yang et al. and Pampouchidou et al., the analysis was performed by considering multiple modalities i.e, audio,
visual and text39, 40, whereas in Rutowski et al., automatic speech-to-text transcriptions were used to analyze the effect of
duration on depression detection performance41. In this work, we use the acoustic features extracted from speech to analyze
the effect of varying the number of contiguous speech segments on the performance of LSTM and CNN models trained for
depression detection.
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